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Guided-jet waves have been shown to close resonance loops in a myriad of problems such
as screech and impingement tones in jets. These discrete, upstream-travelling waves have
long been identified in linear-stability models of jet flows, but in this work they are instead
considered in the context of an acoustic-scattering problem. It is shown that the guided-jet
mode results from total internal reflection and transmission of acoustic waves, arising
from the shear layer behaving like a duct with some given wall impedance. After total
reflection, only discrete streamwise wavenumbers may be supported by the flow, with
these wavenumbers dictated by the fact that the standing wave formed inside of the jet
must fit between the two shear layers. Close to the sonic line, the transmission of this
mode to the outside is maximum, leading to a net-energy flux directed upstream, which
dictates the direction of propagation of this mode, providing a clear connection to the better
understood soft-duct mode (Towne et al., J. Fluid Mech., vol. 825, 2017, pp. 1113–1152).
The model also indicates that these waves are generated in the core of the flow and can
only be efficiently transmitted to the quiescent region under certain conditions, providing
an explanation as to why screech is only observed at conditions where the discrete mode
is supported by the flow. The present results explain, for the first time, the nature and
characteristics of the guided-jet waves.
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1. Introduction

Aeroacoustic resonances are present in a range of flow configurations associated with
high-speed flight. These processes produce high-amplitude tones that may interact with
the natural frequencies of aircraft components, potentially leading to structural failure (see
for instance Berndt 1984). Some of the most well-known aeroacoustic feedback processes
are screech (Powell 1953; Raman 1998; Edgington-Mitchell 2019), impingement tones
(Marsh 1961; Wagner 1971; Powell 1988; Henderson 2002; Henderson, Bridges & Wernet
2005) and the more recently discovered high-subsonic jet resonance (Schmidt et al. 2017;
Towne et al. 2017). Despite the complexity of the underlying turbulent flows in each of
these processes, they can still be well described with very simple models such as the one
proposed by Powell (1953), which has four main stages: (i) the propagation of energy in the
downstream direction; (ii) the conversion of this energy into an upstream-travelling wave;
(iii) the upstream propagation of energy; and (iv) the conversion of this energy back into a
downstream-travelling wave, closing the resonance loop. Although there is a broad range
of aeroacoustic phenomena, this framework still captures a key element that must underpin
any resonance process: the existence of two wave-like structures that can transport energy
upstream and downstream.

In his early description of screech, Powell (1953) identified the downstream- and
upstream-travelling waves involved in resonance as being large-scale vortices and acoustic
waves, respectively. These large-scale vortices have their origin in the Kelvin–Helmholtz
instability, first studied by Rayleigh (1880) and later explored by a number of researchers
(Lessen, Fox & Zien 1965; Michalke 1964, 1965). These vortices extract energy from the
mean flow and grow exponentially for the first few diameters of the jet; as the shear layer
thickens, the vortices become stable and start decaying as they travel in the streamwise
direction. While early descriptions of resonance treated these vortices as discrete entities,
it is now well established that a train of these vortices is best described as a single
coherent structure called a wavepacket (Mollo-Christensen 1967; Crow & Champagne
1971; Cavalieri et al. 2013). Since the work of Powell, significant effort has been expended
in the study of this downstream-travelling structure, a structure which underpins a range
of noise-generation phenomena (Tinney & Jordan 2008; Cavalieri et al. 2012; Jordan &
Colonius 2013; Cavalieri et al. 2014; Baqui et al. 2015; Cavalieri, Jordan & Lesshafft
2019; Wong et al. 2021). The characteristics of wavepackets are generally well predicted
by linear-stability models; locally parallel models can predict the generation of these
structures (Crow & Champagne 1971; Michalke 1984; Nogueira & Edgington-Mitchell
2021), spatial-marching methods can capture their growth and decay (Cavalieri et al. 2013;
Sinha et al. 2014; Towne & Colonius 2015; Sasaki et al. 2017) and even the modulation of
the wavepacket by shocks within the flow can be predicted (Nogueira et al. 2022a). These
wavepackets constitute the downstream component of both screech and impingement
tones; in high-subsonic jet resonance, it is replaced by a downstream-travelling neutral
duct-like mode, which is acoustic in nature (Towne et al. 2017).

