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Resolvent analysis is a powerful tool for studying coherent structures in turbulent flows. 
However, its application beyond canonical flows with symmetries that can be used to simplify 
the problem to inherently three-dimensional flows and other large systems has been hindered 
by the computational cost of computing resolvent modes. In particular, the CPU and memory 
requirements of state-of-the-art algorithms scale poorly with the problem dimension, i.e., the 
number of discrete degrees of freedom. In this paper, we present RSVD-Δ𝑡, a novel approach 
that overcomes these limitations by combining randomized singular value decomposition with an 
optimized time-stepping method for computing the action of the resolvent operator. Critically, the 
CPU cost and memory requirements of the algorithm scale linearly with the problem dimension. 
We develop additional strategies to minimize these costs and control errors. We validate the 
algorithm using a Ginzburg-Landau test problem and demonstrate RSVD-Δ𝑡’s low cost and 
improved scaling using a three-dimensional discretization of a turbulent jet. Lastly, we use it 
to study the impact of low-speed streaks on the development of Kelvin-Helmholtz wavepackets in 
the jet via secondary stability analysis, a problem that would have been intractable using previous 
algorithms.

1. Introduction

Turbulent flows, though chaotic, often exhibit recurring patterns that are essential to their dynamics. For instance, near-wall 
streaks affect both momentum transfer and energy dissipation [116], while large-scale motions contribute to turbulence by shaping 
the energy cascade [40], and hairpin vortices play a key role in energy and momentum transport within turbulent boundary layers 
[2]. In free-shear flows, coherent structures arising from the Kelvin-Helmholtz instability, Orr mechanism, and lift-up mechanism 
have been observed in free jets, where they are integral to energy transfer and noise generation [44,69]. Coherent structures are 
also critical to the transition from laminar to turbulent flow [83] and to sustaining turbulence [60]. Popular data-driven methods 
include proper orthogonal decomposition (POD) [89], dynamic mode decomposition (DMD) [81], and spectral proper orthogonal 
decomposition (SPOD) [52,107]. In particular, SPOD identifies energy-ranked, single-frequency structures that evolve coherently in 
space and time.

Resolvent (or input-output) analysis originates from classical control theory [27,49] and has become arguably the most important 
operator-theoretic modal decomposition technique in fluid mechanics [61,98,46]. Resolvent analysis has been applied to a wide 
variety of flows, including canonical wall-bounded flows [25,64], turbulent jets [41,86,50,69], and airfoils [100,114]. It has been 
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used for diverse tasks including design optimization [18,71], receptivity analysis [47,22], and flow control [115,104,56,57]. Singular 
value decomposition (SVD) of the resolvent operator is at the heart of input-output-based studies. The left singular vectors of the 
resolvent operator, known as the response modes, are often related to the coherent motions in the flow [61,107]. Specifically, the 
resolvent modes associated with the largest singular values can provide an approximation of the leading SPOD modes [107] and, 
in some cases, capture the majority of the power spectral density (PSD) of the flow [97]. The right singular vectors, also known 
as the forcing modes, describe the optimal inputs that lead to the most amplified responses, characterized by the largest singular 
values, and offer information about the mechanisms driving these responses. The singular values, referred to as the gains, quantify 
the amplification from unit-norm forcing to the corresponding response.

Resolvent analysis can be computationally demanding. Two steps constitute most of the cost: (𝑖) forming the resolvent operator, 
which involves computing an inverse, and (𝑖𝑖) performing the SVD. Both steps nominally scale like 𝑂(𝑁3), where 𝑁 is the state 
dimension. State-of-the-art methods, described below, improve on this scaling, but the computational cost remains a strong function 
of the state dimension 𝑁 . The state dimension, in turn, depends acutely on the number of spatial dimensions that must be numerically 
discretized. While the linearized Navier–Stokes equations are nominally three-dimensional, they can be simplified by expanding 
the flow variables into Fourier modes in homogenous dimensions, i.e., those in which the base flow about which the equations 
are linearized does not vary. This markedly reduces the size of the discretized operators that must be manipulated, decreasing the 
computational cost. Accordingly, inherently three-dimensional flows that do not contain homogeneous directions or other simplifying 
symmetries are particularly challenging.

Recent advancements aim to overcome these two computational bottlenecks. The second bottleneck can be alleviated by using 
efficient algorithms to compute only the SVD modes with the largest singular values, which are typically of primary interest, rather 
than the complete decomposition. Standard methods like power iteration and various Arnoldi methods have been frequently applied 
for this purpose. More recently, randomized singular value decomposition (RSVD) [33] has been shown to further reduce the cost of 
resolvent analysis of one- [62] and two-dimensional [73] problems.

Regarding the first bottleneck, forming the resolvent operator by computing an inverse is feasible only for small systems, e.g., 
one-dimensional ones. Fortunately, the aforementioned SVD algorithms do not require direct access to the resolvent operator, but 
rather its action on a specified forcing vector, i.e., the result of applying the resolvent operator to that vector. Accordingly, we can 
recast the first bottleneck in terms of the computational cost of computing the action of the resolvent operator on a vector. The 
standard approach for doing so is to solve a linear system whose solution yields the action of the resolvent operator on the right-
hand-side vector via LU decomposition of the inverse of the resolvent operator (which can be directly formed in terms of the linearized 
Navier-Stokes operator; see §3 for details). The computational cost of this approach typically scales like 𝑂(𝑁1.5) or 𝑂(𝑁2) for two-
and three-dimensional problems, respectively, which is tolerable for most two-dimensional problems but quickly becomes intractable 
for three-dimensional problems. Numerous authors have used this LU-based approach along with Arnoldi methods [88,41,86,48]. 
Brynjell-Rahkola et al. [15] used LU decomposition along with a power iteration with a Laplace preconditioner to increase the 
convergence rate of the resolvent modes. Ribeiro et al. [73] used LU decomposition along with RSVD, which we call “RSVD-LU” in 
this study, and demonstrated significant CPU savings compared to using an Arnoldi iteration. However, the poor cost scaling of the 
LU decomposition with problem size 𝑁 , typically between 𝑂(𝑁1.5) to 𝑂(𝑁2), remains a limiting factor, impeding the investigation 
of three-dimensional flows and other large systems. Recently, Houtman et al. [37] used an iterative solver as an alternative to LU 
decomposition to handle large systems. While this approach is attractive due to its potential to achieve 𝑂(𝑁) scaling, the absolute 
cost of iterative solvers depends heavily on the availability of an effective preconditioner, which is typically problem dependent, 
especially for the ill-conditioned matrices obtained from the linearized Navier-Stokes equations.

Resolvent modes can be computed at a reduced cost for slowly varying flows, i.e., flows whose mean changes gradually in some 
spatial direction, by using spatial marching methods to approximate the action of the resolvent operator. Spatial marching methods 
approximately evolve perturbations in the slowly varying direction. The best-known spatial marching method is the parabolized 
stability equations (PSE), but the inherent ill-posedness of PSE [51] requires deleterious regularization that makes it ill-suited to 
compute resolvent modes in most cases [105]. One exception is very low frequencies, where PSE has been used to compute resolvent 
modes corresponding to boundary-layer streaks [77]. The one-way Navier–Stokes (OWNS) equations [102] overcome many of the 
limitations of PSE; they are formally well-posed and capture the complete downstream response of the flow. The original formulation 
did not include a right-hand-side forcing on the linearized equations, which is fundamental to resolvent analysis. This was addressed 
by a second OWNS variant formulated in terms of a projection operator that splits both the solution and forcing into upstream-
and downstream-traveling components [106]. This method has been combined with a power-iteration approach to accurately and 
efficiently approximate resolvent modes for a range of slowly varying flows ranging from incompressible boundary layers to supersonic 
jets to hypersonic boundary layers. Recently, the cost of this approach was further reduced by a new recursive OWNS formulation 
[117]. The fundamental limitation of OWNS-based approaches is their restriction to (mostly) canonical flows that contain a slowly 
varying direction.

Several data-driven methods for computing resolvent modes have been proposed, which avoid working directly with the resolvent 
operator at all. Towne et al. [103] and Towne [101] introduced empirical resolvent decomposition (ERD). Starting with data in the 
form of a set of forcing and response pairs, ERD solves an optimization problem to identify modes within the span of the data that 
maximizes the gain. Another recent approach uses dynamic mode decomposition (DMD) [81] to estimate the resolvent modes from 
data [35]. This approach benefits from the advancements in DMD [82] and is robust, but to accurately approximate the resolvent 
modes, many random initial conditions may need to be simulated.

Barthel et al. [10] recently proposed a reformulation of resolvent analysis called variational resolvent analysis (VRA). Using the 
same mathematics that underly ERD, VRA computes resolvent modes by solving a Rayleigh quotient, avoiding the inverse that appears 
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in the definition of the resolvent operator. To make the method computationally advantageous, the response modes are constrained 
to lie within the span of some other reduced-order basis. Barthel et al. [10] obtain this basis from a series of locally parallel resolvent 
analyses; if the basis is taken from data, VRA becomes ERD. VRA showed speed-up compared to standard approaches for a canonical 
boundary layer, but it remains to be investigated for more complex scenarios where an effective basis is not evident.

Time-stepping methods offer an alternative approach to overcome the first bottleneck (these methods are sometimes referred to 
as “matrix-free” approaches, as forming the LNS operator is not necessary). The central idea is to obtain the action of the resolvent 
operator on a vector by solving the linearized equations in the time domain. A pioneering study by Monokrousos et al. [63] used time 
stepping along with power iteration to compute resolvent modes for a flat-plate boundary-layer flow. Modes at a particular frequency 
of interest were computed by forcing the linearized equations exclusively at that frequency and time stepping until a steady-state 
solution is obtained. Gómez et al. [31] proposed an iterative procedure for updating the initial conditions to reduce the time required 
to reach the steady-state solution. This resulted in an 80% reduction of CPU time for a test problem, but only the leading mode at each 
frequency was obtained. Martini et al. [58] introduced two additional variations of time-stepping approaches for computing resolvent 
modes with improved efficiency. The first, referred to as the transient response method, evaluates the transitional response of the LNS 
to temporally compact forcing. The second variation, known as the steady-state response method, computes the steady-state solution 
of the LNS when it is forced with a set of harmonic frequencies. Both methods allow all frequencies of interest to be simultaneously 
computed by isolating each frequency in the flow response using a discrete Fourier transform. Additionally, the steady-state method 
can be easily paired with more advanced SVD algorithms (e.g., Arnoldi, rather than power iteration) to obtain multiple resolvent 
modes at each frequency.

Time-stepping methods for computing resolvent modes are potentially powerful because they obtain the action of the resolvent 
operator without the need for inverses or LU decomposition. Indeed, we will show that time time-stepping methods can achieve 
linear cost scaling with the problem dimension 𝑁 . However, achieving this potential and overall low CPU and memory costs requires 
careful consideration of numerous factors including simultaneous time integration for all frequencies of interest, the use of explicit 
solvers when implicit solvers require costly LU decomposition or preconditioning, efficient removal of undesired transient responses—
especially if they decay slowly—and leveraging streaming calculations.

In this paper, we present a novel approach, abbreviated as “RSVD-Δ𝑡”, that combines the benefits of RSVD with the advantages 
of time stepping. In short, the method eliminates the bottleneck in the RSVD-LU approach created by the LU decomposition by 
obtaining the action of the resolvent operator via an optimized time-stepping approach. All frequencies of interest as computed 
simultaneously using a steady-state response approach as in Martini et al. [58]. Additionally, we develop a novel technique to 
remove the undesired transient component of the response, shortening the temporal interval over which the equations are integrated 
and reducing the CPU cost by an order of magnitude in most cases. To minimize memory usage, we utilize streaming calculations 
for transferring data between the Fourier and time domains. The RSVD-Δ𝑡 algorithm is shown to exhibit linear scalability both in 
terms of computational complexity and memory requirements and can be efficiently parallelized. Overall, these capabilities allow us 
to compute resolvent modes for three-dimensional flows and other large systems that were previously out of reach. An open-source, 
parallelized implementation of our algorithm is available on GitHub (https://github.com/AliFarghadan/RSVD-Delta-t).

In the remainder of the paper, we provide a brief review of the formulation and computation of resolvent analysis in §2, discuss the 
RSVD-LU algorithm in §3, explain the time-stepping method in §4, and introduce our RSVD-Δ𝑡 algorithm in §5. An overview of the 
computational complexity of all approaches is given in §6, the sources of errors of our algorithm are detailed in §7, and approaches 
to optimize the algorithm are developed in §8. Two test cases are defined in §9 to validate, examine and compare the accuracy and 
performance of RSVD-Δ𝑡 against other approaches. In §10, we use RSVD-Δ𝑡 to study the impact of streaks on the Kelvin-Helmholtz 
wavepackets in a jet. Concluding remarks are made in §11.

2. Resolvent analysis

2.1. Formulation

Our starting point is the compressible Navier-Stokes equations, written as

𝜕𝒒

𝜕𝑡 
= (𝒒), (1)

where the nonlinear Navier-Stokes operator  acts on the state vector 𝒒 ∈ ℂ𝑁 , which describes the flow discretized in all inhomo-
geneous directions. A standard Reynolds decomposition

𝒒(𝒙, 𝑡) = �̄�(𝒙) + 𝒒′(𝒙, 𝑡) (2)

partitions the flow state into the time-averaged mean �̄� and the fluctuation 𝒒′. Substituting (2) into (1) and applying a Taylor 
expansion of  around �̄�,

𝑨(�̄�) = 𝜕

𝜕𝒒

||||𝒒=�̄� ∈ℂ𝑁×𝑁, (3)

leads to
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𝜕𝒒′

𝜕𝑡 
=𝑨(�̄�)𝒒′ +𝑩𝒇 ′(�̄�,𝒒′),

𝒚′ =𝑪𝒒′,
(4)

where 𝑨 is the linearized Navier-Stokes (LNS) operator, 𝑩 ∈ ℂ𝑁×𝑁𝑓 is an input matrix that can be used to restrict the forcing 
𝒇 ′ ∈ ℂ𝑁𝑓 , and 𝑪 ∈ ℂ𝑁𝑦×𝑁 is an output matrix that extracts the output of interest 𝒚′ ∈ ℂ𝑁𝑦 from the state. Here, the forcing term 
𝒇 ′(�̄�,𝒒′) encapsulates all nonlinear terms from the Taylor expansion of  around �̄�, excluding the linear term represented by 𝑨(�̄�)𝒒′. 
It can also represent exogenous forcing. The matrices 𝑩 and 𝑪 serve as masks in equation (4), providing generality and flexibility.

Resolvent analysis is most natural when 𝑨 is stable, i.e., all of its eigenvalues lie in the left-half plane. If 𝑨 is unstable, discounting 
can be used to obtain a stable system [45,115]. For more details on this procedure, see Rolandi et al. [74]. We assume that, if 
necessary, discounting has already been performed so that 𝑨 is strictly stable.

Resolvent analysis seeks the forcing that produces the largest steady-state response. Since the steady state is of interest, the solution 
can be obtained in the frequency domain. Taking the Fourier transform

 (⋅) = ̂(⋅)(𝜔) =

+∞

∫
−∞

(⋅)𝑒−i𝜔𝑡 𝑑𝑡 (5)

of (4) and solving for the output yields

�̂�(𝜔) =𝑹(𝜔)�̂� (𝜔), (6)

where 𝜔 is the frequency and ̂(⋅) denotes the frequency counterpart of the time domain vector. The resolvent operator

𝑹 =𝑪(i𝜔𝑰 −𝑨)−1𝑩 (7)

maps the input forcing to the output response (here, i =
√
−1 and 𝑰 is the identity matrix.)

The optimization problem for the most amplified forcing is formally defined as maximizing

𝜎 =
||�̂�||𝑞
||�̂� ||𝑓

=
||𝑹�̂� ||𝑞
||�̂� ||𝑓

, (8)

where ||𝒙||2
𝑓
= ⟨𝒙,𝒙⟩𝑓 = 𝒙∗𝑾 𝑓𝒙 computes the 𝑓 -norm of any vector 𝒙 and (⋅)∗ denotes the conjugate transpose. 𝑾 𝑓 is a weight 

matrix that accounts for numerical quadrature and allows us to define arbitrary norms. Note that input and output norms can be 
different, i.e., || ⋅ ||𝑞 = || ⋅ ||𝑓 is not required. For notational brevity, we assume identity matrices for the weight, input, and output 
matrices in what follows. The minor adjustments to our algorithm to accommodate non-identity weight, input, and output matrices 
are outlined in Appendix A.

Solving the Rayleigh quotient (8) is equivalent to computing the SVD of the resolvent operator [92]

𝑹 =𝑼𝜮𝑽 ∗, (9)

where 𝜮 contains the singular values (a.k.a. gains), and 𝑽 and 𝑼 are right and left singular vectors corresponding to input and output 
vectors (a.k.a. forcing and response modes), respectively.

2.2. Computation

Computing resolvent modes by following the definitions from the previous § involves two computationally intensive steps: (𝑖)
forming the resolvent operator by computing the inverse in (7) and (𝑖𝑖) computing the full singular value decomposition in (9). Both 
of these steps nominally require 𝑂(𝑁3) operations. This is workable for one-dimensional problems, e.g., a channel flow [62], but 
quickly becomes intractable for two- and three-dimensional problems.

Instead, most applications of resolvent analysis to two-dimensional problems have adopted an alternative approach that leverages 
LU decomposition and iterative eigenvalue solvers [88,41,86,100,48]. This approach utilizes a mathematical equivalence to compute 
the resolvent modes faster than the natural approach. The right singular vectors of the resolvent operator are defined as the eigenfunc-
tions of 𝑹∗𝑹, i.e., 𝑹∗𝑹 = 𝑽 𝜮2𝑽 ∗. By computing the leading eigenmodes of 𝑹∗𝑹, both right singular vectors and square of singular 
values of the resolvent operator are obtained. Recovering the left singular vectors is done via 𝑼 =𝑹𝑽 𝜮−1. The leading eigenvalues 
and eigenvectors can be efficiently computed via Arnoldi iteration [6]. The cost of the Arnoldi method relies on the desired number 
of modes and the convergence threshold. The Arnoldi algorithm requires the repeated computation of 𝑹∗𝑹𝒗 for a given vector 𝒗. 
Computing the LU decomposition of (i𝜔𝑰 −𝑨) circumvents computing 𝑹 directly. This is because solving (i𝜔𝑰 −𝑨)𝒗 = 𝒃 using LU 
decomposition is equivalent to finding 𝒗 = (i𝜔𝑰 −𝑨)−1𝒃 =𝑹𝒃 without explicit inversion. This is a common practice to speed up the 
process of constructing the orthonormal basis of the Krylov subspace [99]. However, the 𝑂(𝑁2) scaling of the LU decomposition 
remains burdensome for three-dimensional systems.

The main objective of this paper is to enable resolvent analysis for high-dimensional systems. Therefore, we discuss state-of-the-art 
approaches and introduce an improved algorithm specifically designed to tackle three-dimensional flows.
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3. Computing resolvent modes using RSVD

RSVD is a recent randomized linear algebra technique that provides a low-cost approximation of the leading singular modes of 
a matrix [33] by sampling its image and range. In the following two subsections, we introduce the RSVD algorithm and discuss its 
application to resolvent analysis.

3.1. RSVD algorithm

Algorithm 1 RSVD-LU.
1: Inputs: 𝑹, 𝑘, 𝑞

2: 𝜣← randn(𝑁,𝑘) ⊳ Create random test matrices
3: 𝒀 ←𝑹𝜣 ⊳ Sample the range of 𝑹
4: if 𝑞 > 0 then ⊳ Optional power iteration 
5: 𝒀 ← PI (𝑹,𝒀 , 𝑞) ⊳ Algorithm 2
6: 𝑸← qr(𝒀 ) ⊳ Build the orthonormal subspace 𝑸
7: 𝑺 ←𝑸∗𝑹 ⊳ Sample the image of 𝑹
8: (�̃� ,𝜮,𝑽 )← svd(𝑺) ⊳ Obtain 𝜮,𝑽

9: 𝑼 ← 𝑸�̃� ⊳ Recover 𝑼
10: Outputs: 𝑼 ,𝜮,𝑽

Algorithm 1. Inputs: resolvent operator 𝑹, number of modes 𝑘, and number of power iterations 𝑞. Outputs: 𝑘 response modes 𝑼 , 𝑘 forcing modes 𝑽 and 𝑘 gains 
𝜮 .

There exist several variations of the RSVD algorithm; here, we outline the algorithm from Halko et al. [33]. The first step is to 
sample the range of 𝑹 by forming its sketch (line 3)

𝒀 =𝑹𝜣, (10)

where 𝜣 ∈ ℂ𝑁×𝑘 is a dense random test matrix (line 2) with 𝑘 ≪ 𝑁 columns that determines the number of leading modes to be 
approximated. Increasing the number of test vectors slightly beyond the desired number of modes enhances the accuracy of the 
leading modes. A feature of high-dimensional random vectors is that they form an orthonormal set with high probability [109], such 
that, on average, 𝜣 projects uniformly onto all of the right singular vectors of 𝑹. Therefore, the sketch preserves the leading left 
singular vectors of 𝑹. An orthonormal basis 𝑸 ∈ ℂ𝑁×𝑘 for the sketch is obtained via QR decomposition (line 6), which is then used 
to sample the image of 𝑹 (line 7) as

𝑺 =𝑸∗𝑹. (11)

Computing the SVD of 𝑺 ∈ ℂ𝑘×𝑁 (line 8), which is inexpensive due to its reduced dimension, provides an approximation of the 𝑘
leading right singular vectors 𝑽 ∈ ℂ𝑁×𝑘 and singular values 𝜮 ∈ ℂ𝑘×𝑘 of 𝑹. Finally, the corresponding approximations of the left 
singular vectors of 𝑹 can be recovered as 𝑼 =𝑸�̃� ∈ℂ𝑁×𝑘 (line 9).

RSVD accurately estimates the leading modes for matrices with rapidly decaying singular values. For systems with slowly decaying 
singular values, performing 𝑞 optional power iterations (lines 4-5 and Algorithm 2) enhances the accuracy of the estimates. The 
rationale of power iteration is to increase the effective gap between singular values within the sketch by exponentiating them, since

(𝑹𝑹∗)𝑞𝒀 = (𝑼𝜮(𝑽 ∗𝑽 )𝜮𝑼∗)𝑞𝒀 = (𝑼𝜮2𝑼∗)𝑞𝒀 = (𝑼𝜮2𝑞𝑼∗)𝒀 . (12)

Raising the singular values to a high power artificially accelerates the decay rate of the singular values of 𝑹, improving the effective-
ness of the RSVD algorithm. The QR factorizations improve numerical stability, as discussed by Halko et al. [33].

Algorithm 2 Power iteration.
1: Inputs: 𝑹,𝒀 , 𝑞

2: for 𝑖 = 1 ∶ 𝑞 do

3: 𝑸← qr(𝒀 ) ⊳ For stabilization purposes
4: 𝒀 ← 𝑹∗𝑸 ⊳ Sample the image of 𝑹
5: 𝑸← qr(𝒀 ) ⊳ For stabilization purposes
6: 𝒀 ← 𝑹𝑸 ⊳ Sample the range of 𝑹
7: Output: 𝒀

Algorithm 2. Inputs: resolvent operator 𝑹, 𝑘 response modes from the first direct action 𝒀 , and number of power iterations 𝑞. Outputs: 𝑘 response modes 𝒀 .

3.2. RSVD for resolvent analysis

The algorithm outlined in the previous section assumes direct access to the matrix 𝑹. In the context of resolvent analysis, 𝑹
is defined in terms of an inverse, which should be avoided. Ribeiro et al. [73] addressed this challenge by adopting the approach 
developed by Jeun et al. [41] for computing resolvent modes using an Arnoldi algorithm.
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The idea is to replace multiplication of 𝑹 or 𝑹∗ by solving an equivalent linear system. For example, 𝒀 =𝑹𝜣 (line 3 of Algo-
rithm 1) can be obtained by solving the linear system

(i𝜔𝑰 −𝑨)𝒀 =𝜣 (13)

since 𝑹−1 = (i𝜔𝑰 −𝑨). Similarly, 𝑺 =𝑸∗𝑹 (line 7 of Algorithm 1) can be replaced with solving

(i𝜔𝑰 −𝑨)∗𝑺∗ =𝑸. (14)

The same concept can be used to replace multiplication by 𝑹 and 𝑹∗ in Algorithm 2.
Typically, the linear systems are solved by computing an LU decomposition

(i𝜔𝑰 −𝑨) =𝑳𝑷 , (15)

where 𝑳 and 𝑷 are the lower and upper triangular matrices (we use 𝑷 to denote the upper triangular matrix instead of 𝑼 to avoid 
confusion with the left singular vectors). The same LU decomposition can be used also for (i𝜔𝑰 −𝑨)∗ since

(i𝜔𝑰 −𝑨)∗ = (𝑳𝑷 )∗ = 𝑷 ∗𝑳∗. (16)

Solving these linear systems is indeed significantly less computationally demanding than computing the inverse of (i𝜔𝑰 − 𝑨) to 
form 𝑹 and performing subsequent matrix-matrix multiplication in the RSVD algorithm. The remaining steps of the algorithm incur 
negligible computational costs and are not altered. In the remainder of our paper, we will use the term “RSVD-LU” to refer to the 
modified version of RSVD that is compatible with resolvent analysis [73].

4. Computing resolvent modes using time stepping

An alternative class of methods for computing resolvent modes utilizes time stepping. This idea was first proposed by Monokrousos 
et al. [63] and recently was improved upon by Martini et al. [58], who introduced two methods: the transient response method and 
the steady-state response method. The latter was found to be better suited for complex algorithms, and we will employ and extend 
this method in the present paper. A key difference between this paper and the work of Martini et al. [58] is that while their time-
stepping approaches are integrated into Arnoldi’s method to compute the leading resolvent modes, we will incorporate it into the 
RSVD algorithm. RSVD has demonstrated superior speed compared to previous methods, including Arnoldi and standard SVD-based 
techniques [73]. Additionally, we introduce new approaches to minimize the CPU and memory costs for any time-stepping method 
for computing resolvent modes.

4.1. The action of the resolvent operator via time stepping

The central idea of the time-stepping approach is to obtain the action of the resolvent operator on a vector (or matrix) by solving 
the linear system that underlies the resolvent operator in the time domain. In this context, the action of a matrix 𝑹 on a vector (or 
matrix) 𝒃 is defined as follows; Given 𝒃, our objective is to compute 𝒙 =𝑹𝒃, which is equivalent to solving the linear system 𝑹−1𝒙 = 𝒃
for 𝒙.

Starting with a harmonically forced ordinary differential equation (ODE)

𝑑𝒒

𝑑𝑡 
=𝑨𝒒 + 𝒇 , (17)

where

𝒇 (𝑡) = �̂�𝑒i𝜔𝑡 (18)

is the harmonic forcing with frequency 𝜔 ∈ℝ and �̂� ∈ℂ𝑁 is an arbitrary vector. The steady-state response of (17) is

𝒒(𝑡) = �̂�𝑠𝑒
i𝜔𝑡, (19)

where

�̂�𝑠 = (i𝜔𝑰 −𝑨)−1�̂� =𝑹�̂� (20)

is the Fourier-domain solution. Therefore, the action of 𝑹 can be obtained by computing the steady-state solution 𝒒(𝑡) of (17) and 
subsequently taking a Fourier transform to obtain �̂�𝑠. Similarly, the action of 𝑹∗ can be obtained by computing the steady-state 
response 𝒛(𝑡) of the adjoint equation

−𝑑𝒛

𝑑𝑡 
=𝑨∗𝒛+ 𝒇 ,

𝒇 = �̂�𝑒i𝜔𝑡,

(21)

backward in time and taking a Fourier transform to obtain

Journal of Computational Physics 524 (2025) 113695 

6 



A. Farghadan, E. Martini and A. Towne 

Fig. 1. Schematic of the response waveform. The solution contains a transient portion of length 𝑇𝑡 before the steady-state solution of period 𝑇𝑠 is achieved. The 
numerical solution contains 𝑁𝑠 time steps of size 𝑑𝑡 within one period of the steady-state solution, but only 𝑁𝜔 points with Δ𝑡 spacing are required to decompose the 
𝑁𝜔 frequencies of interest without aliasing. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

�̂�𝑠 = (−i𝜔𝑰 −𝑨∗)−1�̂� =𝑹∗�̂� . (22)

We use a discrete adjoint, i.e., we take the complex conjugate of the LNS operator, 𝑨∗, as the adjoint operator. This is consistent with 
the common approach of computing resolvent modes from the SVD of 𝑹 without explicitly defining an adjoint. We note, however, that 
using a continuous formulation of the adjoint equations or a tailored set of differentiation operators and boundary conditions such 
as the summation-by-parts, simultaneous approximation term (SBP-SAT) method [16] may be necessary in certain cases to prevent 
numerical artifacts [12,110].

The arbitrary harmonic forcing term �̂� can be a matrix instead of a vector by defining �̂� ∈ ℂ𝑁×𝑘. In that case, each column of 
the solutions �̂� and �̂� corresponds to one specific column of the forcing matrix.

4.2. Direct and adjoint actions for a range of frequencies

This section describes an important contribution from Martini et al. [58] that allows us to compute the action of the resolvent 
operator for a set of desired frequencies while time-stepping the equations only once. Integrating (17) typically generates a transient 
response 𝑇𝑡 before obtaining the desired steady-state solution, as shown in Fig. 1. The length of 𝑇𝑡 affects the length of time stepping 
and the accuracy of the output, as discussed in §7.2.2. The discrete nature of time stepping encourages the usage of discrete Fourier 
transform (DFT) where �̂�𝑠(𝜔) can be obtained for a base frequency, 𝜔𝑚𝑖𝑛, and its harmonics, 𝑛𝜔𝑚𝑖𝑛, where 𝑛 ∈ℤ. The DFT necessitates 
a specific time length of 𝑇𝑠 = 2𝜋∕𝜔𝑚𝑖𝑛 in order to accurately resolve the longest period of interest. The number of snapshots within 
the steady-state period 𝑇𝑠 determines the lowest frequency that can be resolved.

In order to compute resolvent modes for all frequencies of interest

𝛺 = {0,±𝜔𝑚𝑖𝑛,±2𝜔𝑚𝑖𝑛,±3𝜔𝑚𝑖𝑛, ...,±𝜔𝑚𝑎𝑥}, (23)

where 𝜔𝑚𝑎𝑥 represents the highest frequency of interest, the forcing term

𝒇 =
∑

𝜔𝑗∈𝛺

�̂� 𝑗𝑒
i𝜔𝑗 𝑡 (24)

must include all frequencies in 𝛺. The minimum number of snapshots within the 𝑇𝑠 -period is 𝑁𝜔 = 2⌈𝜔𝑚𝑎𝑥

𝜔𝑚𝑖𝑛
⌉ according to Nyquist’s 

theorem [66]. Performing time integration of (17) results in computing 𝑁𝑠 steady-state snapshots within the 𝑇𝑠-period, where typically 
𝑁𝑠 ≥𝑁𝜔, as the time step (𝑑𝑡) is chosen to ensure sufficient integration accuracy. Ultimately, by choosing 𝑁𝜔 steady-state snapshots, 
we can determine the Fourier coefficients by taking a DFT.

To elaborate on the previous point, assume a set of snapshots 𝑸𝑁𝑠
= {𝒒1,𝒒2,𝒒3, ...,𝒒𝑁𝑠

} (analogous to the pink dots in Fig. 1), 
where 𝒒𝑗 represents the 𝑗𝑡ℎ steady-state snapshot in the time domain. The fast Fourier transform (FFT) can efficiently compute 
�̂�𝑁𝑠

= {�̂�1, �̂�2, �̂�3, ..., �̂�𝑁𝑠
}. However, the maximum resolved frequency within �̂�𝑁𝑠

surpasses 𝜔𝑚𝑎𝑥 since typically 𝑁𝜔 ∼𝑂(102), and 
𝑁𝑠 ∼ 𝑂(103 − 105). Therefore, an optimal size to resolve all 𝜔 ∈ 𝛺 without aliasing is to consider 𝑁𝜔 equally spaced snapshots in 
𝑸𝑁𝜔

= {𝒒1,𝒒2,𝒒3, ...,𝒒𝑁𝜔
} (analogous to the cyan dots in Fig. 1). Taking the FFT of 𝑸𝑁𝜔

yields �̂�𝑁𝜔
= {�̂�1, �̂�2, �̂�3, ..., �̂�𝑁𝜔

}, where 
each member �̂�𝑗 represents the solution to (i𝜔𝑗𝑰 −𝑨)�̂�𝑗 = �̂� 𝑗 , with 𝜔𝑗 ∈𝛺.