The upstream component of the resonance loops has been the object of more debate. In
screech and impingement tones, early works such as Wagner (1971) and Powell (1953)
assume that the upstream propagation of energy takes the form of an acoustic wave
generated by an interaction between the Kelvin–Helmholtz wavepacket and the shocks.
This assumption went unchallenged for decades, until the works of Tam & Ahuja (1990)
and Tam & Norum (1992). Inspired by the inability of contemporary models to capture
an experimentally observed Mach-number cutoff, the authors proposed that the feedback
loop in impinging jets is closed by neutral discrete acoustic-like waves. These waves had
been first identified in the linear-stability calculations of Tam & Hu (1989), inspired by
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experimental observations of Oertel (1980). The presence of these neutral waves and their
role in impinging-jet resonance found empirical support in the numerical simulations
of Gojon, Bogey & Marsden (2016). A similar role for these waves in jet screech was
hypothesised by Shen & Tam (2002) and further suggested numerically and experimentally
by Gojon, Bogey & Mihaescu (2018) and Edgington-Mitchell et al. (2018), who showed
that screech tones were only observed at frequencies where these discrete waves were
neutrally stable. Further confirmation that this upstream wave is involved in the screech
resonance loop was provided by Mancinelli et al. (2019, 2021), who demonstrated that
predictions using the neutral wave were in better agreement with experimental data than
predictions based on a model that assumed the upstream wave was purely acoustic. Finally,
Nogueira et al. (2022b,c) showed that screech is triggered by an absolute instability
mechanism involving the Kelvin–Helmholtz mode and this upstream wave (which has
recently been referred to as the guided-jet mode), and Edgington-Mitchell et al. (2022)
demonstrated that the upstream-travelling waves in these flows are almost always slower
than the ambient speed of sound. In high-subsonic jet resonance, the characteristics of
the guided-jet mode, including how it is supported by the flow and its interaction with
other duct-like modes, is the actual mechanism that drives resonance; this mechanism
has also been studied by a number of recent works (Bogey 2021, 2022b; Zaman, Fagan
& Upadhyay 2022; Bogey 2022a). In supersonic impinging jets, it has been shown that
free-stream acoustic waves seem to be relevant in the resonance loop at some conditions
(Weightman et al. 2019), while others seem to be governed by the guided-jet mode (Varé &
Bogey 2023). The same wave was also shown to trigger resonance in jet–plate interaction
problems (Jordan et al. 2018; Tam & Chandramouli 2020).

Despite the plethora of evidence for the role of the guided-jet mode in resonance and
the predictive power of models that incorporate it, the exact nature of this wave has
remained something of an enigma. The wave travels with phase velocities lower than the
sound speed, yet it appears to find its genesis in the continuous acoustic branch of the
linearised Navier–Stokes spectrum (Towne et al. 2017). Should this wave then be referred
to as an ‘acoustic’ wave? Results from Tam & Hu (1989) and Edgington-Mitchell et al.
(2018) suggest that the wave must be acoustic in nature, but how then to explain the
subsonic phase velocity, predicted by theory and observed in experiment? An additional
complication is that the guided-jet mode is only predicted to be neutrally stable for a
finite band of frequencies and wavenumbers, yet free-stream acoustic waves can exist
at all frequencies. Lastly, the guided-jet mode exhibits behaviour that is difficult to
reconcile with simple free-stream acoustic waves; interactions between this wave and
downstream-propagating duct-like waves produce saddle points in the complex-valued
eigenspectra predicted by linear-stability theory.

The purpose of this paper is thus to determine the nature of this important but enigmatic
‘guided-jet mode’. Given the role it plays in a range of noise-generating jets, a better
understanding of its theoretical underpinnings may be critical in the mitigation of sound
produced by high-speed shear flows. Given the similarities between these modes and
the duct-like modes analysed in Towne et al. (2017), one could hypothesise that internal
reflection is one of the driving dynamics of this wave. To confirm this, in an attempt
to reconcile the acoustic properties it possesses with its subsonic phase velocity, the
guided-jet mode will be considered in the context of an acoustic-scattering problem, as
suggested by Martini, Cavalieri & Jordan (2019). The acoustic-scattering framework is
well established, but has not yet been applied to the study of this particular flow structure.
As will be seen, considering the problem from this perspective will both provide insight
into the nature of the guided-jet mode and also provide explanations for much of the
behaviour predicted by linear-stability theory.
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The paper is divided as follows: in § 2 the mathematical formulations of the
acoustic-scattering problem and vortex-sheet model are presented. After that, results
of scattering are shown and compared with the overall behaviour of the guided-jet
mode predicted from the vortex-sheet dispersion relation in § 4. Section 5 provides an
explanation for the direction of propagation of the guided-jet mode, and results are
extended to the tri-dimensional case in § 6. Finally, § 7 highlights the importance of the
current results in the context of resonance, and the main conclusions of the analysis are
then reviewed in § 8.

2. Mathematical formulation

Most of this work is based on the two-dimensional Cartesian linearised compressible Euler
equations in the frequency–wavenumber domain. As will be seen in the next sections, the
planar problem allows for a more detailed exploration than the cylindrical one, but the
conclusions will later be extended to round jets. As in previous works (Lessen et al. 1965;
Martini et al. 2019), the mean velocity is considered to only have a non-zero component
in the streamwise direction, and all quantities are normalised by the free-stream sound
speed c∞, specific volume ν∞ and a length h (which was chosen here to be the distance
between the two shear layers in the case of a planar jet). Under these assumptions and
normalisation, the governing equations reduce to

−iων + iαUν + v
∂ν̄

∂y
− ν̄

(
iαu + ∂v

∂y

)
= 0, (2.1)

−iωu + iαUu + v
∂U
∂y

+ iαν̄p = 0, (2.2)

−iωv + iαUv + ν̄
∂p
∂y

+ ν
∂P
∂y

= 0, (2.3)

−iωp + iαUp + v
∂P
∂y

+ γP
(

iαu + ∂v

∂y

)
= 0, (2.4)

where U, P and ν̄ are the mean streamwise velocity, pressure and specific volume, and
(ν, u, v, p) are the fluctuations of specific volume, streamwise and normal velocity and
pressure, respectively (Towne et al. 2017). The pairs (ω, α) are the perturbation frequency
and wavenumber, following the normal-mode ansatz, which assumes each component
of the flow disturbances to have the form q̃(x, y, t) = q( y) exp(−iωt + iαx). The system
(2.1)–(2.4) may be further simplified by dividing the flow into separate domains, each
of which is assumed to have a constant velocity – this constitutes one of the main
simplifications of the vortex-sheet model, as developed by Lessen et al. (1965). Following
this simplification, after some further algebra, one may obtain[

d
dy2 − α2 + (ω − αMi,o)