To avoid leakage, the equidistant snapshots within 𝑸𝑁𝜔
need to span the entire 𝑇𝑠 period, i.e.,

𝑇𝑠 = 𝑑𝑡 ×𝑁𝑠 =Δ𝑡 ×𝑁𝜔. (25)

For a given pair (𝜔𝑚𝑖𝑛,𝜔𝑚𝑎𝑥),

Δ𝑡 =
𝑇𝑠

𝑁𝜔

=
2𝜋∕𝜔𝑚𝑖𝑛

2⌈𝜔𝑚𝑎𝑥

𝜔𝑚𝑖𝑛
⌉ (26)
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Fig. 2. Flowchart depicting the action of 𝑹 on 𝑁𝜔 inputs for the RSVD-LU (upper route) and the RSVD-Δ𝑡 (bottom route) algorithms. Both routes produce the same 
result, but the bottom route is computationally advantageous for large systems.

is predetermined, so 𝑑𝑡 must be selected such that 𝑁𝑠

𝑁𝜔
∈ℕ.

Fig. 2 demonstrates the equivalence between computing the action of 𝑹 for a range of frequencies in both the RSVD-LU and 
RSVD-Δ𝑡 algorithms. Starting from the LNS equations, the upper route involves applying a Fourier transform before solving 𝑁𝜔

decoupled linear systems to compute the action of the resolvent operator on 𝑁𝜔 forcing inputs. The bottom route involves integrating 
the LNS equations in the time domain, followed by a Fourier transform to generate the same output as the upper route. All frequencies 
of interest, 𝜔 ∈𝛺, are included in the forcing so that the time stepping is performed only once, and the response at each frequency 
is obtained using a DFT or FFT.

5. RSVD-𝚫𝒕: RSVD with time stepping

Our algorithm, which we refer to as RSVD-Δ𝑡, uses time stepping to eliminate the computational bottleneck within the RSVD 
algorithm for large systems. Specifically, solving the direct and adjoint LNS equations to apply the action of 𝑹 and 𝑹∗ circumvents 
the need for LU decomposition, improving the scaling of the algorithm (see §6), enabling resolvent analysis for the large systems 
typical of three-dimensional flows. RSVD-Δ𝑡 is outlined in Algorithm 3 and described in what follows.

Algorithm 3 RSVD-Δ𝑡.
1: Inputs: 𝑨, 𝑘, 𝑞,𝛺, TSS, 𝑑𝑡, 𝑇𝑡

2: �̂�← randn(𝑁,𝑘,𝑁𝜔) ⊳ Create random test matrices
3: �̂� ← DirectAction(𝑨, �̂� ,TSS, 𝑑𝑡, 𝑇𝑡) ⊳ Sample the range of 𝑹
4: if 𝑞 > 0 then ⊳ Optional power iteration 
5: �̂� ← PI(𝑨, �̂� , 𝑞,TSS, 𝑑𝑡, 𝑇𝑡) ⊳ Algorithm 2 with time stepping 
6: �̂�← qr𝛺 (�̂� ) ⊳ Build the orthonormal subspace �̂�
7: �̂� ← AdjointAction(𝑨∗, �̂�,TSS, 𝑑𝑡, 𝑇𝑡) ⊳ Sample the image of 𝑹
8: (�̃� ,𝜮,𝑽 )← svd𝛺 (�̂�) ⊳ Obtain 𝜮,𝑽

9: 𝑼 ← (�̂��̃� )𝛺 ⊳ Recover 𝑼
10: Outputs: 𝑼 ,𝜮,𝑽 for all 𝜔∈𝛺

Algorithm 3: Inputs include: linearized operator 𝑨, number of modes 𝑘, number of power iterations 𝑞, frequency range 𝛺, TSS abbreviation for time-stepping 
scheme (e.g., backward Euler), time step 𝑑𝑡, and the transient length 𝑇𝑡. Outputs include: 𝑘 response modes 𝑼 , 𝑘 forcing modes 𝑽 and the corresponding gains 
𝜮 . Here, 𝑘, 𝑞,𝛺 are common parameters with RSVD-LU. (⋅)𝛺 means the function is separately applied to each 𝜔 ∈𝛺. DirectAction and AdjointAction are 
functions that solve the direct and adjoint LNS equations, respectively, with a predefined forcing. PI is a function that performs the power iteration.

As in the standard RSVD algorithm (Algorithm 1), the first step is to create random forcing matrices to sketch 𝑹. Since our time-
stepping approach computes all frequencies of interest at once, a separate test matrix �̂� ∈ℂ𝑁×𝑘 is generated for each frequency 𝜔 ∈𝛺

(line 2). Next (line 3), the 𝙳𝚒𝚛𝚎𝚌𝚝𝙰𝚌𝚝𝚒𝚘𝚗 function solves the LNS equations forced by the set of test matrices in the time domain to 
obtain the sketch �̂� of the resolvent operator 𝑹 for all 𝜔 ∈𝛺. Line 4 checks whether or not power iteration is desired, and if so (i.e., 
𝑞 > 0), line 5 jumps to Algorithm 2 to increase the accuracy of resolvent modes. All instances of applying the action of the resolvent 
operator or its adjoint in Algorithm 2 are performed via time stepping. In line 6, an orthonormal subspace �̂� is constructed for the 
sketch at each frequency via QR decomposition. Note that the 𝛺 subscript indicates that the operation is performed separately for 
each frequency 𝜔 ∈𝛺. Next, in line 7, the 𝙰𝚍𝚓𝚘𝚒𝚗𝚝𝙰𝚌𝚝𝚒𝚘𝚗 function solves the adjoint LNS equations forced by the set of �̂� matrices 
in the time domain to sample the image of the resolvent operator 𝑹 for all 𝜔 ∈𝛺. Finally, the estimates of the k leading right singular 
vector 𝑽 and gains 𝜮 are obtained via an economy SVD of the 𝑁 × 𝑘 matrix �̂� (line 8), and left singular vectors 𝑼 are recovered in 
line 9.

In the context of resolvent analysis, the RSVD algorithm can be slightly modified to enhance the accuracy of the response modes. 
One approach, as described by Ribeiro et al. [73], involves performing an additional direct action after the final SVD in the standard 
RSVD algorithm to compute more accurate response modes. The cost of this additional step is equivalent to performing a direct action.

On the other hand, the costliest steps in executing the RSVD-Δ𝑡 algorithm are typically the direct and adjoint actions, while the 
costs of the QR and SVD steps are almost negligible (see Table 3). This suggests that we can perform an SVD instead of QR in line 6 and 
use the left singular vectors as the response modes instead of recovering them later in line 9. The modes we obtain this way are more 
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Table 1
The scaling of CPU time and memory requirements with respect to 𝑁
for computing the action of 𝑹 (or 𝑹∗) using time stepping and LU de-
composition.

Problem size Action of 𝑹 CPU time Memory 

Two-dimensional
LU decomposition 𝑂(𝑁1.5) 𝑂(𝑁1.2)
time stepping 𝑂(𝑁) 𝑂(𝑁)

Three-dimensional
LU decomposition 𝑂(𝑁2) 𝑂(𝑁1.6)
time stepping 𝑂(𝑁) 𝑂(𝑁)

accurate than the recovered versions. Therefore, if one does not wish to perform an additional action, we recommend performing 
SVD in line 6 and ignoring line 9.

6. Computational complexity

The primary advantage of the RSVD-Δ𝑡 algorithm is its reduced computational cost. In this section, we discuss the CPU and 
memory cost scaling of applying the action of the resolvent operator via time stepping and compare it to LU-based approaches, as 
summarized in Table 1. We assume that the LNS equations are discretized using a sparse scheme such as finite differences, finite 
volume, or finite elements. Once the linearized operator 𝑨 is constructed, the goal is to solve the linear system given by

(i𝜔𝑰 −𝑨)𝒙 = 𝒃 (27)

to compute the action of 𝑹 on 𝒃.

6.1. CPU cost

Direct solvers find the solution of (27) to machine precision. A common approach is to find the LU decomposition of (i𝜔𝑰 −𝑨)
and solve the decomposed system via back substitution. The process of computing lower and upper triangular matrices with full or 
partial pivoting can be extremely expensive for large systems [26] and is often the dominant cost of solving a linear system [55]. Once 
the LU decomposition is obtained, solving the LU-decomposed system is typically comparatively inexpensive. The theoretical cost 
scaling of LU decomposition of the sparse matrices that arise from collocation-based discretization methods (like finite differences) is 
𝑂(𝑁1.5) and 𝑂(𝑁2) for two-dimensional and three-dimensional systems, respectively [3]. The larger scaling exponent and number 
of grid points present in a three-dimensional problem make the LU decomposition of the corresponding linear operator costly. Opti-
mized algorithms for computing LU decomposition are available in open-source software packages such as LAPACK [5], MUMPS [4], 
PARDISO [78], and Hypre [30], which are designed to leverage massive parallelization. The LU decomposition becomes increasingly 
dominant (compared to solving the LU-decomposed system or other algorithmic steps) as the size of the system increases for both 
the standard Arnoldi-based method and the RSVD-LU algorithm, reducing the computational advantage of the latter.

Iterative solvers contain convergence criteria that can be adjusted to reduce computational cost at the expense of a less accurate 
solution. The performance of iterative solvers strongly depends on the condition number 𝜅, the ratio between the largest and smallest 
eigenvalues of a matrix. Matrices with condition numbers of great than ∼ 104 are considered to be ill-conditioned [76], which can 
cause slow convergence and numerical stability issues for iterative solvers [91]. The LNS operator 𝑨 is typically a sparse but ill-
conditioned matrix. When 𝜔 is small, (i𝜔𝑰 −𝑨) inherits the ill-conditioning of 𝑨, making the use of an iterative solver challenging. 
The conditioning improves as 𝜔 increases, so the lowest frequencies control the overall cost of using an iterative method to compute 
resolvent modes. In addition to the condition number, other properties such as the size, sparsity pattern, and density (or sparsity 
ratio) of a matrix can also ease or aggravate the situation [108].

In principle, iterative solvers are attractive when solving (27) up to machine precision is unnecessary, as is the case when using the 
RSVD algorithm, which is already an approximation. The main challenge remains the typically high condition number of (i𝜔𝑰 −𝑨), 
as explained above. One potential solution is the common practice of using a preconditioner [75]. Preconditioners are matrices that 
are multiplied on the left, right, or both sides of the target matrix to decrease its condition number and thus increase the convergence 
of iterative solvers. The methods of computing preconditioners and numerous related theories and practices are neatly summarized 
in a few surveys [7,11,68]. Despite numerous advancements in this field, not all matrices have effective preconditioners. Some recent 
studies [37] are exploring the use of iterative methods to solve (27) within the context of resolvent analysis, but direct methods, 
especially LU decomposition, have long been the dominant choice [62,41,86,73].

The cost of time-stepping methods rely on integrating the LNS equations in the time domain. Time-stepping of ODEs (such as the 
one in (17)) has a long history and is a mature field [32,113,108]. Herein, two classes – implicit and explicit integration schemes – 
are available and widely used in the scientific computing community.

Implicit integrators possess better stability properties but require a system of the form

𝒙 = 𝒃 (28)

to be solved at every iteration. Here, 𝒃 ∈ ℂ𝑁×𝑘 is a function of the solution at previous time and the exogenous forcing (if present), 
and  ∈ ℂ𝑁×𝑁 is the temporal discretized operator, which is a function of the linear operator 𝑨. For example,  can be written 
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as a first-order polynomial of the form  = 𝑐1𝑰 + 𝑐2𝑨 for multi-step methods, where constants are determined based on integration 
scheme and time step, e.g.,  = 𝑰 − 𝑑𝑡𝑨 for backward Euler. A superficial comparison between (28) and (27) indicates that implicit 
time steppers suffer from the same issues elaborated above. However, the key difference is that 𝑨 is multiplied by the (small) time step 
𝑑𝑡, so the ill-conditioning of 𝑨 is largely overwhelmed by the ideal conditioning of the identity matrix 𝑰 . This improved conditioning 
makes possible the application of iterative solvers. Implicit integrators require at least one LU decomposition of  for direct solvers 
or a preconditioner for indirect solvers, which are not 𝑂(𝑁) operations. However, this one-time cost is often small enough that it is 
overwhelmed by other operations such that the observed computational complexity remains 𝑂(𝑁).

For explicit integrators, the solution at each time step is an explicit function of the solution (and exogenous forcing) at previous 
time steps. Accordingly, a solution of a linear system is not required, and each step contains only inexpensive sparse matrix-vector 
products for a linear ODE such as (27), making each step rapidly computable. The downside of explicit methods is that they are less 
numerically stable and often require many small steps to ensure stability for stiff systems [96]. Nevertheless, the drastically smaller 
cost of each step for explicit integrators often outweighs the disadvantage of requiring many small steps, and many computational 
fluid dynamics codes are equipped with explicit integrators such as Runge–Kutta schemes.

Explicit integrators involve repeatedly multiplying the sparse matrix 𝑨 with vectors during the time-stepping process, which scales 
like 𝑂(𝑁). The number of times these operations must be performed over a fixed time interval is determined by the time step 𝑑𝑡. If the 
time step is set by a CFL-like stability condition, then it scales like 𝑂(𝑁−1∕2) and 𝑂(𝑁−1∕3) for two- and three-dimensional problems, 
respectively, and the total number of time steps 𝑁𝑡 in a fixed time interval scales as the inverse of these values. The overall CPU 
cost scales like 𝑂(𝑁𝑁𝑡), leading to 𝑂(𝑁3∕2) and 𝑂(𝑁4∕3) scaling for two- and three-dimensional problems, respectively. In practice, 
however, the time step is chosen to control the error associated with the highest frequency of interest rather than being determined 
by a CFL condition, as discussed in §7.2.1, and is thus independent of 𝑁 . Accordingly, we observe linear scaling when using explicit 
integrators in practice.

6.2. Memory requirements

Supercomputers and parallel solvers can keep the hope of computing the LU decomposition of massive and poorly conditioned 
systems alive; however, massive calculations require massive storage, and memory becomes the top issue [24]. Generally, direct 
solvers are more robust than iterative solvers but can consume significant memory due to the fill-in process of factorization [55]. The 
memory requirement associated with LU decomposition for resolvent analysis has been empirically observed to scale like 𝑂(𝑁1.2) and 
𝑂(𝑁1.6) for two-dimensional and three-dimensional systems, respectively [106]. The exponents are not guaranteed and can become 
better or worse depending on the system of interest.

Explicit integration schemes have certain advantages over implicit integration schemes. Explicit schemes typically do not require 
much space for sparse matrix-vector products. The required memory is mainly used to store the forcing and response modes in 
Fourier space which scales like 𝑂(𝑁), as will be discussed in §8.1.1. On the other hand, implicit integration schemes, in addition to 
the Fourier space matrices, require memory for solving (28), which depends heavily on the sparsity of the LU-decomposed matrices 
or the iterative methods employed. For some systems, these methods may scale worse than 𝑂(𝑁), resulting in increased memory 
requirements.

6.3. Matrix-free implementation

So far, we have assumed that the LNS matrix 𝑨 is explicitly formed. In contrast to the standard frequency-domain approaches 
including the RSVD-LU algorithm, our time-stepping approach can be applied in a matrix-free manner using any code with linear 
direct and adjoint capabilities without explicitly forming 𝑨 [67,58]. In this case, the cost scaling of our algorithm will follow that of 
the underlying Navier-Stokes code, which is again typically linear with the problem dimension.