2

Ti,o

]
pi,o = 0, (2.5)

where M = U/c∞ is the acoustic Mach number, T is the temperature ratio (which is simply
the ratio between ν in the different regions for an ideal isobaric jet) and the subscripts i,o
are associated with the different regions of the jet, o for the outer (quiescent) region and
i for the inner (flow) region, not to be mistaken with the incident waves introduced in the
next section. Considering a jet discharged into a medium at rest, these parameters reduce
to Mo = 0, To = 1, Mi = M and Ti = T . Even though the resulting equation is dependent
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Single vortex sheet

M M M

Double vortex sheet Cylindrical vortex sheet

Input: ω ∈ R

Output: α ∈ C

Input: ω ∈ R

Output: α ∈ C

Input: (ω, α) ∈ R

Output :χi,o, τi,o

d

dy2
– γ2

i,o pi,o = 0[ ] d

dr2 r2

m2

– γ2
i,o pi,o = 0[ ]1

+
r

d

dr

Figure 1. Sketch of the different models considered in this work.

on the temperature ratio, this work will focus on isothermal jets, as the fundamental
features of the guided-jet mode are basically independent of that parameter. This is the
same equation solved by Lessen et al. (1965) and Martini et al. (2019) for the double
vortex-sheet (DVS) problem.

The general solution of (2.5) is given by

pi,o( y) = Ai,o exp(γi,oy)+ Bi,o exp(−γi,oy), (2.6)

where

γi,o = i

√
(ω − αMi,o)2

Ti,o
− α2. (2.7)

Note that the branch cut was chosen such that Im(γi,o) � 0. As will be seen shortly, the
coefficients Ai,o, Bi,o define the amplitudes of incoming/outgoing waves when Re(γi,o) =
0. When Re(γi,o) is non-zero, the appropriate coefficient is set to zero to ensure bounded
disturbances far from the vortex sheet. The coefficients in the different parts of the domain,
Ai,o and Bi,o, may be obtained after consideration of the symmetry of the problem and the
relevant boundary and matching conditions. In the following sections, (2.6) and (2.7) will
be solved in the form of an acoustic-scattering problem for a single vortex sheet (SVS)
in § 2.1 and in the form of linear-stability problems for a planar DVS in § 2.2 and for a
cylindrical vortex sheet in § 2.3. One of the main advantages of the scattering formulation
is the fact that the problem may be discussed in terms of incident, reflected and transmitted
waves, which brings an element of causality that is absent in all eigen-analyses of these
flows – the resulting wave will be a function of the characteristics of the incident one.
A sketch of the different formulations with their respective characteristic inputs and
outputs is shown in figure 1.

2.1. The acoustic-scattering problem – single vortex sheet
The formulation presented in (2.6) may be used to study the problem of acoustic waves
reflected by and transmitted through the shear layer in the SVS. This problem will be
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Figure 2. Sample pressure fields associated with the scattering of waves coming from the quiescent region
into the SVS (a,b) and the scattering of waves coming from the flow region into the SVS (c,d). Both incident
(a,c) and resulting (b,d) pressure are shown. Note that the amplitudes of the reflected waves are small in these
cases.

divided into two parts: (i) the scattering of waves coming from the quiescent region into
the SVS; (ii) the scattering of waves coming from the flow region into the SVS. A sketch
with the two configurations is provided in figure 2.

2.1.1. The scattering of waves generated in the quiescent region
For waves originating in the quiescent region, following Campos & Kobayashi (2000),
the resulting pressure field in the quiescent region contains contributions from both the
incident and reflected waves, as given by

po( y) = χoeγiy + e−γiy ( y > 0), (2.8)

while in the flow region, only transmitted waves exist

pi( y) = τoe−γiy ( y < 0). (2.9)

Here, the numbers χo and τo are the complex-valued reflection and transmission
coefficients for this problem. Without loss of generality, incident waves will have unit
amplitude ι = 1 in this problem; the other coefficients are then obtained as ratios of ι.
In order to calculate the resulting reflection and transmission coefficients, pressure and
displacement must be matched at the vortex-sheet position, resulting in the following
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expression for the outer-scattering problem in the SVS:

χo = −1 − ESVS

1 + ESVS
, (2.10)

τo = χo + 1, (2.11)

with

ESVS =
(

1 − αM
ω

)2 1
T
γo

γi
. (2.12)

Note that the expression for the reflection coefficient χo is similar to the one obtained for
a wave incident on an impedance wall (Rienstra & Hirschberg 2002), in which case ESVS
may be interpreted as an impedance term. As we are dealing with acoustic waves that
are oscillatory in the quiescent medium, the wavenumbers in (2.12) should be real valued
and restricted to |α| � ω. This is equivalent to defining the branch cut of the square-root
function so as to obtain bounded disturbances at infinity. One should note that, in this
range of wavenumbers, both γi and γo are pure imaginary numbers; thus ESVS is a real
number, leading to real transmission and reflection coefficients.

It is possible to include the edge of a plate or nozzle at the origin of the shear layer
(Crighton & Leppington 1974), which couples the acoustic-scattering problem with the
Kelvin–Helmholtz instability of the shear layer in order to satisfy an unsteady Kutta
condition at the edge. This is not carried out here, for consistency with the local stability
problem which does not include the edge.

2.1.2. The scattering of waves generated in the flow region
The scattering problem for waves coming from the flow region is similar, but requires
more care; waves that are oscillatory in the flow region may not be oscillatory in the
quiescent region. The opposite does not occur for negative wavenumbers, rendering the
quiescent-region analysis more straightforward. Again considering only waves that are
oscillatory in the quiescent medium (|α| � ω), the pressure field in this quiescent medium
contains only transmitted waves, as given by

po( y) = τieγoy ( y > 0), (2.13)

whereas the pressure field in the flow region contains both incident and reflected waves

pi( y) = eγiy + χie−γiy ( y < 0). (2.14)

Note that both transmitted and incident waves have the same exponential sign, ensuring
that transmitted waves travel away from the vortex sheet. This is valid for incident waves
with phase velocities in y pointing upwards, which is the case in the present work. The
appropriate exponential sign may also be obtained by analysing the sign of the group
velocity in y. Furthermore, for |α| � ω, all disturbances are bounded as the parameters
γi,o are pure imaginary numbers. Implementing the same boundary conditions of matched
pressure and displacement leads to the reflection and transmission coefficients

χi = 1 − ESVS

1 + ESVS
, (2.15)

τi = χo + 1. (2.16)

These expressions are valid for |α| � ω, but acoustic waves in the flow region exist
for all wavenumbers in the interval (ω − αM)2/T − α2 > 0. Thus, for subsonic flows
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Figure 3. Sketch showing the wavenumbers associated with oscillatory waves in the different regions of the
flow and the propagation angles in the limit cases. Here, θi ≈ 146◦ is the incidence angle computed for α = −ω.

and negative wavenumbers, there is an interval −ω/√T − M � α < −ω in which waves
are oscillatory in the flow region and decaying in the quiescent region. The upper and
lower limits of this interval are associated with oscillatory waves in the quiescent region
travelling at 90◦ in the quiescent medium (but travelling at an angle in the flow medium),
and travelling at 90◦ in the flow region (but decaying in the quiescent medium) with respect
to the shear layer, respectively. This is shown schematically in figure 3. In this interval, the
pressure for y > 0 is given by

po( y) = τie−γoy ( y > 0), (2.17)

to ensure bounded pressure in both parts of the domain. Then, the reflection coefficient is
given by

χi = 1 + ESVS

1 − ESVS
. (2.18)

Note that plane waves generated in the flow region must be written in the framework
moving with the jet, which is already considered by the Doppler-shifted frequency in γi.
Thus, the phase velocity of plane waves parallel to the y-axis (travelling directly upstream)
matches the speed of sound c in the quiescent medium; waves parallel to the same axis in
the flow medium travel at speed M − c (in the isothermal case), due to the convection by
the mean flow. This will be further explored in § 5. A summary of the different expressions
for the scattering problem is shown in table 1.

2.2. The linear-stability problem – double vortex sheet
The dispersion relation for the DVS formulation as derived by Lessen et al. (1965) is
reviewed here for clarity. The governing equation is given by (2.5), whose solution is of
the form (2.6). Taking the symmetry of the problem into account, one may simplify the
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Wave Origin po( y) pi( y) χ

Quiescent χoeγiy + e−γiy τoe−γiy χo = −(1 − ESVS)/(1 + ESVS)

Flow τie±γoy eγiy + χie−γiy χi = (1 ± ESVS)/(1 ∓ ESVS)

Table 1. Summary of the different expressions for the scattering problem.

expression for the pressure field as

po( y) = A e−γoy ( y > 0.5), (2.19)

po( y) = ±A eγoy ( y < −0.5), (2.20)

and
pi( y) = eγiy ± e−γiy (|y| < 0.5), (2.21)

where the parameter A in (2.19) may be obtained by matching the pressure solutions at the
interface between the two media. The dispersion relation is then obtained by imposing that
the displacement of the vortex sheet be the same in both sides, as in Lessen et al. (1965).
These boundary conditions are the same as those imposed in the acoustic-scattering SVS,
although the consideration of problem symmetry results in different coefficients for the
pressure fields. The amplitude ratio is

A = eγi/2 ± e−γi/2

e−γo/2
, (2.22)

and the dispersion relation may be written as

1
T

(
1 − αM

ω

)2

+ γi

γo

(
eγi/2 ∓ e−γi/2

eγi/2 ± e−γi/2

)
= 0. (2.23)

The equation above may be used to obtain the frequency and wavenumber pairs of
the waves supported by the flow in the limit of a very thin shear layer. The pressure
eigenfunctions are then obtained using (2.19), (2.20) and (2.21). This formulation supports
Kelvin–Helmholtz, duct-like and guided-jet modes, as studied in Martini et al. (2019),
being the Cartesian equivalent of the formulation used in Towne et al. (2017) and Jordan
et al. (2018).