7. Sources of error in the RSVD-𝚫𝒕 algorithm

Next, we identify sources of error within the RSVD-Δ𝑡 algorithm, which stem from the RSVD approximation and the time-stepping 
approach used to compute the action of 𝑹. By effectively addressing these sources of error, the RSVD-Δ𝑡 method can be optimized 
for improved efficiency.

7.1. RSVD approximation

RSVD offers estimates of the resolvent modes rather than exact ground truth. The accuracy of these estimates is extensively 
discussed in Halko et al. [33], and it naturally depends on the gain separation, defined as the ratio 𝜎𝑖∕𝜎𝑖+1, where 𝜎𝑖 is the 𝑖𝑡ℎ
singular value. As mentioned earlier, incorporating power iteration and employing a few extra test vectors beyond the desired number 
of modes can improve the accuracy of the resolvent modes. In many cases, the approximation error of RSVD is the primary source of 
error in RSVD-Δ𝑡, such that it accurately reproduces the results of the RSVD-LU algorithm.

7.2. Time stepping sources of error

When computing the action of 𝑹 and 𝑹∗ using time stepping, two types of errors are introduced in addition to the RSVD approx-
imation: truncation and transient errors.
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7.2.1. Truncation error

The first source of time-stepping error is the truncation error of the numerical integration schemes used to solve the time-domain 
equations. Common approaches include classical numerical integration schemes such as Runge–Kutta, implicit/explicit Euler, Adams-
Moulton family, and others [32,113]. These methods introduce truncation errors resulting from the approximation of Taylor series 
expansions. Hence, a chosen time step introduces an expected truncation error, with higher-order schemes providing greater precision.

Local truncation error (LTE) is derived for ODEs as

𝐿𝑇𝐸 = 𝐶
𝑑𝑝𝑓 (𝑡)
𝑑𝑡𝑝

𝑂(𝑑𝑡𝑝), (29)

where 𝐶 is a constant, and 𝑝 is the order of the time-stepping scheme. In this study, our focus is on ODEs with harmonic forcing 
𝑓 (𝑡) = 𝑓𝑒i𝜔𝑡. Substituting the forcing term into (29), we observe that

𝐿𝑇𝐸 ∝𝑂((𝜔𝑑𝑡)𝑝). (30)

This equation indicates that for a fixed time step 𝑑𝑡, the error in the computed resolvent modes will be frequency dependent and vary 
as 𝜔𝑝. Therefore, in addition to satisfying any stability constraints, the time step 𝑑𝑡 must be selected such that 𝜔𝑚𝑎𝑥𝑑𝑡 is sufficiently 
small to obtain accurate resolvent modes up to the maximum desired frequency 𝜔𝑚𝑎𝑥 .

7.2.2. Transient error

The second source of time-stepping error arises from the unwanted transient response. The solution of (17) can be written as a 
sum of its transient and steady-state components,

𝒒(𝑡) = 𝒒𝑡(𝑡) + 𝒒𝑠(𝑡), (31)

where the transient part 𝒒𝑡 decays to zero as 𝑡→∞ and the steady-state part 𝒒𝑠 is 𝑇 -periodic, i.e., 𝒒𝑠(𝑡+𝑇 ) = 𝒒𝑠(𝑡). Taking the Fourier 
transform of each part leads to

�̂�(𝜔) = �̂�𝑡(𝜔) + �̂�𝑠(𝜔). (32)

Only the steady-state solution is desired, so any non-zero transient part constitutes an error in our representation of the action of the 
resolvent operator (or its adjoint) on the prescribed forcing. The transient response can be understood as the response of the system 
to an initial condition that is not synced with the forcing applied to the system. It may initially grow for non-normal systems like the 
LNS equations [80] but eventually decays at the rate of the least-damped eigenvalue of 𝑨.

We define the transient error as the ratio between the norms of the transient and steady-state responses,

𝜖 =
||𝒒𝑡|| 
||𝒒𝑠|| , (33)

where the 𝑙2-norms can be replaced with || ⋅ ||𝑞 for non-identity weight matrices. In cases where we solve (17) with a zero initial 
condition (which is often the case), i.e., 𝒒(0) = 𝒒𝑡(0) + 𝒒𝑠(0) = 0, the transient error is initially one,

𝜖(0) =
||𝒒𝑡(0)|| 
||𝒒𝑠(0)|| = 1. (34)

In the long term, the transient error approaches zero,

lim 
𝑡→∞

𝜖(𝑡) = lim 
𝑡→∞

||𝒒𝑡(𝑡)|| 
||𝒒𝑠(𝑡)|| = 0, (35)

since ||𝒒𝑠|| remains bounded.
The eigenspectrum of the linearized system 𝑨 provides insights into the long-term response of the homogeneous system. Any initial 

perturbation will eventually follow the least-damped mode. However, in practice, computing the eigenspectrum of 𝑨 is challenging, 
especially for large systems. Even obtaining a small number of eigenvalues using the Krylov-Schur method can be cumbersome. 
Therefore, a practical approach to understanding the long-term behavior of a system is to simulate the homogeneous ODE

𝑑𝒒ℎ

𝑑𝑡 
−𝑨𝒒ℎ = 0, (36)

initialized with a random state [29,28]. A random perturbation represents a worst-case scenario, as it excites all the slow modes 
of 𝑨. By monitoring the norm of 𝒒ℎ over time, we can estimate the slowest decay rate, which corresponds to the real part of the 
least-damped eigenvalue of 𝑨. This also gives us an indication of the expected magnitude of the transient error. Performing a DFT on 
one cycle of the transient response allows us to determine the anticipated level of transient error within the desired frequency range.

While it is possible to simply wait for the transient error to naturally decay over time, this approach comes with increased CPU 
cost, as it requires longer simulation durations. In §8.2, we will present an efficient method to achieve a smaller transient error within 
a shorter time frame.
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Fig. 3. Schematic of the action of 𝑹 with (a) FFT/iFFT and (b) streaming DFT/iDFT methods to transform between the Fourier and time domains. 

8. Optimizing the RSVD-𝚫𝒕 algorithm

In this section, we present several approaches aimed at reducing the CPU cost and memory requirements of the RSVD-Δ𝑡 algorithm. 
These approaches, combined with the improved cost scaling of RSVD-Δ𝑡 compared to the RSVD-LU algorithm as discussed in §6, are 
crucial in facilitating affordable resolvent analysis of complex three-dimensional flows.

8.1. Minimizing memory requirements

First, we describe several strategies to minimize the memory required to compute resolvent modes for a given problem: streaming 
Fourier sums and shortcuts for real-valued matrices.

8.1.1. Streaming Fourier sums

A straightforward implementation of computing the action of 𝑹 (or 𝑹∗) via time stepping entails (𝑖) transferring the forcing from 
Fourier space to the time domain, �̂�

iFFT
←←←←←←←←←←←←←←←←←→ 𝑭 , (𝑖𝑖) performing integration to obtain the steady-state solutions saved with a specific 

time interval, as explained in §4.2, and (𝑖𝑖𝑖) transferring the response back to frequency space, 𝑸
FFT
←←←←←←←←←←←←←←←→ �̂�. A schematic of these steps 

is displayed in Fig. 3(a).
The first step requires zero-padding �̂� ∈ℂ𝑁×𝑘×𝑁𝜔 since 𝑭 ∈ℂ𝑁×𝑘×𝑁𝑠 is required at all 𝑁𝑠 ≫ 𝑁𝜔 points in the period associated 

with the time step 𝑑𝑡 ≪Δ𝑡 required for accurate time stepping. The iFFT is computationally efficient but storing its output requires a 
minimum memory allocation of 𝑂(𝑁𝑘𝑁𝑠), excluding space for the iFFT calculations themselves. �̂� is automatically discarded before 
proceeding to the second step. In step (𝑖𝑖), 𝒇 𝑗 ∈ 𝑭 is used to force the linear system at each time step until the transient ends, and the 
steady-state responses are stored in 𝑸. After integration, 𝑭 is no longer needed and is removed. Lastly, obtaining �̂� from 𝑸 using an 
FFT requires an 𝑂(𝑁𝑘𝑁𝜔) space to store the output. Overall, a minimum memory allocation of 𝑂(𝑁𝑘𝑁𝑠) +𝑂(𝑁𝑘𝑁𝜔) is necessary 
to store both 𝑭 and 𝑸 simultaneously.

The memory requirements of this process can be significantly reduced by leveraging streaming Fourier sums, as in the streaming 
SPOD algorithm proposed by Schmidt and Towne [84]. This procedure is shown schematically in Fig. 3(b). In the streaming approach, 
a new forcing snapshot is created before each time step and promptly removed afterward. Also, the contribution to the Fourier modes 
of the response is computed only at specific time steps, after which the snapshot of the solution can be discarded. This eliminates the 
need to permanently store any data in the time domain, reducing the memory requirement to 2 × 𝑂(𝑁𝑘𝑁𝜔) for storing �̂� and �̂�. 
The streaming implementation utilizes the DFT formulation to create forcing inputs and compute the effect of steady-state response 
data on the ensemble of Fourier coefficients, as demonstrated in the following.

At each time step, the instantaneous forcing is created from its Fourier mode using the definition of the inverse Fourier transform,

𝒇 𝑝 =
𝑁𝜔∑
𝑠=1 
𝒁′

𝑝𝑠
�̂� 𝑠, (37)

where 𝒁′
𝑝𝑠
= 𝑒𝑥𝑝(−2𝜋i∕𝑁𝑠)(𝑝−1)(𝑠−1). The integer 𝑝 (1 ≤ 𝑝 ≤𝑁𝑠) specifies the phase of the periodic forcing at the current time step. 

Here, �̂� 𝑠 ∈ℂ𝑁×𝑘×𝑁𝜔 denotes Fourier modes that are accessible from memory. The sum is taken over every 𝜔 ∈𝛺, and it outputs the 
𝑝𝑡ℎ time domain snapshot 𝒇 𝑝 ∈ ℂ𝑁×𝑘. This process continues in a loop of size 𝑁𝑠 until the transient is passed and steady-state data 
is computed.
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Table 2
Comparison of CPU time and memory requirements using 
FFT/iFFT and streaming DFT/iDFT methods transfer back 
and forth between Fourier space and time domain. 𝑁total =
𝑁𝑡 +𝑁𝑠 is the total number of time steps including transient 
and steady-state parts.

∕−1 CPU time Memory 
iFFT 𝑁𝑘×𝑂(𝑁𝑠𝑙𝑜𝑔(𝑁𝑠)) 𝑂(𝑁𝑘𝑁𝑠)
FFT 𝑁𝑘×𝑂(𝑁𝜔𝑙𝑜𝑔(𝑁𝜔)) 𝑂(𝑁𝑘𝑁𝜔)
Streaming iDFT 𝑁𝑘×𝑂(𝑁total𝑁𝜔) 𝑂(𝑁𝑘𝑁𝜔)
Streaming DFT 𝑁𝑘×𝑂(𝑁2

𝜔
) 𝑂(𝑁𝑘𝑁𝜔)

The response Fourier modes can be computed from the time-domain steady-state solutions in a similar streaming fashion. Following 
the definition of the DFT, each temporal snapshot 𝒒𝑙 within the steady-state response contributes to each Fourier mode according to 
the partial sum

[
�̂�𝑠

]
𝑟
=
[
�̂�𝑠

]
𝑟−1 +𝒁 𝑙𝑠𝒒𝑟 =

𝑟 ∑
𝑙=1 
𝒁 𝑙𝑠𝒒𝑙, (38)

where 𝒁 𝑙𝑠 = 𝑒𝑥𝑝(−2𝜋i∕𝑁𝜔)(𝑙−1)(𝑠−1),1 ≤ (𝑙, 𝑠) ≤𝑁𝜔. Here, 
[
�̂�𝑠

]
𝑟

represents the sum of contributions up to 𝒒𝑟, which is the 𝑟𝑡ℎ steady-
state response and should be removed after adding its contribution to the sum. The partial sum is complete once 𝑟 = 𝑁𝜔, i.e., the 
effect of all 𝑁𝜔 steady-state data is included.

A subtle but important difference between the iDFT matrix 𝒁 ′ ∈ ℂ𝑁𝜔×𝑁𝑠 and the DFT matrix 𝒁 ∈ ℂ𝑁𝜔×𝑁𝜔 is their sizes: 𝒁 is 
used to generate 𝑁𝑠 temporal snapshots of the forcing from 𝑁𝜔 Fourier modes, while 𝒁′ is used to convert 𝑁𝜔 temporal snapshots 
of the steady-state solution into 𝑁𝜔 Fourier modes. The steaming process of the adjoint equations is identical, except the equations 
are integrated backward in time and indices within the Fourier sums are adjusted accordingly.

The CPU time and memory requirement of the FFT/iFFT and streaming DFT/iDFT approaches are summarized in Table 2. Although 
the streaming method incurs slightly higher CPU cost due to the efficiency of the FFT algorithm, this CPU overhead is negligible 
compared to the cost of taking a time step. Moreover, the memory savings of the streaming method can be substantial; the ratio of 
the memory required by the iFFT and streaming iDFT methods used to create the forcing snapshots scales like 𝑂(𝑁𝑠∕𝑁𝜔), where 
𝑁𝜔 ∼𝑂(102), and 𝑁𝑠 ∼𝑂(103 − 105) are typical values. Overall, the substantial memory benefit of the streaming method outweighs 
the small CPU penalty, especially for large systems.

8.1.2. Optimal cost for real-valued matrices

The linear operator 𝑨 is often real-valued. Indeed, this is usually case for LNS operator, except when considering a non-zero 
wavenumber in a Fourier-transformed homogeneous direction or when using complex-valued non-reflecting boundary conditions 
[21,38]. When 𝑨 is real-valued, memory requirements can be significantly reduced. Having 𝑹𝜔 = (i𝜔𝑰 −𝑨)−1 =𝑼𝜮𝑽 ∗, the resolvent 
operator corresponding to −𝜔 can be written as

𝑹−𝜔 = (−i𝜔𝑰 −𝑨)−1 = (i𝜔𝑰 −𝑨)−1 = (i𝜔𝑰 −𝑨)−1 =𝑹𝜔 =𝑼𝜮𝑽
∗
, (39)

where ̄(⋅) denotes the complex conjugate and 𝑨 =𝑨when 𝑨 is real-valued. Equation (39) proves that the gains of positive and negative 
frequencies are symmetric and the resolvent modes are complex conjugates of one another. Therefore, computing the resolvent modes 
for positive 𝜔 ∈𝛺 naturally provides results for negative frequencies. This symmetry halves the CPU cost for the RSVD-LU algorithm 
but does not reduce the memory requirement. On the other hand, in the case of RSVD-Δ𝑡, the memory requirements are halved, but 
there is no significant reduction in the CPU, as further elaborated.

Since the frequencies of interest become 𝛺+ = {0,+𝜔𝑚𝑖𝑛,+2𝜔𝑚𝑖𝑛, ...,+𝜔𝑚𝑎𝑥}, the total number of frequencies becomes ⌊𝑁𝜔

2 ⌋+ 1. 
In this scenario, only Fourier coefficients corresponding to 𝜔 ∈ 𝛺+ are saved and the memory storage required for both input and 
output matrices (�̂� and �̂� discussed in §8.1.1) is halved. In terms of CPU, generating the forcing and computing the response is twice 
as fast but the speed-up is not significant as the time stepping remains identical to the complex-valued case.

8.1.3. An additional option for reducing memory

If additional memory savings are required, the memory requirements of RSVD-Δ𝑡 can be sharply reduced by dividing the frequen-
cies of interest into multiple sets at the expense of additional CPU cost. For instance, when the frequencies are divided into 𝑑 equal 
groups, the memory requirement is reduced by a factor of 𝑑. The penalty of doing so is that the CPU time scales proportionally with 
𝑑, since the entire algorithm needs to be repeated for each group of frequencies. The RSVD-LU algorithm offers no such opportunity 
to reduce memory requirements, e.g., to make a particular calculation possible on a given computer, at the expense of higher CPU 
cost.
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8.2. Minimizing the CPU cost: efficient transient removal

Within the time-stepping process, the removal of the transient responses is crucial and is naturally accomplished through the 
long-time integration of (17), as discussed in §7.2.2. Nonetheless, certain LNS operators exhibit a painfully slow decay rate, resulting 
in lengthy transient durations and costly time stepping. Therefore, we present an efficient transient removal strategy to minimize the 
CPU cost.