2.3. The linear-stability problem – round-jet vortex sheet
A similar problem may be analysed in cylindrical-polar coordinates, modelling the waves
supported by an axisymmetric jet with an infinitesimal shear layer. The polar problem
is inherently confined (similar to the DVS) and does not allow for an inner-scattering
formulation. However, the linearised cylindrical Navier–Stokes equations may still be used
to derive a dispersion relation for the jet, following the same process as in the DVS. This
is given by (Lessen et al. 1965; Michalke 1970; Towne et al. 2017)

1(
1 − αM

ω

)2 + 1
T

Im(γi/2)
Km(γo/2)

(
γoKm−1(γo/2)+ 2mKm(γo/2)
γiIm−1(γi/2)− 2mIm(γi/2)

)
= 0, (2.24)

where Im and Km are the modified Bessel functions of the first and second
kind, respectively. This expression assumes a normal-mode ansatz in the form
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Figure 4. Sample dispersion relations (a,b) and pressure eigenfunction (c,d) plots for neutral modes (αi = 0)
with negative phase speed for both DVS (a,c) and CVS (b,d). Results generated for M = 0.8, T = 1 and the
symmetric/axisymmetric modes of first and second radial orders. The sonic line is depicted by the black dashed
line in the dispersion relation. Pressure is plotted for modes with phase velocity c = −0.9.

q̃(x, r, θ, t) = q(r) exp(−iωt + iαx + imθ), with m the azimuthal wavenumber. As in
the DVS, the cylindrical vortex sheet (CVS) supports a range of downstream- and
upstream-travelling waves, including the guided-jet mode.

3. An overview of the guided-jet mode

The existence of the guided-jet mode has been theorised since the seminal work of Tam
& Hu (1989), who identified this mode as being a subsonic wave that travels upstream
for a limited range of frequencies. There now exists a surfeit of evidence for, not only
the existence of this wave, but its role in a range of jet-noise problems (Towne et al.
2017; Jordan et al. 2018; Edgington-Mitchell et al. 2018, 2021a; Gojon et al. 2018; Gojon,
Gutmark & Mihaescu 2019; Mancinelli et al. 2019, 2021; Bogey 2021; Nogueira et al.
2022c). This section aims to provide an overview of the general characteristics of this
mode and other duct-like modes that share some of its attributes. These modes are located
in the negative-wavenumber region of the eigenspectrum of the linearised Navier–Stokes
system in a locally parallel framework.

Figure 4 shows exemplar dispersion-relation plots associated with negative-wavenumber
modes from the DVS and CVS, generated for M = 0.8, T = 1 and symmetric/axisymmetric
(m = 0) modes, up to Strouhal number St = 2, where St = ωL

2πU and L is the relevant
characteristic length of the jet (the width in the DVS, or the diameter in the CVS).
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Figure 5. Absolute value of the pressure solution for n = 0 (a) and n = 1 (b) branches for the DVS as a
function of the phase velocity of the wave. All modes are normalised by their value at the centreline of the jet.

No discrete neutral modes are predicted by the vortex sheet (in either Cartesian or
cylindrical form) for −ω < α < 0; this region of the spectrum is associated with
acoustic waves travelling at a range of angles (Gloor, Obrist & Kleiser 2013), which
cannot be captured by the classical vortex-sheet formulation used here (Mancinelli et al.
2022). However, discrete modes are observed for α < −ω. As frequency is increased,
new solution branches appear, emerging from the continuous acoustic branch; the first
appearance of a new branch is always at a wavenumber equal to the free-stream sonic
velocity. The frequency at which the first point of each solution branch appears in the
dispersion relation is called a branch point. As the frequency is increased, the ω, α pairs
corresponding to the solution branch shift further from the sonic line. This phenomenon
repeats itself several times in the dispersion relation, with a mode appearing at the sonic
line, and moving further away from that line as frequency is increased.

Each separate solution branch in the dispersion relation represents a wave with distinct
normal/radial structure. For a wave starting at the nth branch point, n peaks will be
observed inside of the jet, as shown in figure 4. This is true for both the Cartesian case,
where peaks of equal amplitudes are observed (following a cosine-like shape), and the
cylindrical case, where the solution can be represented by a sum of Bessel functions. This
behaviour of the pressure solution in the inner region is qualitatively the same for all
frequencies along the same branch. The solution in the outer region (in the quiescent
region, in this case) is, however, quite different. Instead of displaying an oscillatory
behaviour, the wave is exponentially damped in the y (or r) direction. The rate of decay of
this wave is a function of its phase velocity; it is nearly zero for a wave at the branch point,
but it increases strongly as the streamwise wavenumber increases in magnitude. This is
exemplified in figure 5. High pressure amplitudes are observed in the outside region for
phase velocities close to −1 but the mode is progressively confined inside of the jet as the
magnitude of the phase velocity decreases.

The overall behaviour of the pressure solution of these modes is qualitatively unchanged
for increasing Mach number. However, the classification of the modes regarding their
nature and direction of propagation changes drastically at two Mach numbers (Towne
et al. 2017). For sufficiently low Mach numbers (M < 0.82 in the CVS case, for n = 1)
the resulting wave is upstream travelling for all frequencies, which is confirmed by the
slope of the dispersion relation shown in figure 4; note that, for these neutral waves,
the group velocity is given by dω/dα, such that the slope of lines in figures 4 and 6
indicates the direction of propagation. For higher subsonic Mach numbers, the slope of
the branch changes twice; now waves belonging to a single branch may either be upstream
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Figure 6. Sample dispersion relations for the DVS. Results generated for M = 0.9 (a) and M = 1.2 (b), with
T = 1. The sonic line is depicted by the black dashed line.

or downstream travelling, depending on their wavenumber. Also, a single frequency
could now support either one or three different modes with different wavenumbers at
this range of subsonic Mach numbers. The behaviour of the branch changes again for
supersonic Mach numbers, where two regions of the branch may be identified, one in
which the wave is upstream travelling, and one where it is downstream travelling. In
this regime, the upstream-travelling wave is usually called the guided-jet mode, while the
downstream-travelling part of the branch is called the duct-like mode; the point where they
meet is known as the saddle point, due to its characteristic behaviour in the eigenspectrum
(Towne et al. 2017). After the saddle point, the two solutions behave as evanescent waves in
x, with a non-zero spatial decay rate. The same overall behaviour is observed in the DVS
(dispersion relations for M = 0.9 and 1.2 are shown in figure 6). A detailed discussion
of how these modes change as functions of Mach number and frequency in the CVS
formulation can be found in Towne et al. (2017) and Jordan et al. (2018). Note that most of
these analyses (including the present one) considers a locally parallel framework to study
the characteristics of the guided-jet mode, which usually provides a good approximation
for this wave, even when shocks are present in the flow (Edgington-Mitchell et al. 2018;
Gojon et al. 2018; Mancinelli et al. 2019, 2021). This was also confirmed in Nogueira
et al. (2022b), who showed that linear-stability predictions using an experimental mean
flow that includes shocks are in line with those from a (shock-free) vortex-sheet and a
spatially periodic model. Thus, the DVS model based on a velocity profile using the ideally
expanded jet Mach number can still be used to predict some of the features of this wave for
imperfectly expanded jets, even though shock-cell modulation may still affect its overall
shape in real cases (Nogueira et al. 2022a).

The overall dynamics of the duct modes has likewise been thoroughly explored in
Towne et al. (2017), including the role of this mode in high-subsonic jet resonance. The
nature of the guided-jet mode, however, has been a constant topic of discussion recently,
considering its key role in closing several resonance mechanisms (Tam & Ahuja 1990;
Edgington-Mitchell et al. 2018; Gojon et al. 2018; Jordan et al. 2018; Mancinelli et al.
2019, 2021; Nogueira et al. 2022b,c). At this point, it is clear that this mode is not an
acoustic wave in the classical sense, as it travels at subsonic velocities in the free stream
and its radial decay does not follow the expected behaviour for acoustic waves in general.
The fact that resonance is seldom observed in jets at conditions for which this wave is not
supported suggests that the guided-jet mode somehow transmits energy upstream more
efficiently than free-stream acoustic waves. However, considering that the branch point
can be associated with an acoustic wave travelling directly upstream, there seems to be

999 A47-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.797


Guided-jet waves

a natural connection between the guided-jet mode and acoustics, but this link remains
elusive in the confined vortex-sheet (both DVS and CVS) formulations.

4. Transmission and reflection of acoustic waves in a single vortex sheet

Given that the guided-jet mode shares several, but not all, attributes of free-stream acoustic
waves, it could be expected that this mode may be the consequence of reflection and
transmission of acoustic waves. It has been shown in Towne et al. (2017) that the duct-like
mode is dictated by a total reflection, and Martini et al. (2019) showed that this is due
to a vanishing vortex-sheet impedance for large α. A natural departure point for this
study is a consideration of how planar acoustic waves are scattered by a shear layer, as
a function of their origin and angle of incidence. The same problem has been analysed by
a number of prior authors (Keller 1955; Miles 1957; Ribner 1957; Ingard 1959; Crighton
& Leppington 1974; Campos & Kobayashi 2000), but it is useful to review some of these
results here, and particularise them for the case of an upstream-travelling wave. Waves that
are generated outside of the flow are discussed first, then waves that are generated within
it. Note that many times these waves will be categorised as oscillatory or decaying; these
labels refer specifically to the behaviour of these waves in the y direction. Decaying then
refers to exponentially decaying wave shapes in y, and oscillatory refers to a oscillatory
(cosine-like) shape in that direction. These are also denoted propagative and evanescent
waves in the acoustics literature (see, for instance, Rienstra & Hirschberg 2002), but we
choose to adopt an alternative nomenclature to avoid confusion with stable/unstable waves
in the x-direction. In this section, most results will be presented for a high-subsonic (M =
0.8) jet, as some of the interesting features of the guided-jet mode (such as the presence of
two saddle points in the eigenspectrum) are observed around this Mach number. However,
the general characteristics of the phenomenon are very similar regardless of the Mach
number; when applicable, the differences between supersonic and subsonic regimes will
be mentioned in the analysis.