Our strategy uses the differing evolution of the steady state and transient parts of the solution to directly compute and remove 
the transient from the solution. Considering two solutions of (17), 𝒒1 = 𝒒(𝑡1) and 𝒒2 = 𝒒(𝑡1 + Δ𝑡), we can express them in terms of 
their steady-state and transient parts, as in (31), as

𝒒1 = 𝒒𝑠,1 + 𝒒𝑡,1,

𝒒2 = 𝒒𝑠,2 + 𝒒𝑡,2,
(40)

where 𝒒𝑠,1,𝒒𝑠,2,𝒒𝑡,1, and 𝒒𝑡,2 are four unknowns. Applying a prescribed forcing in (17) at a single frequency 𝜔 yields

𝒒𝑠,2 = 𝒒𝑠,1𝑒
i𝜔Δ𝑡. (41)

Also, the transient response follows the form of a homogenous response, resulting in

𝒒𝑡,2 = 𝑒𝑨Δ𝑡𝒒𝑡,1. (42)

Simplifying (40), (41), and (42) for 𝒒𝑡,1, we obtain

(𝑰 − 𝑒−i𝜔Δ𝑡𝑒𝑨Δ𝑡)𝒒𝑡,1 = 𝒃, (43)

where 𝒃 = 𝒒1 − 𝒒2𝑒−i𝜔Δ𝑡 is known from the time-stepping solution. Equation (43) holds for any two points in time with arbitrary 
separation Δ𝑡. The exact steady-state solution with no transient error is obtained by solving (43) for 𝒒𝑡,1 and using (40) to obtain 
𝒒𝑠,1 = 𝒒1 − 𝒒𝑡,1.

The prescribed forcing in RSVD-Δ𝑡 consists of a range of frequencies, hence, it requires a pre-processing step to enable the 
transient removal strategy. We utilize 𝑸 = {𝒒1,𝒒2,𝒒3, ...,𝒒𝑁𝜔

} to construct �̂� ∈ ℂ𝑁×𝑁𝜔 , where the snapshots are equidistant with a 
time interval of Δ𝑡. Additionally, we define 𝑸Δ𝑡 = {𝒒2,𝒒3,𝒒4, ...,𝒒𝑁𝜔+1} as a shifted matrix, resulting in �̂�Δ𝑡 ∈ℂ𝑁×𝑁𝜔 . Here, �̂�𝑗 ∈ �̂�

represents 𝒒1 in the above equations, while �̂�Δ𝑡
𝑗

∈ �̂�Δ𝑡
represents 𝒒2, both oscillating at the same frequency. Therefore, a single time 

stepping is sufficient to obtain (43) for all 𝜔 ∈𝛺.
We emphasize two crucial aspects of our strategy. Firstly, it functions as a post-processing step that comes into play after acquiring 

simulation snapshots, which encompass both transient and steady-state components. Its primary aim is to selectively remove the 
transient portion. Secondly, our strategy does not introduce any modifications to the LNS operator. Instead, it is tailored to solving 
equations that leave the steady-state response unaffected.

Solving (43) can be computationally expensive, particularly for large systems, even if we assume that computing 𝑒𝑨Δ𝑡 is feasible. 
To address this issue, one possible approach is to choose a small Δ𝑡 and expand the exponential term as 𝑒𝑨Δ𝑡 =

∑
𝑗
(𝑨Δ𝑡)𝑗

𝑗! . However, 
this leads to solving a similar linear system to (27), which we wish to avoid. Another approach is to leverage iterative methods (e.g., 
GMRES) when Δ𝑡 is sufficiently large. Although the solution may converge within a reasonable time frame, solving similar systems 
needs to be repeated for all test vectors and frequencies. To overcome these challenges, we propose employing Petrov-Galerkin (or 
Galerkin) projection to obtain an affordable, approximate solution of (43).

Consider a low-dimensional representation of the transient response as

𝒒𝑡,1 = 𝝓𝜷1, (44)

where 𝝓 ∈ ℂ𝑁×𝑟, with 𝑟 ≪ 𝑁 , is an orthonormal trial basis spanning the transient response and 𝜷1 ∈ ℂ𝑟 represents the coefficients 
describing the transient in this basis. By substituting (44) into (43), the linear system

(𝑰 − 𝑒−i𝜔Δ𝑡𝑒𝑨Δ𝑡)𝝓𝜷1 = 𝒃 (45)

is overdetermined. Petrov-Galerkin projection with test basis 𝝍 ∈ℂ𝑁×𝑟 is employed to close (45), giving

𝝍∗(𝑰 − 𝑒−i𝜔Δ𝑡𝑒𝑨Δ𝑡)𝝓𝜷1 =𝝍∗𝒃. (46)

Solving (46) for 𝜷1 and inserting the solution into (44) yields

𝒒𝑡,1 = 𝝓(𝝍∗𝝓− 𝑒−i𝜔Δ𝑡�̃�)−1𝝍∗𝒃, (47)

where

�̃� =𝝍∗𝑒𝑨Δ𝑡𝝓 ∈ℂ𝑟×𝑟 (48)

is a reduced matrix that maps the coefficients. The advantage of this strategy is that it allows for the computation of the inverse 
of (𝝍∗𝝓 − 𝑒−i𝜔Δ𝑡�̃�) due to its reduced dimension. Obtaining �̃� is also an efficient process, involving two steps: (𝑖) integrating the 
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columns of 𝝓 over Δ𝑡, and (𝑖𝑖) projecting 𝑒𝑨Δ𝑡𝝓 onto the columns of 𝝍 . The construction cost of �̃� for each 𝜔 ∈ 𝛺 is primarily 
determined by the first step. Specifically, when the number of columns in 𝝓 is 𝑟 =𝑁𝜔 and Δ𝑡 = 𝑇𝑠∕𝑁𝜔, the total cost of constructing 
�̃� for all 𝜔 ∈ 𝛺 is equivalent to integrating the LNS equations for an additional 𝑇𝑠 duration. While it is possible to use a Taylor 
expansion of 𝑒𝑨Δ𝑡 to compute 𝑒𝑨Δ𝑡𝝓, the number of terms required for the expansion can become excessive when Δ𝑡 > 𝑑𝑡. Therefore, 
we opt for time integration as a more practical alternative.

Galerkin projection is a special case of the above procedure in which the test and trial functions are the same, i.e., 𝝓 is also the 
test function. Using this strategy with either Galerkin or Petrov-Galerkin projections, the accuracy of the solution relies on the ability 
of the column space of 𝝓 to adequately span the transient response. Thus, the challenge lies in constructing an appropriate basis to 
accurately capture the transient behavior. Before the introduction of appropriate trial bases, we note that one can construct a new 𝝓
for each 𝜔 ∈𝛺, however, the bases that we define later are universal for all frequencies. Hence, the reduced matrix �̃� is constructed 
once for all frequencies. Subsequently, (47) obtains transient responses at each frequency and updates the steady-state responses.

Given the rapid decay of most terms in the transient response, it is advantageous to utilize the least-damped eigenvectors of 𝑨 as the 
chosen trial basis. By excluding the least-damped eigenvectors, we effectively increase the decay rate of the transient response. Let 𝜆1
denote the least-damped eigenvalue of 𝑨, with 𝑽 1 representing the corresponding eigenvector. We define 𝝓 = 𝑽 1, thereby removing 
the transient component projected onto 𝑽 1. As a result, the norm of the updated transient, obtained by subtracting this projection, 
follows the decay rate associated with the second least-damped eigenvalue of 𝑨. Similarly, the trial basis 𝝓 can encompass the first 
𝑟 − 1 least-damped eigenvectors, 𝝓 = orth{𝑽 1,𝑽 2, ...,𝑽 𝑟−1}, leading to a decay rate governed by the 𝑟𝑡ℎ least-damped eigenvalue 
of 𝑨. For this particular trial basis, Petrov-Galerkin projection can be utilized, where 𝝍 incorporates the adjoint eigenvectors. This 
approach ensures the complete elimination of transient projection onto the least-damped modes. To be clear, this procedure does not 
eliminate the impact of these modes on the steady-state response, but only on the transient response.

The main challenge associated with this trial basis is the computational cost of computing the least-damped eigenvectors (and 
adjoint eigenvectors in the case of Petrov-Galekin projection), especially for large systems, even when using algorithms designed for 
this purpose, e.g., Krylov-based methods [29,28]. Overall, the least-damped modes of 𝑨 are most helpful for systems that suffer from 
only a few slowly decaying modes.

Another powerful trial basis is formed by stacking the snapshots into a matrix during the integration of the LNS equations, resulting 
in 𝝓 = orth{𝒒1,𝒒2,𝒒3, ...,𝒒𝑟} (an orthogonalization of the matrix of snapshots). Specifically, 𝝓 can be constructed as the union of �̂�
and �̂�Δ𝑡

as a reliable trial basis. Performing QR decomposition on this matrix is essential to ensure orthogonality. As the LNS equations 
are allowed to run for a longer duration, 𝝓 becomes an increasingly effective trial basis, providing improved estimates of the transient 
responses across all frequencies 𝜔 ∈𝛺. We have observed that this basis is more accurate for higher frequencies compared to lower 
ones.

A feature of our transient-removal approach is its flexibility in incorporating multiple trial bases. For instance, by considering 
the matrix of least-damped eigenvectors of 𝑨 in 𝝓1 and the on-the-fly snapshots in 𝝓2, a combined trial basis 𝝓 = 𝝓1 ∪ 𝝓2 can be 
constructed and orthogonalized. The combination of trial bases, with 𝝓2 being highly effective at higher frequencies, offers benefits 
at lower frequencies.

The expected transient error remaining before and after applying our transient removal approach can be estimated using a prepro-
cessing step. We begin by integrating the homogeneous system (36) using a random initial condition with unit norm. By employing 
(40), (41), and (42), and assuming 𝒒𝑠 = 0, we can apply either Petrov-Galerkin or Galerkin projection to calculate the updated 
transient norms. This approach is feasible when 𝝓 does not depend on real-time simulation, such as when it represents the matrix 
of least-damped eigenvectors. However, if 𝝓 consists of snapshots, we must generate synthetic snapshots. To accomplish this, we 
set 𝒒𝑠,0 = −𝒒𝑡,0 to ensure the initial snapshot 𝒒0 = 𝒒𝑠,0 + 𝒒𝑡,0 equals zero. Subsequent snapshots are obtained by superimposing the 
transient responses (from the homogeneous simulation) onto steady-state responses generated as 𝒒𝑠,𝑗 = 𝑒i𝜔𝑗Δ𝑡𝒒𝑠,1, where Δ𝑡 is the 
time-distance between snapshots. Using this technique, we can construct 𝝓 for varying periods and assess the efficacy of the transient 
removal strategy. The updated transient error, similar to (33), is computed as the ratio of norms between the updated transient 
and steady-state responses, which monotonically decreases after the transient growth phase. This iterative process is performed for 
all 𝜔 ∈𝛺, necessitating the generation of fresh snapshots for the steady-state responses while keeping the transient response fixed. 
The computational expense associated with obtaining this a priori error estimate is primarily determined by the integration of the 
homogeneous system and typically constitutes less than 5% of the overall cost of executing the complete algorithm for computing 
the resolvent modes. We illustrate the application of this strategy using various trial bases in §9.

9. Test cases

In this section, the RSVD-Δ𝑡 algorithm is tested using two problems. First, the accuracy of the algorithm and the effectiveness of 
the transient removal strategy are verified using the complex Ginzburg-Landau equation. Second, the computational efficiency and 
scalability of the algorithm are demonstrated and compared to that of the RSVD-LU algorithm using a three-dimensional discretization 
of a round jet.

9.1. Complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation was initially derived for analytical studies of Poiseuille flow [95] and has subsequently 
been used more generally as a convenient model of a flow susceptible to non-modal amplification [39,8,19,17]. Here, we use it as an 
inexpensive test case to validate our algorithm. The complex Ginzburg-Landau system follows the form of (4) with
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Fig. 4. Relative error between gains computed using the RSVD-LU and RSVD-Δ𝑡 algorithms for the Ginzburg-Landau problem: (a) 𝑇𝑡 = 5000 and {TSS, 𝑑𝑡} = {BDF4, 
0.1} (purple), {BDF4, 0.01} (red), (BDF6, 0.01) (green), and {BDF6, 0.001} (blue) varies; (b) {BDF6, 0.001} is fixed and 𝑇𝑡 varies as 500 (purple), 1000 (red), 2500 
(green), and 5000 (blue). In (a), the exponents m are shown for the best-fit exponential within 𝜔∈ [0.6,4].

𝑨 = −𝜈
𝜕

𝜕𝑥
+ 𝛾

𝜕2

𝜕𝑥2
+ 𝜇(𝑥),

𝜇(𝑥) = (𝜇0 − 𝑐2
𝜇
) +

𝜇2
2 

𝑥2,

𝑩 =𝑪 = 𝑰 .

(49)

Following Bagheri et al. [8], we set 𝛾 = 1− i, 𝜈 = 2+0.2i, 𝜇0 = 0.38, 𝑐𝜇 = 0.2, and 𝜇2 = −0.01. These parameters ensure global stability 
and provide a large gain separation between the leading mode and the rest of the modes at the peak frequency [8]. To explicitly 
build the 𝑨 operator, a central finite difference method is used to discretize 𝑥 ∈ [−100,100] using 𝑁 = 500 grid points. The domain 
is sufficiently extended in both ±𝑥 directions such that it resembles an unbounded domain without a need for explicit boundary 
conditions [8]. The weight matrix 𝑾 is set to the identity on account of the uniform grid.

9.1.1. RSVD-Δ𝑡 validation: assessing the transient and truncation errors

The RSVD-Δ𝑡 outcome must replicate the RSVD-LU outcome up to machine precision when cutting both sources of errors described 
in §7.2. Truncation error depends on the integration scheme and the time step, while the transient error depends on the length of the 
simulation. Therefore, using a tiny time step with a high-order integration scheme and a lengthy transient duration should eliminate 
the errors due to time integration. While the order of magnitude of “tiny” time step and “lengthy” transient duration may vary 
depending on the problem setup, the key point is that time-stepping error can be reduced to machine precision accuracy if desired.

Time-stepping errors are investigated by setting the number of test vectors to 𝑘 = 1 and power iterations to 𝑞 = 0. These minimal 
values are used since including additional test vectors or power iterations have no effect on the time-stepping error. This implies that 
whether we are computing the action of optimal or suboptimal modes, each mode will exhibit a similar order of error due to time 
stepping. The desired set of frequencies is 𝛺 ∈ [−4,4] with Δ𝜔 = 0.05. The gains of the Ginzburg-Landau system are computed using 
RSVD and RSVD-Δ𝑡 and the relative errors for various cases are shown in Fig. 4. The minimum error is near machine precision when 
BDF6, 𝑑𝑡 = 10−3, and 𝑇𝑡 = 5000 is used, validating the RSVD-Δ𝑡 algorithm.

By decreasing the order of the integration scheme or increasing the time step, the truncation error becomes larger, and hence, the 
error in the computed gains becomes larger. In Fig. 4(a), the transient length is held fixed at 𝑇𝑡 = 5000 and the gains are obtained 
using {BDF6, 𝑑𝑡 = 10−2}, {BDF4, 𝑑𝑡= 10−2}, and {BDF4, 𝑑𝑡= 10−1}. For all four cases, the relative error is around 𝑂(10−13) at 𝜔 = 0, 
confirming that the transient effect is negligible. Moving away from zero frequency, the errors increase like 𝑂(𝜔∼4) and 𝑂(𝜔∼6) for 
the BDF4 and BDF6 schemes, respectively, consistent with the theoretical asymptotic estimates given in (30).

Fig. 4(b) displays how the length of time that the transient is allowed to decay can affect the accuracy of the gains as a function 
of frequency. This time, the time-stepping scheme of {BDF6, 𝑑𝑡 = 10−3} is held fixed, ensuring negligible truncation error, and the 
transient lengths are varied as 𝑇𝑡 = {500,1000,2500,5000}. Smaller values of 𝑇𝑡 leave more transient residual in the steady-state 
response. Longer transient lengths lead to smaller gain errors with a similar trend. The frequency distribution of the transient error 
depends on the eigenspectrum of the system. For example, a cluster of weakly damped modes around a specific frequency can lead 
to a peak transient error localized at the same frequency. In §9.2, the peak transient for the jet flows occurs near zero frequency.