4.1. Waves generated in the quiescent region
Let us first consider the case of an acoustic wave generated in the quiescent region (y > 0),
where there is no flow. For an acoustic wave travelling upstream, the limits of the analysis
are −ω � α � 0; this range of wavenumbers span all possible angles of incidence from
90◦ to 180◦. As we are most interested in building a model for the guided-jet mode, the
most interesting parts of the analysis are obtained when the wavenumber of the wave is
close to sonic c = −1 (when the quiescent waves are almost aligned with the vortex sheet);
however, for completeness, the following plots will be restricted to a minimum phase
velocity c = ω/α = −10. Figure 7 shows the imaginary part of the coefficients γi,o, which
may be interpreted as the wavenumber of the waves in the y-direction. In this interval, the
waves are oscillatory in both streams (the real parts of the coefficients are zero), leading
to a purely oscillatory behaviour in both regions of the domain. As the phase velocity
tends to −1, the coefficient γo tends to zero – this is the limit in which the outer wave
travels in a direction opposite to the flow. However, even at this limit, γi is still a purely
imaginary number, leading to a transmitted wave that is oscillatory in the flow region. The
angles of propagation (calculated as θi,o = atan(α/γi,o)) are shown in the same figure. As
expected, the incidence angle ranges from θo = 180◦ (waves travelling directly towards
the shear layer, in the limit c → −∞) to θo = 90◦, (waves travelling directly upstream), as
shown schematically in figure 3. The angle of the transmitted wave has a somewhat slower
variation, starting at θi = 180◦ at c → −∞, and reaching θi ≈ 146◦ for this case.
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Figure 7. Imaginary parts of the coefficients γi,o (a,b) and their associated propagation angles (c,d) for
upstream-travelling waves generated in the quiescent region. Red dashed lines: α = −ω. Black dashed lines:
α = −ω/(√T − M). Results for M = 0.8, T = 1.

The preceding analysis of the angles of propagation elucidates the behaviour of the
transmitted wave as a function of the incidence angle, but it does not reveal anything
about the amplitude of the reflected and transmitted waves; amplitude information is only
contained in the coefficients χ and τ . The coefficients are shown in figure 8. These plots
display two noteworthy features. The first is that there is a value of incidence angle for
which all waves are transmitted and there is no reflection – the frequency–wavenumber
pairs associated with zero reflection are also a solution of the SVS dispersion relation.
Perhaps more interesting is the fact that the transmission coefficient tends to zero as c tends
to −1 (or as θo tends to 90◦); this also leads to a reflection coefficient of −1, meaning
that incident and reflected waves are in perfect phase opposition. Substitution of these
values into (2.8) and (2.9) results in a complete cancellation of the wave by the scattering.
Critically, this result demonstrates that planar waves travelling directly upstream cannot
be transmitted to the flow region, at least under the hypotheses of this simplified model.
Thus, if the waves originate from the quiescent region, there is no linear mechanism
in which a planar wave travelling parallel to the stream produces pressure disturbances
in the flow region. This result suggests that, although the guided-jet mode shares some
properties with free-stream acoustic waves, it cannot simply be interpreted as the signature
of an upstream-travelling acoustic wave interacting with the flow. The guided-jet mode is
characterised by higher-magnitude pressure fluctuations within the jet core than external
to it; the preceding analysis demonstrates this cannot arise due to the transmission of a
wave generated outside the flow.
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Figure 8. Reflection and transmission coefficients for upstream-travelling waves generated in the quiescent
region M = 0.8 and T = 1. Coefficients shown as a function of α and ω (a,b) and as a function of the quiescent
medium wave incidence angle θo (c). Red dashed lines: α = −ω. Black dashed lines: α = −ω/(√T − M).

4.2. Waves generated in the flow region
Let us now analyse a similar problem, but with waves generated in the flow region. As
in the previous case, these waves will be transmitted and reflected by the shear layer;
the difference now is that the transmitted wave may also be decaying, which could not
occur in the previous case. Figure 9 shows the values of γi,o as a function of α for all the
allowable angles of incidence in the flow region (the angles that correspond to oscillatory
waves in that region), and the respective resultant angles. Red dashed lines indicate the
wavenumbers of an acoustic wave travelling upstream in the quiescent region (α = −ω)
and black dashed lines indicate the wavenumbers associated with a wave travelling directly
upstream in the flow region (α = −ω/(√T − M)). It is clear that, between these two
lines, the imaginary part of γo is zero, leading to waves that travel at 90◦ in that part
of the domain for a range of incidence angles. As both frequency and wavenumber are
real in (2.7), this also means that γo is a real number; thus, following (2.6), this wave is
exponentially damped in y for these angles. Also, even though this wave is travelling at
sonic speeds in the flow region (see Miles 1957), it is effectively subsonic in the quiescent
region when the transmission leads to decaying waves in the quiescent medium. In the
higher limit (α = −ω), the wave travels at the speed of sound in x, but has supersonic
phase velocity in x in the flow medium.

As before, information regarding wave amplitude is contained within the reflection
and transmission coefficients. The magnitudes of the reflection coefficient for incidence
angles at which waves are oscillatory in the quiescent medium are somewhat similar
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Figure 9. Imaginary parts of the coefficients γi,o (a,b) and their associated propagation angles (c,d) for
upstream-travelling waves generated in the flow region. Red dashed lines: α = −ω. Black dashed lines:
α = −ω/(√T − M). Results for M = 0.8, T = 1.

to those observed in figure 8; outside that band of phase velocities, however, the
reflection coefficient has unit magnitude for all angles, characteristic of the total-reflection
mechanism studied in Keller (1955) and Miles (1957). At the sonic line α = −ω, the
reflection coefficient is 1, leading to a transmission coefficient of 2 – this is the last
wavenumber that leads to oscillatory waves in the quiescent region, which assumes the
shape of a planar wave going directly upstream. Note that the resulting transmitted
wave has maximum amplitude for that value of α; for α < −ω, the magnitude of
the transmission coefficient decreases rapidly. This indicates that, in addition to being
y-decaying, the amplitude of the wave in the quiescent region even at positions very close
to the shear layer decreases as the magnitude of α is increased.