9.1.2. Efficient transient removal

In this section, we demonstrate the transient removal strategy proposed in §8.2. We apply this strategy to the same Ginzburg-
Landau system for the same 𝛺 range described above and compare the results to the RSVD-LU results as a reference.

The eigenspectrum of the Ginzburg-Landau operator is shown in Fig. 5(a), and the three least-damped (and thus slowest decaying) 
modes have decays rates of 𝜆1,𝑟 = −0.008, 𝜆2,𝑟 = −0.163, and 𝜆3,𝑟 = −0.318, respectively, where the subscript 𝑟 indicates the real part 
of the eigenvalue 𝜆. Fig. 5(b) depicts the transient norm as a function of time, where 𝜖 is measured as follows: we initially obtain 
the true steady-state solution by integrating (17) for a duration of 5000 time units at 𝜔 = 0.5 (similar results for other frequencies), 
ensuring that the natural decay has eliminated the transient response to machine precision and use the steady-state response to 
measure the transient errors.
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Fig. 5. Transient-removal for the Ginzburg-Landau test problem: (a) Spectrum of Ginzburg-Landau operator with a zoomed-in view of the three least-damped eigen-
values. (b) Transient error measurement: blue curve represents original decay, while green, red, and purple curves depict decay using Galerkin projection with 𝝓
of 𝑽 1 , {𝑽 1,𝑽 2}, and a matrix of snapshots, respectively. (c) Relative error comparison between the RSVD-Δ𝑡 and RSVD-LU algorithms. Solid horizontal lines in (c) 
represent the expected transient error arising from the transient norm at the end of the 𝑇𝑡 (the black vertical line in (b)).

The natural decay in this system occurs slowly, as illustrated in Fig. 5(b). By defining 𝝓1 as 𝑽 1 and utilizing Galerkin projection, 
we remove the fraction of the transient decaying at the rate of 𝑒𝜆1 𝑡, resulting in a noticeable change in the decay slope. Including the 
two least-damped modes with 𝝓2 = {𝑽 1,𝑽 2} further steepens the decay rate, aligning closely with the corresponding least-damped 
eigenvalues shown in Fig. 5(a). However, it is the matrix of snapshots that proves to be the most effective, completely eliminating 
the transient within a short period of time.

We employ {BDF6, 𝑑𝑡 = 10−2} to compute gains using RSVD-Δ𝑡, considering three cases of transient removal that are halted at 
𝑇𝑡 = 75: (𝑖) natural decay, (𝑖𝑖) Galerkin projection with 𝝓1, and (𝑖𝑖𝑖) Galerkin projection with 𝝓2. The error is measured as the relative 
difference in gain between the RSVD-LU and RSVD-Δ𝑡 algorithms, as depicted in Fig. 5(c). The plot clearly illustrates that smaller 
transient errors lead to reduced gain errors. In the first two cases, the transient error dominates, while in the third case, the transient 
error balances with the truncation error at lower frequencies, with truncation dominating at higher frequencies. Our findings indicate 
that the matrix of snapshots is an effective basis for representing and removing the transient.

9.1.3. Impact of power iteration

Finally, we explore the impact of the number of power iterations 𝑞 on the accuracy of the solution. For both the RSVD-LU and 
RSVD-Δ𝑡 algorithms, we set 𝑘 = 6 and vary 𝑞 from 0 to 2. While the target number of modes in this analysis is three, we include three 
additional test vectors to enhance the overall accuracy of the modes. Additionally, RSVD-Δ𝑡 uses a BDF6 integrator with 𝑑𝑡 = 0.01
and 𝑇𝑡 = 100. The transient length is two orders of magnitude shorter than the expected length based on the original decay rate. 
This reduction is a result of removing the slowest decaying component, which allows us to shorten the simulation duration while 
still achieving a time-stepping error of 𝑂(10−8), as shown in Fig. 6(c). A standard Arnoldi-based approach (SVD-based with no 
approximation) is used to provide a ground-truth reference for defining the error.

The leading three singular values and corresponding relative errors are shown in Fig. 6. One power iteration leads to a noticeable 
accuracy improvement. As expected, using one or more power iterations substantially improves the accuracy of both the RSVD-LU 
and RSVD-Δ𝑡 algorithms. The optimal singular value in particular improves dramatically for frequencies with a large gap between 
the optimal and suboptimal modes. The RSVD-LU errors approach machine precision near the peak frequency, while the RSVD-Δ𝑡

errors saturate at the floor set by the choice of integration parameters. For the rest of the modes and frequencies, the relative error 
between the RSVD-LU and RSVD-Δ𝑡 algorithms is smaller than the relative error between the RSVD-LU algorithm and the ground 
truth, so the relative errors are identical. Increasing the number of power iterations allows a broader range of frequencies to achieve 
machine precision accuracy, which aligns with the expectations for RSVD approximations [33]. Increasing the number of power 
iterations from 𝑞 = 1 to 2 to 3 enables the leading modes to reach machine precision across the entire spectrum of interest, while 
also pushing suboptimal modes closer to machine precision. We have found one power iteration to be sufficient for most problems, 
and we recommend this as a default value for our algorithm. The expected error from power iteration is problem specific. For the 
Ginzburg-Landau problem, a single power iteration may reduce the error to below the 10% threshold for the third mode across the 
frequency spectrum and achieve machine precision for the optimal mode at peak frequencies where a significant gap exists. Moreover, 
RSVD is generally more effective when a large gap exists between the first (or first few) singular values and the rest of the spectrum. 
In cases with closely spaced singular values—such as at the higher end of the spectrum in the Ginzburg-Landau problem—the modes 
converge more slowly.

The accuracy of the modes, i.e., the left and right singular vectors, is ensured when the gains closely match the ground truth [33]. 
This relationship is illustrated in Fig. 6, where we compare the inner-product relative error between modes computed via SVD and 
RSVD-Δ𝑡. The inner-product error between two unit-norm vectors 𝒗𝟏 and 𝒗𝟐 is formally defined as

𝑒𝑖𝑝 = 1 − ⟨𝒗𝟏,𝒗𝟐⟩. (50)
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Fig. 6. Impact of power iteration on the Ginzburg-Landau gains: (a-c) the gains of the first three optimal modes using SVD (line) and RSVD-Δ𝑡 (circle), and (d-e) the 
relative error between them. The inner-product error between response (g-i) and focing (j-l) modes are plotted. (a,d,g,j), (b,e,h,k), and (c,f,i,l) correspond to 𝑞 of 0, 
1, and 2, respectively. Black lines in (d-l) show the relative error between the RSVD-LU algorithm and SVD for reference. Purple, green, and red colors represent the 
first three leading modes, respectively.

By comparing the relative error of modes obtained from RSVD-LU and SVD (black lines in Fig. 6) across varying numbers of power 
iterations, we observe that when the gain relative error is below 10%, the inner-product error for both the forcing and response modes 
is similarly small, mostly of the same order or better. The inner-product error between RSVD-Δ𝑡 and SVD aligns closely with that 
of RSVD-LU and SVD. However, the gain relative error between RSVD-Δ𝑡 and SVD remains bounded around 𝑂(10−8), while the 
inner-product relative error can approach machine precision. This behavior is expected and can be understood through perturbation 
analysis.

As demonstrated by Stewart [93,94], when considering a perturbed matrix with a relative error of 𝑂(𝜖), a second-order conver-
gence of 𝑂(𝜖2) in the inner products is expected. Given that our algorithm’s error is additive due to the time-stepping process, 𝑂(𝜖)
error in the gains ensures 𝑂(𝜖2) inner-product errors between the modes computed by RSVD-Δ𝑡 and RSVD-LU. However, fundamen-
tally, our algorithm cannot exceed the accuracy achieved by RSVD-LU.

9.2. Round turbulent jet

A round jet is used to demonstrate the reduced cost and improved scaling of our algorithm. The mean flow is obtained from a 
large eddy simulation (LES) using the “CharLES” compressible flow solver developed by Cascade Technologies [13,14] and recently 
acquired by Cadence Design Systems, for a Mach number 𝑀 = 𝑈𝑗

𝑎 = 0.4 and Reynolds number 𝑅𝑒 = 𝑈𝑗𝐷𝑗

𝜈𝑗
= 0.45 × 106. Here, 𝑈𝑗 is 

the mean centerline velocity at the nozzle exit, 𝑎 is the ambient speed of sound, 𝜈𝑗 is the kinematic viscosity at the nozzle exit, and 
𝐷𝑗 is the diameter of the nozzle. Validation of the LES simulation against experimental results and more details on the numerical 
setup are available in Brès et al. [14].
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Fig. 7. The mean streamwise velocity of the axisymmetric jet, three-dimensional round jet, and jet with streaks. The jet with streaks is obtained by adding the streaks 
with an azimuthal wavenumber of 6 to the mean flow of the round jet.

Fig. 8. Three leading gains of the axisymmetric jet for four azimuthal wavenumbers. 

The computation of the three-dimensional resolvent modes is performed within a region of interest defined by 𝑥 ∈ [0,20] and 
𝑦 × 𝑧 ∈ [−4,4] × [−4,4]. The spatial discretization of this region is accomplished using a grid with dimensions of 400 × 140 × 140, 
respectively. The core region is more finely discretized than the downstream region, as we expect smaller structures within the area 
defined by 𝑥×𝑦×𝑧 ∈ [0,5]×[−1,1]×[−1,1], which contains 200×70×70 points. The weight matrix 𝑾 accounts for the non-uniform 
grid but does not reweight the flow variables (which are already non-dimensionalized). For more physically meaningful energy norms, 
one might consider a kinetic energy norm of Chu’s compressible energy norm [20], both of which have been utilized in the literature 
[107,86,79]. The precise choice of norm is expected to have little impact on the results since the flow is subsonic [48,111]. The 
mean flow is obtained by revolving the axisymmetric mean flow around the streamwise axis, as depicted in Fig. 7. The domain is 
large enough to accommodate sizable low-frequency structures, and the mesh is resolved to capture structures that emerge in the 
response modes up to Strouhal (𝑆𝑡) number of 1, where 𝑆𝑡 = 𝜔𝐷𝑗

2𝜋𝑈𝑗
is the non-dimensional form of frequency. The range 𝑆𝑡 ∈ [0,1]

is wide enough to include the range of frequencies that are of interest in this jet [86]. Eddy viscosity can enhance the effectiveness 
of resolvent-based models by partially accounting for unmodeled Reynolds stresses [72,70]. One simple way to approximate this 
effect is by reducing the Reynolds number. Pickering et al. [70] found that 𝑅𝑒 = 1000 was effective for the same jet configuration 
considered here and we adopt this value in our paper. The effect of the Reynolds number on the resolvent gains and modes of a jet 
is thoroughly documented in Schmidt et al. [86].

The LNS equations are expressed in terms of specific volume, the three velocity components, and pressure, which can be compactly 
represented as 𝒒 = [𝜉, 𝑢𝑥, 𝑢𝑟, 𝑢𝜃, 𝑝]𝑇 (𝑥, 𝑟, 𝜃, 𝑡). The three-dimensional state in the frequency domain is

𝒒′(𝑥, 𝑦, 𝑧, 𝑡) =
∑
𝜔 
�̂�𝜔(𝑥, 𝑦, 𝑧)𝑒i𝜔𝑡, (51)

and each mode is characterized by its frequency 𝜔.
To validate our three-dimensional results, we also perform a axisymmetric resolvent analysis of the same jet for a set of azimuthal 

wavenumbers in which the symmetry in the azimuthal direction is exploited. The mean flow is obtained on the symmetry plane with 
cylindrical coordinates (𝑥, 𝑟). The axisymmetric state

𝒒′(𝑥, 𝑟, 𝜃, 𝑡) =
∑
𝑚,𝜔 
�̂�𝑚,𝜔(𝑥, 𝑟)𝑒i𝑚𝜃𝑒i𝜔𝑡 (52)

is characterized by the pair (𝑚,𝜔), where 𝑚 denotes azimuthal wavenumber. The domain of interest for resolvent analysis is 𝑥 × 𝑟 ∈
[0,20] × [0,4], which captures the core flow region while being surrounded by a sponge layer to minimize boundary reflections. 
The boundary conditions in the sponge region are designed to absorb outgoing waves effectively, reducing reflections and numerical 
artifacts [53,85]. The domain is discretized using fourth-order summation-by-parts finite differences [59] with a 400 × 100 grid in 
the streamwise 𝑥 and radial 𝑟 directions, respectively. To improve accuracy, the grid resolution is higher in the core region where 
the primary flow features are concentrated. Note that we employed SBP differentiation operators but not an SAT implementation of 
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Fig. 9. Transient error estimates for the jet in (a) the time domain and (b) the frequency domain. Each colored period represents the duration utilized for obtaining 
norms in the frequency domain as shown in (b). Solid lines represent the natural decay, while dashed lines correspond to the transient removal strategy using Galerkin 
projection with the matrix of snapshots. The colors blue, red, green, and black correspond to the first, second, third, and fourth periods, respectively.

the boundary conditions. However, this choice has minimal impact on our results due to the sponge region and Dirichlet boundary 
conditions, which mitigates the influence of boundary conditions [1]. Similar to the three-dimensional case, a non-uniform grid setup 
is employed with a higher resolution in the core region. A grid-convergence study verifies the relative error between gains with this 
mesh and twice the number of grid points is less than 1% for 0 ≤ 𝑆𝑡 ≤ 0.7 and less than 10% for 0.7 < 𝑆𝑡 ≤ 1. The larger errors at 
higher frequencies is due to small structures and could be eliminated by refining the mesh. However, we wish to keep the total size 
of the system as small as possible to keep the cost of the RSVD-LU algorithm manageable for comparison with our algorithm. The 
remaining parameters are kept the same as in the three-dimensional discretization of the jet.

Fig. 8 shows the gains (squared singular values) for 𝑚 = 0,1,2,3. The dominant mechanisms for each wavenumber are analyzed in 
detail in Schmidt et al. [86] and Pickering et al. [70]. The optimal mode when 𝑚 = 0, 𝑆𝑡 ≥ 0.2 corresponds to Kelvin-Helmholtz (KH) 
instability. At 𝑚 = 0, the KH modes are overtaken by Orr-type modes for 𝑆𝑡 < 0.2. At 𝑚> 0, streaks become the dominant response and 
continue to prevail as the primary instability at low frequencies 𝑆𝑡→ 0. Orr-type modes are characterized by perturbation structures 
that are initially oriented at an angle against the mean shear, leading to energy amplification through algebraic growth. These 
structures are subsequently reoriented along the direction of the mean shear as they evolve downstream. The resulting perturbation 
shape is distinctly tilted, with upstream portions leaning against the shear and downstream portions aligned with it, reflecting the 
interplay between shear-induced tilting and growth, as shown in the work of Pickering et al. [69]. The KH modes remain the most 
amplified response for the higher 𝑆𝑡-range when 𝑚 > 0, causing the large separation between the leading mode and suboptimal 
modes.

Similar gain trends are found in Schmidt et al. [86] and Pickering et al. [69] for the same wavenumbers demonstrating the 
robustness of the outcome even though the computational domains, 𝑅𝑒, state vector, sponge regions, and boundary conditions are 
slightly different. The gains and corresponding modes of the axisymmetric jet are used as a baseline for comparison to the three-
dimensional jet.

9.2.1. Resolvent modes for the jet
Resolvent modes for the three-dimensional round jet are computed for the same range of 𝑆𝑡 ∈ [0,1] with Δ𝑆𝑡 = 0.05. The six 

leading modes are of interest, so we set 𝑘 = 10 and 𝑞 = 1. The choice of 𝑘 is determined by the number of desired modes, with a 
few additional test vectors included to enhance accuracy. The number of power iterations 𝑞 may be increased if the modes at the 
frequencies of interest have not yet converged. In this case, an additional power iteration does not affect the results for 𝑆𝑡 ≤ 0.7, 
making 𝑞 = 1 an effective choice. For the RSVD-Δ𝑡 algorithm, we use the classical 4𝑡ℎ order Runge–Kutta (RK4) integrator with 
𝑑𝑡 = 0.00625. The steady-state interval is 𝑇𝑠 = 20. Fig. 9 shows the expected transient error in the time and frequency domains. 
The transient initially grows in time before slowly decaying in Fig. 9(a). The resulting error in the frequency domain obtained from 
selecting each colored segment for computing resolvent modes is shown in Fig. 9(b). Our transient removal strategy, using Galerkin 
projection with the matrix of snapshots, drastically reduces these errors for 𝑆𝑡 > 0, as indicated by the dashed lines. We select a 
transient duration of 𝑇𝑡 ≈ 2𝑇𝑠 (green segment), for which the transient removal strategy brings the transient error below 1% for 
𝑆𝑡 > 0.

Fig. 10 compares the gains of two-dimensional and three-dimensional discretizations of the jet. Due to the azimuthal symmetry 
of the problem, the gains of the three-dimensional problem are expected to be the union of the gains from the axisymmetric problem 
[90]. Since higher wavenumbers (𝑚 > 3) have lower gains [70], the union of the first four azimuthal wavenumbers is enough to 
match the leading modes of the three-dimensional system. The azimuthal symmetry makes modes corresponding to 𝑚 ≠ 0 appear in 
pairs for the three-dimensional problem. As a result, Fig. 10(a) displays three distinct curves, even though six modes are represented; 
each curve corresponds to one of the two symmetrical modes that overlap. The optimal gain at 𝑚 = 0 is not captured in the three-
dimensional analysis, as it is suboptimal and has lower energy compared to the other modes when 𝑆𝑡 ≤ 0.3 as shown in Fig. 10(a). 
The six computed modes appear in pairs for 𝑆𝑡 ≤ 0.3, after which the gain of the 𝑚 = 0 mode becomes large enough to appear for the 
three-dimensional problem. Up to 𝑆𝑡 = 0.8, the largest gains are associated with 𝑚 = ±1. All of the modes that appear for the three-
dimensional problem are KH modes; more (𝑘 > 10) resolvent modes would need to be computed to capture Orr modes that are buried 
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Fig. 10. Resolvent gains for the jet: (a) the union of the axisymmetric jet gains; (b) the optimal gains of the axisymmetric jet corresponding to various values of 
𝑚 (dashed lines) overlaid on top of the six leading gains for the three-dimensional discretization (solid lines). In (a), optimal modes for each 𝑚 are colored black, 
gradually transitioning to grey for suboptimal modes.

beneath a slew of KH modes for each azimuthal wavenumber. The close match between the computed three-dimensional modes and 
the set of two-dimensional modes verifies that the three-dimensional calculations are properly capturing the known physics for this 
problem. The small mismatch at frequencies close to 𝑆𝑡 = 1 is due to mild under-resolution of the grid for the compact structures 
that appear at these frequencies.

Fig. 11 shows the pressure response modes at four (𝑆𝑡,𝑚) pairs (other components such as velocity yield similar observations). 
Each panel shows, for one (𝑆𝑡,𝑚) pair, contours of the two-dimensional mode computed leveraging symmetry, isocontours of the 
corresponding three-dimensional mode, and contours for cross sections of the three-dimensional mode in the 𝑥− 𝑦 and 𝑦− 𝑧 planes. 
These images show the wavepacket form of the modes, confirm the classification of each three-dimensional mode with a particular 
azimuthal wavenumber, and illustrate the match between the symmetric and three-dimensional results. As noted by Martini et al. [58], 
symmetries such as the azimuthal homogeneity of the jet produce pairs of modes with equal gain that can be arbitrarily combined 
(under the constraint of orthogonality) to produce equally valid mode pairs. For visualization purposes, we have adjusted the phase 
and summed the mode pairs to best match those of the modes from the axisymmetric calculations.

9.2.2. Computational complexity comparison

We showcase the superior computational efficiency and scalability of the RSVD-Δ𝑡 algorithm compared to the RSVD-LU algorithm 
using the three-dimensional jet by varying the discretized state dimension 𝑁 . We set 𝑘 = 10, 𝑁𝜔 = 21, and 𝑞 = 0 for both algorithms 
and 𝑑𝑡 = 0.00625, 𝑇𝑡 = 2𝑇𝑠, and 𝑇𝑠 = 20 in the RSVD-Δ𝑡 algorithm as in §9.2.1. The reported costs for the RSVD-LU algorithm includes 
only a single LU decomposition and the two solutions of the LU decomposed system (once for the direct system and once for the 
adjoint system) at each frequency of interest, highlighting the LU decomposition as the primary bottleneck in the RSVD-LU algorithm 
and similar methods utilizing LU decomposition to solve (27). The reported costs encompasses the entire RSVD-Δ𝑡 algorithm with a 
total integration length of 4𝑇𝑠 per action, including one extra period to account for the transient removal strategy, as explained in 
§8.2. The RSVD-Δ𝑡 algorithm is implemented using PETSc [9], while the LU decomposition in the RSVD-LU algorithm utilizes PETSc 
in conjunction with the MUMPS [4] external package. All calculations are performed on one Intel Xeon Gold 6154 processor on the 
University of Michigan’s Great Lakes cluster, with wall time serving as a proxy for CPU time.

The measured CPU time for both algorithms are shown in Fig. 12(a) as a function of the state dimension 𝑁 . The RSVD-LU algorithm 
scales poorly, in fact exceeding the theoretical scaling of 𝑂(𝑁2) for three-dimensional flows (refer to §6) due to poor performance 
at low frequencies that has also been noted in other studies [69]. In contrast, the RSVD-Δ𝑡 algorithm achieves (near) linear scaling, 
𝑂(𝑁1.1), confirming its scalability to large problems. The calculations could not be performed using RSVD-LU for the largest two 
grids dimensions exceeding 1 million require an excessive amount of memory beyond our cluster limits of 3.5 TB when employing 
RSVD-LU. Therefore, these two data points are exclusively reserved for RSVD-Δ𝑡 to validate the linear scaling retention during the 
transition to more realistic dimensions. The final point corresponds to the same grid utilized in our three-dimensional jet flow test 
case.

Similar observations can be made about the memory requirements of the two algorithms, shown in Fig. 12(b). The observed 
𝑂(𝑁1.5) memory scaling for the RSVD-LU algorithm is better than the CPU counterpart, but it is still the main barrier to applying the 
RSVD-LU algorithm when the state dimension is of the order of 10 million or higher. The RAM peak usage is determined entirely by 
LU decomposition and drops after the decomposed matrices are obtained. On the other hand, the memory scaling for the RSVD-Δ𝑡

algorithm is exactly linear with the state dimension 𝑁 , consistent with the theoretic scaling determined in §6.
Most of the grids considered in Fig. 12 are under-resolved to make the RSVD-LU calculations tractable. To compare the two 

algorithms for a realistic grid, Table 3 compares the costs of RSVD-LU and RSVD-Δ𝑡 for 𝑁 ≈ 39 million (5 state variables × a 
[400 × 1402] grid), which was used for the three-dimensional calculations in §9.2.2, and 𝑁𝜔 = 21, 𝑘 = 10, and 𝑞 = 1. The CPU and 
memory requirements of the RSVD-LU algorithm are intractable for this problem, so we estimate these costs by extrapolating the 
best-fit lines in Fig. 12. Computing the action of the resolvent operator in the RSVD-LU algorithm involves both LU decomposition 
and solving the decomposed system, with both being extrapolated but the latter not depicted in Fig. 12. This implies that for 𝑞 = 1, 
the CPU time includes a single LU decomposition and four times solving the LU-decomposed system. On the other hand, for RSVD-Δ𝑡, 
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Fig. 11. Four groups of axisymmetric and three-dimensional pressure modes are shown, including axisymmetric views, three-dimensional iso-volume representations, 
and 𝑥− 𝑦 plane snapshots of the round jet. Cross-sections at 𝑥 = 5 confirm the azimuthal wavenumber of the three-dimensional results. Color bar ranges are adjusted 
for visualization.

Fig. 12. Computational cost as a function of the state dimension 𝑁 for the three-dimensional jet: (a) CPU-hours and (b) memory usage for the RSVD-LU (red) and 
RSVD-Δ𝑡 (blue) algorithms.

the CPU time and memory usage are directly taken from our simulation, which employed 300 Intel Xeon Gold 6154 processors on 
the University of Michigan’s Great Lakes cluster.

The RSVD-LU algorithm exhibits a CPU time that is more than three orders of magnitude higher than that of the RSVD-Δ𝑡 algorithm. 
Specifically, using 300 cores, the wall-time for RSVD-Δ𝑡 is approximately 61 hours (< 3 days), while the RSVD-LU algorithm requires 
over 75 300 000 CPU-hours, which translates to around 251 000 hours (∼ 28 years) wall-time, assuming perfect linear speed-up 
using 300 parallel cores. Of course, this wall-time can be brought down by increasing the number of cores, but it is clear that super-
computing resources would be required to make the wall-time acceptable, which is antithetical to role of resolvent analysis as a 
reduced-order model. This disparity becomes even more pronounced as 𝑁 increases due to the linear CPU scaling of RSVD-Δ𝑡 and 
the quadratic scaling of the RSVD-LU algorithm for three-dimensional problems. Table 3 confirms that the time-stepping process 
accounts for nearly all of the CPU time in RSVD-Δ𝑡.

The memory improvements of the RSVD-Δ𝑡 algorithm are arguably even more important. The memory usage in the RSVD-LU 
algorithm exceeds that of RSVD-Δ𝑡 by more than two orders of magnitude. The minimum memory requirement for LU calculations 
surpasses 130 TB for the three-dimensional jet flow. This amount of memory is more than can be accessed even on most high-
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Table 3
Comparison of the RSVD-LU and RSVD-Δ𝑡 algorithms in terms of CPU time and 
memory usage for the three-dimensional jet with 𝑁 ≈ 39𝑀,𝑁𝜔 = 21, 𝑘 = 10, and 
𝑞 = 1. The action of 𝑹 and 𝑹∗ use time stepping for RSVD-Δ𝑡 and a direct solver for 
the RSVD-LU algorithm.

Algorithm CPU time (hours) Memory (GB)

Total Action of 𝑹 and 𝑹∗ SVD/QR 
RSVD-LU 7.53 × 107 7.53 × 107 0.762 1.33 × 105
RSVD-Δ𝑡 1.83 × 104 1.83 × 104 0.762 7.36 × 102

performance-computing clusters. In contrast, the memory usage in RSVD-Δ𝑡 is optimized to store only three matrices of size 𝑁 × 𝑘×
𝑁𝜔, which can be accurately estimated based on the size of each float number in C/C + + . For instance, with 𝑁 ≈ 39 million, 𝑘 = 10, 
and 𝑁𝜔 = 21, the RAM consumption for these matrices amounts to ∼ 0.75 TB (using double precision with 64-bit indices). Moreover, 
the RAM requirements of our algorithm can be further reduced at the expense of higher CPU cost if necessary as proposed in §8.1.3, 
while no such trade-off exists for the RSVD-LU algorithm.

10. Application: jet with streaks

Finally, we apply the RSVD-Δ𝑡 algorithm to study the impact of streaks on other coherent structures within a turbulent jet. This 
is a fully three-dimensional problem for which results obtained using other algorithms are not available.

Streaks – elongated regions of low-velocity fluid – have historically been observed and studied in turbulent channel flows (see 
McKeon [60] and Jiménez [42] and the references therein). More recently, in unbounded shear flows such as round jet flows, streaks 
have been shown to be generated via the evolution of optimal initial conditions that maximize the transient energy growth [43]. 
Nogueira et al. [65] and Pickering et al. [69] showed that streaks emerge as the dominant structures in the SPOD and resolvent 
spectra of jets at very low frequencies when 𝑚 ≥ 1. Streaks are produced via a lift-up mechanism applied to the rolls or streamwise 
vortices that are usually excited near the nozzle exit. The presence of streaks within turbulence modifies the flow quite significantly. 
In particular, streaks are shown to stabilize the KH wavepackets in a parallel plane shear layer [54] and Tollmien–Schlichting waves 
in the Blasius boundary layer [23]. Similar findings on a high-speed turbulent jet by Wang et al. [112] demonstrate the stabilizing 
effects of finite-amplitude streaks on KH wavepackets. In this study, we investigate the impact of streaks on the linear amplification 
and spatial structure of the Kelvin-Helmholtz wavepackets described by the leading resolvent modes via a secondary stability analysis.

The streaks that will be added to the mean flow are obtained from an initial resolvent analysis of the mean flow; specifically, 
streaks are the optimal resolvent response at very low frequencies [69]. Due to the symmetry of the mean jet, streaks obtained 
from data via SPOD or computed using resolvent analysis are associated with a particular azimuthal wavenumber. Accordingly, we 
compute the streaks using our axisymmetric code, which produces the same results as the three-dimensional code but at a lower cost. 
We compute them for (𝑆𝑡, 𝑙) = (0,6), where 𝑙 denotes the azimuthal periodicity of the streaks. This choice of 𝑙 = 6 corresponds to one 
of the main cases studied in Wang et al. [112].

The updated mean flow with the streaks added has 6-fold rotational symmetry and, following Sinha et al. [87], can be written as

�̄�(𝑥, 𝑟, 𝜃) =
∞ ∑

𝑗=−∞
̂̄𝒒𝑙𝑗 (𝑥, 𝑟)𝑒𝑖𝑙𝑗𝜃 . (53)

They proved that after plugging the Fourier ansatz of the resulting mean flow into the LNS equations, given an azimuthal wavenumber 
𝑚, the associated axisymmetric mode �̂�𝑚,𝜔 can only couple with �̂�𝑚−𝑙𝑗,𝜔 for 𝑗 ∈ℤ. In our problem, 𝑙 = 6 and sorting the modes with 
the lowest azimuthal modes, we expect coupling of modes in sets of 𝒒𝐿

𝜔
= {�̂�𝐿−𝑙𝑗,𝜔}𝑙=∞𝑙=−∞, where 𝐿 = {−2,−1,0,1,2,3} includes all 

possibilities. Indexing in this manner implies that the modes with 𝐿 = 0,3 are unpaired while 𝐿 = ±1,±2 will show up in pairs in the 
three-dimensional setup due to symmetry.

The shape of the streaks is sensitive to a few parameters including the viscosity (or equivalently turbulent Reynolds number or 
eddy-viscosity model if desired) and forcing region. In lieu of a more complex eddy-viscosity model, we use a constant turbulent 
Reynolds number of 𝑅𝑒 = 1000. This value is close to the optimal frequency-dependent value determined by Pickering et al. [70] for 
𝑆𝑡 = 0 as well as most of our frequency range of interest 𝑆𝑡 ∈ [0,1] for the secondary stability problem. Additionally, the forcing 
region of the resolvent analysis used to compute the streaks must be limited to obtain streaks of finite streamwise length. If the 
domain is not limited, the forcing rolls that generate these streaks sustain them throughout the domain. After some trial and error, 
we limited the forcing region to 𝑥, 𝑟 ∈ [0,1] × [0,1], which produced streaks with a location of peak amplitude (𝑥 ∈ [5,6]) and overall 
shape consistent with the streak SPOD modes obtained by Nogueira et al. [65].

Once the axisymmetric streaks are computed, the three-dimensional streaks are obtained by revolving them around the 𝑥-axis with 
phase 𝑒i𝑙𝜃 (see Fig. 7). The amplitude is defined as the ratio of the peak streamwise velocity of streaks over the maximum velocity at 
the nozzle exit. This serves as a free parameter that can be investigated across various values. According to Wang et al. [112], the 
amplitude of these structures grows linearly over time. Therefore, no correct constant amplitude exists for our secondary analysis. 
The amplitude of streaks in our paper is set to 40%, which is large enough to affect the modes compared to the round jet. The region 
of interest and grid points along with all the other parameters are the same as for the round jet.
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Fig. 13. Results for the jet with streaks: (a) resolvent gains for the round jet (solid line) and jet with streaks (dashed line); (b-e) the optimal, first, third, and fifth 
suboptimal pressure responses at 𝑆𝑡= 0.2; (g-j) contours of the pressure responses on cross-section at 𝑥= 8.5 corresponding to (b-e), respectively. Fourier transforms 
are taken along the black circles shown to obtain the corresponding azimuthal wavenumber spectra for each mode shown in (f).

RSVD-Δ𝑡 is used to compute the resolvent modes for the modified mean flow. The number of test vectors is 𝑘 = 10 and the gains 
are reported after 𝑞 = 2 power iterations. For the same reasons mentioned for the round jet, we use 10 test vectors and are interested 
in computing the top six leading modes. Regarding the number of power iterations, the first few leading modes converged after the 
first power iteration, but an extra power iteration is performed to ensure convergence since no ground truth results are available 
for comparison. The frequency range 𝑆𝑡 ∈ [0,1] and discretization Δ𝑆𝑡 = 0.05 are the same as used for the round jet in §9.2. The 
time-stepping scheme is RK4 with 𝑑𝑡 = 0.00625. Transient errors are held below 1% for 𝑆𝑡 > 0 via our transient removal strategy 
using Galerkin projection with the matrix of snapshots with a duration 𝑇𝑡 = 3𝑇𝑠.

The gains for the round jet and jet with streaks are compared in Fig. 13(a). The streaks have increased the gains by orders of 
magnitude for 𝑆𝑡 < 0.5. Some of the gains appear in pairs, indicating mode pairs analogous to those described for the round jet, 
which arise due to the six-fold symmetry of the mean jet with streaks. The match occurs between the first and second suboptimal in 
addition to the third and fourth suboptimal modes. All modes almost coincide at 𝑆𝑡 = 0.35 and continue decaying as 𝑆𝑡 increases.

The optimal, first, third, and fifth suboptimal pressure response modes at 𝑆𝑡 = 0.2, where the leading gain is maximum, are shown 
in Fig. 13. The second and fourth suboptimal modes are not shown since they are pairs with the first and third suboptimal modes, 
respectively. The three-dimensional iso-surfaces show KH wavepackets that are significantly altered by the streaks; characterizing 
the modes with the indexes defined earlier requires deeper investigation. To this end, cross-section contours at 𝑥 = 8.5 are plotted. 
These plots are more complicated than the round jet due to the coupling between multiple azimuthal wavenumbers. We interpolate 
the pressure field on the circles shown on each contour plot to demonstrate the coupling azimuthal wavenumbers. Taking an FFT of 
the extracted data, the normalized coefficients are plotted against 𝑚 in 13(f). This plot shows that the optimal mode is comprised 
of 𝐿 = 3 with a larger weight and 𝐿 + 𝑙 = 3 + 6 = 9 with a smaller weight, which is consistent with our axisymmetric analysis. The 
first suboptimal mode includes (𝐿,𝐿 − 𝑙) = (2,−4), and its pair contains (𝐿,𝐿 + 𝑙) = (−2,4), so both couplings and pairings are as 
expected. Similarly, the third mode is a coupling between (𝐿,𝐿− 𝑙) = (1,−5), and the fourth mode is with (𝐿,𝐿+ 𝑙) = (−1,5). Lastly, 
the fifth mode is unpaired and captures the (𝐿,𝐿+ 𝑙) = (0,6) azimuthal wavenumbers with a small signature of 𝐿 + 2𝑙 = 12.

From the perspective of computational cost, the jet with streaks is similar to the three-dimensional discretization of the round 
jet. Utilizing the RSVD-LU algorithm for the same grid with state dimension 𝑁 ≈ 39 million, the anticipated CPU time surpasses 75 
million hours, as discussed in §9.2.2. Nevertheless, leveraging RSVD-Δ𝑡 with 𝑞 = 2 enabled us to complete the analysis within 37 
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thousand CPU-hours. Our computations used 300 cores, which results in a wall time of 28 years for the RSVD-LU algorithm and 123 
hours for our algorithm. Additionally, memory requirements amount to more than 130 TB for the RSVD-LU algorithm and 0.75 TB 
for ours. As a point of comparison, the LES of a similar jet with 𝑁 ≈ 64 million consumed 464 thousand CPU hours [14]. It is safe to 
say that this analysis would have been intractable using previous algorithms, demonstrating the promise of the RSVD-Δ𝑡 algorithm 
for extending the applicability of resolvent analysis to new problems in fluid mechanics.

11. Conclusions

This paper introduces RSVD-Δ𝑡, a novel algorithm designed for efficient computation of global resolvent modes in high-
dimensional systems, particularly in the context of three-dimensional flows. By leveraging a time-stepping approach, RSVD-Δ𝑡

eliminates the reliance on LU decomposition that often hampers the scalability of current state-of-the-art algorithms. As a result, 
RSVD-Δ𝑡 not only enhances scalability but also extends the applicability of resolvent analysis to three-dimensional systems, overcom-
ing previous computational limitations.

Scalability is of utmost importance for algorithms dealing with high-dimensional flows, and RSVD-Δ𝑡 excels in this regard. In 
contrast, the LU decomposition of (i𝜔𝑰 − 𝑨) poses a significant computational challenge for the RSVD-LU algorithm, limiting its 
scalability with 𝑂(𝑁2) scaling for 3D problems. The CPU demand of RSVD-Δ𝑡, on the other hand, exhibits linear proportionality to 
the state dimension.

In addition to CPU considerations, memory requirements play a crucial role in computing resolvent modes for large systems. The 
LU decomposition of (i𝜔𝑰 −𝑨) is the primary contributor to peak memory usage in the RSVD-LU and other common algorithms. In 
contrast, the RSVD-Δ𝑡 algorithm primarily utilizes RAM to store input and output matrices in Fourier space, resulting in linear growth 
of memory consumption with dimension. To minimize the required memory, we utilize streaming calculations, which maintains low 
memory requirements with minimal computational impact. If memory limitations persist, the set of desired frequencies can be split 
into 𝑑 groups to further reduce the required memory by a factor of 𝑑.

The RSVD-Δ𝑡 algorithm contains three sources of error, each of which can be controlled by carefully selecting method parameters. 
The first arises from the RSVD approximation inherited from the RSVD algorithm. This error can be significantly reduced by employing 
power iteration and utilizing more test vectors than the desired number. The second source of error stems from the time integration 
method employed to compute the action of 𝑹 and 𝑹∗. Time-stepping errors encompass the transient response and truncation error. 
Truncation error arises from the numerical integration of the LNS equations and can be managed through careful selection of the 
time-stepping scheme and time step. The transient response emerges when the initial condition is not synchronized with the applied 
forcing, decaying over time but potentially requiring many periods to become sufficiently small. To expedite the removal of transients, 
a novel strategy is introduced involving the decomposition of snapshots into transient and steady-state components, with subsequent 
solving of equations for the transient. This computation is facilitated through Petrov-Galerkin and Galerkin projections. To ensure 
optimal performance, it is important to maintain a balance between truncation and transient errors. Focusing too much on reducing 
one source significantly while neglecting the other can lead to a waste of CPU time without an impact on the outcome. Also, keeping 
both errors smaller than the RSVD approximation error will not improve the accuracy of RSVD-Δ𝑡 with respect to SVD-based (true) 
results. By effectively eliminating both truncation and transient errors up to machine precision, RSVD-Δ𝑡 has been validated against 
the RSVD-LU algorithm using the complex Ginzburg-Landau equation.

The RSVD-Δ𝑡 algorithm is particularly valuable for analyzing three-dimensional flows, where other algorithms become imprac-
tical. The superior scalability of the RSVD-Δ𝑡 algorithm leads to an increasingly pronounced disparity in computational complexity 
compared to the RSVD-LU algorithm as the value of 𝑁 grows larger. As an example, we consider a moderately large state dimension 
of 𝑁 ≈ 39 million. Using the RSVD-LU algorithm for this problem would require an estimated 75 million CPU-hours and 130 TB of 
RAM. In contrast, the RSVD-Δ𝑡 algorithm required just 18,000 CPU-hours and 0.75 TB of RAM, a reduction of three and two orders 
of magnitude, respectively. In general, the benefits of the RSVD-Δ𝑡 algorithm are most pronounced for three dimensional flows and 
other large systems, while little advantage is gained for simple one- and two-dimensional flows.

Lastly, we leveraged the novel capabilities of the RSVD-Δ𝑡 algorithm to investigate the influence of streaks within the turbulent 
jet on the KH wavepackets. Using a procedure analogous to a secondary stability analysis in which the steady streaks are added to 
the axisymmetric mean flow, we showed the significant impact of the streaks on the KH wavepackets. This included a substantial 
increase in gains within the range 𝑆𝑡 ∈ [0,0.5], a change in the most amplified azimuthal wavenumber, and coupling of multiple 
azimuthal wavenumbers is some of the modes. Given the recently demonstrated presence of streaks in real jets, these finds warrant 
further investigation in the future.

Our algorithm also has several implementation advantages. Our time-stepping approach enables matrix-free implementation, 
eliminating the explicit formation of the LNS matrix 𝑨, instead directly utilizing built-in linear direct and adjoint capabilities available 
within many existing codes. All operations within the RSVD-Δ𝑡 algorithm are amenable to efficient parallelization; we have optimized 
out implementation of the algorithm for parallel computing using the PETSc [9] and SLEPc [34] environments, facilitating full 
utilization of the computational power offered by modern high-performance clusters. Moreover, our code is designed to leverage 
GPUs, enabling the delegation of compute-intensive tasks to the GPU architecture for quicker and more efficient calculations. Finally, 
the efficiency and accuracy of the RSVD-Δ𝑡 algorithm could be further enhanced by incorporating strategies developed for the RSVD-
LU algorithm. Notably, techniques proposed by Ribeiro et al. [73] and House et al. [36] can be integrated into our approach to use 
physical insight to select the initial test vectors instead of relying on entirely random ones. An open-source implementation of the 
RSVD-Δ𝑡 algorithm is available on GitHub (https://github.com/AliFarghadan/RSVD-Delta-t).
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Appendix A. RSVD-𝚫𝒕 for the weighted resolvent operator

For the sake of notational brevity, we have described resolvent analysis and the RSVD-Δ𝑡 algorithm in the absence of non-identity 
input, output, and weight matrices in the main text (see §2). In this appendix, we briefly explain the modifications required to 
include these additional matrices. In this case, solving the generalized Rayleigh quotient (8) is equivalent to computing the SVD of 
the weighted resolvent operator [107]

�̃� =𝑾 1∕2
𝑞 𝑪(i𝜔𝑰 −𝑨)−1𝑩𝑾 −1∕2

𝑓
, (A.1a)

�̃� = �̃�𝜮�̃� ∗
, (A.1b)

and further

𝑼 =𝑾 −1∕2
𝑞 �̃� ,

𝑽 =𝑾 −1∕2
𝑓

�̃� ,
(A.2)

where 𝜮 contains the gains, and 𝑽 and 𝑼 are forcing and response modes, respectively. The resolvent operator is recovered as

𝑹 =𝑼𝜮𝑽 ∗𝑾 𝑓 . (A.3)

Time-stepping can effectively act as a surrogate for the action of the weighted resolvent operator �̃� (or equivalently �̃�∗). In other 
words, our objective is to compute

�̂� = �̃��̂� =𝑾 1∕2
𝑞 𝑪(i𝜔𝑰 −𝑨)−1𝑩𝑾 −1∕2

𝑓
�̂� (A.4)

for all 𝜔 ∈𝛺 using time stepping. The process begins by computing the product between �̂�𝑊 =𝑾 −1∕2
𝑓

�̂� in Fourier space, followed 
by �̂�𝑊 ,𝐵 = 𝑩�̂�𝑊 . The products involving weight and input/output matrices are efficiently executed due to their sparsity. These 
operations are conducted for all 𝜔 ∈ 𝛺 to obtain �̂�𝑊 ,𝐵 . Subsequently, the action of (i𝜔𝑰 −𝑨)−1 is computed on �̂�𝑊 ,𝐵 using time 
stepping to yield �̂� . The resulting output undergoes �̂�𝐶 = 𝑪�̂� and �̂�𝐶,𝑊 =𝑾 1∕2

𝑞 �̂�𝐶 , which are repeated for all frequencies to obtain 
�̂� 𝐶,𝑊 . Fig. A.14 visually illustrates the order of calculations for 𝑹 in the top row and �̃� in the bottom row. An analogous process is 
utilized to compute the action of �̃�∗.

Fig. A.14. The schematic of computing the action of 𝑹 on top and the action of �̃� on the bottom row. 

Appendix B. Removing the least-damped modes using eigenvalues only

The transient removal strategies described in §8.2 require a basis for the transient, either in the form of eigenvectors for the 
least-damped eigenvalues or data. In this appendix, we outline an alternative procedure to expedite the decay of transients that uses 
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knowledge of the least-damped eigenvalues themselves. Considering two solutions of (17), 𝒒1 = 𝒒(𝑡1) and 𝒒2 = 𝒒(𝑡1 + Δ𝑡), we can 
express them in terms of their steady-state and transient parts as

𝒒1 = 𝒒𝑠,1 + 𝒒𝑡,1,

𝒒2 = 𝒒𝑠,2 + 𝒒𝑡,2,
(B.1)

where 𝒒𝑠,1,𝒒𝑠,2,𝒒𝑡,1, and 𝒒𝑡,2 are four unknowns. The transient parts can be written as

𝒒𝑡,1 = 𝒒𝜆1 ,1 + 𝒒𝑟𝑒𝑠𝑡,1,

𝒒𝑡,2 = 𝒒𝜆1 ,2 + 𝒒𝑟𝑒𝑠𝑡,2,
(B.2)

where we assume the unknowns 𝒒𝜆1 ,𝑗
evolve as ∼ 𝑒𝜆1𝑡, where 𝜆1 is the least-damped eigenvalue. Hence,

𝒒𝜆1 ,2 = 𝒒𝜆1 ,1𝑒
𝜆1Δ𝑡, (B.3)

where 𝒒𝜆1 ,𝑗
is essentially the projection of the transient response onto the least-damped eigenmode of 𝑨 at 𝑡 = 𝑡𝑗 . The steady-state 

evolution at a prescribed forcing at a single frequency 𝜔 follows (41). Therefore, in case of ||𝒒𝑟𝑒𝑠𝑡,𝑗 || = 0, the system of equations is 
deterministic and 𝒒𝑡,1 can be found as

𝒒𝑡,1 =
𝒃

𝑐
, (B.4)

where 𝒃 = 𝒒1 −𝒒2𝑒−i𝜔Δ𝑡 is known from the time stepping and 𝑐 = 1 − 𝑒(𝜆1−i𝜔)Δ𝑡 is constant. Otherwise, i.e., ||𝒒𝑟𝑒𝑠𝑡,𝑗 || ≠ 0, by simplifying 
terms, the transient part can be written as

𝒒𝑡,1 =
𝒃

𝑐
−

(1 − 𝑐)𝒒𝑟𝑒𝑠𝑡,1 − 𝒒𝑟𝑒𝑠𝑡,2𝑒
−i𝜔Δ𝑡

𝑐
. (B.5)

Based on the fundamental assumption, the second term, which is unknown, decays faster than 𝑒𝜆1,𝑟 𝑡. Therefore, by removing the first 
term 𝒃

𝑐
, which is known, the residual eventually follows the second least-damped eigenvalue. If the forcing term encompasses a range 

of frequencies, the same relationships remain valid for each frequency after undergoing a DFT, and 𝒃
𝑐

can be separately eliminated 
for each 𝜔 ∈𝛺. Note that the eigenvector associated with 𝜆1 was never used.

This procedure can be generalized to target the 𝑑 least-damped eigenmodes of 𝑨. The solution at each time with arbitrary distances 
can be expanded as

𝒒𝑙 = 𝒒𝑠,𝑙 +
𝑑∑

𝑗=1 
𝒒𝜆𝑗 ,𝑙

+ 𝒒𝑟𝑒𝑠𝑡,𝑙, (B.6)

for 1 ≤ 𝑙 ≤ 𝑑 + 1. Utilizing the same relationships, we can eliminate the slowest components, ensuring that the residual term decays 
faster than all 𝑑 modes. This procedure is developed to steepen the decay rate and shorten the transient length to meet the desired 
accuracy. The outcomes of this procedure closely resemble the output of the efficient transient strategy using Galerkin projection with 
the least-damped eigenmodes as the basis. The transient error can be estimated in a similar manner as described for the projection-
based approach.

Data availability

Data will be made available on request.
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