A close look at figure 10 reveals that the computed transmission coefficients may be
higher than unity. This is a feature also observed in previous scattering analyses (see, for
instance, Keller 1955) and is related to the fact that the present model is not necessarily
constrained to conserve energy. In fact, amplitudes of the different waves are obtained by
applying the boundary conditions at the interface, which is the only necessary condition in
the model. This is also true for a range of linear-stability tools, including the vortex sheet.
In these models, it is usually assumed that the energy input for each physical phenomenon
may be extracted from the mean flow, which is also the case in the scattering problem.
Thus, even though energy may not be conserved in a strict sense, it is expected that it will
be conserved in a global sense. An example of how instability waves extract energy from
the mean flow in a dynamical system can be found in Nogueira & Cavalieri (2021).

An illustration of what happens close to the sonic line is shown in figure 11, for
c = ω/α = −1.01, −1 and −0.99. For supersonic disturbances (c = ω/α < −1), the
transmitted wave is oscillatory at an angle (in this case, c = −1.01 is close to 90◦).
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Figure 10. Absolute value of reflection and transmission coefficients for upstream-travelling waves generated
in the flow region for M = 0.8 and T = 1. Coefficients shown as a function of α and ω (a,b) and as a function
of the flow medium wave incidence angle θi (c).

In the flow region, a constructive/destructive interference pattern is observed, but
with a significantly stronger contribution from the incident wave. At c = −1, the
transmitted wave in the quiescent medium travels perpendicularly to the shear layer, and
a standing-wave pattern is observed in the flow region. This pattern remains basically
unchanged as c increases further, but the transmitted wave for these values of phase
velocity decays exponentially with distance from the shear layer.

To clarify the behaviour of the scattered pressure field as a function of the incidence
angle, its absolute value as a function of the phase velocity c is shown in figure 12 for
ω = 1. In this plot, c < −1 (α > −1) indicates supersonic (propagating in the quiescent
region) wavenumbers, while c > −1 (α < −1) indicates waves that are oscillatory inside
and decaying outside. It is clear that, while the pressure amplitude (and the equivalent
acoustic energy) is somewhat uniformly distributed in the entire domain for the supersonic
region, this amplitude in the flow region is considerably larger for c > −1. In fact, if this
flow region is considered as a surrogate of the inside of a planar jet, this suggests that
incidence angles associated with y-decaying behaviour in the quiescent region may lead to
the highest flow response. Keeping in mind that energy is not conserved in the scattering
problem, this is still in line with the expected physical behaviour for these systems: as the
wave is totally trapped, energy cannot escape from the flow region, leading to high flow
responses.
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Figure 11. Real part of pressure for the incident (a,c,e) and resulting fields after scattering (b,d, f ). Results are
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Guided-jet waves

4.3. Linking the scattering problem to the linear-stability problem
As shown in § 3, the guided-jet mode for the DVS exists only at select frequencies,
and for these frequencies only at subsonic phase velocities α � −ω. It presents a
decaying behaviour in the quiescent region, while being energetic and displaying a
standing-wave-like behaviour in the flow region (compare figures 5 and 12). These are all
characteristics shared by the current scattering model when considering waves originating
in the flow region, despite the absence of a second shear layer. These observations suggest
that the guided-jet mode might be a result of transmission and reflection of acoustic waves
generated within the flow, as assumed in Towne et al. (2017) and Martini et al. (2019). The
transmitted component manifests as a subsonic wave in the quiescent region, similar to the
surface waves explored in Rienstra & Hirschberg (2002). However, so far, the model does
not capture one of the most important characteristics of the guided-jet mode, which is the
finite bands of frequency where it exists as a neutral wave in the eigenspectrum. In fact,
in the scattering problem, guided-jet-like waves exist for a wide range of wavenumbers for
a given frequency, between phase velocities associated with perpendicular waves in the
quiescent and flow regions.

A stronger connection between the guided-jet mode and the current model may be
obtained by considering the standing-wave behaviour in the flow region. As shown in
figure 12, the most marked characteristic of the resulting wave as the phase velocity
becomes subsonic is the presence of a standing wave in the y-direction, with |χi| = 1.
With the magnitude of the reflection coefficient at unity, the value of the reflection
coefficient may be represented only in terms of its phase χi = eiφ , with −π � φ < π,
and the resulting pressure field in the flow region may be represented as

pi( y) = eγiy + eiφe−γiy = 2eiφ/2 cos (γiy/i − φ/2) . (4.1)

The dependence of p on the cosine of y in the above expression highlights the
standing-wave behaviour of the pressure in the flow region. Note that (4.1) is an alternative
way to write the dispersion relation presented in § 2.1.2, which is now broken into
individual pieces. This is shown in Appendix A.

To connect this behaviour to what is observed in jets requires the imposition of an
additional condition: the wavelength of the pressure standing wave in the flow region must
be matched to the width of the jet to account for the symmetry of the problem, as symmetry
or anti-symmetry can only be imposed if an integer number of half-wavelengths fits within
the bounds of the jet. Mathematically, if the jet has width h, this is equivalent to solving

cos (−γih/i − φ/2) = ± cos (−φ/2) , (4.2)

where the ± signs indicate symmetric and anti-symmetric modes, respectively. Each
symmetry has two possible solutions

γih/i = −φ + 2nπ, (4.3)

for symmetric modes and
γih/i = −φ + (2n + 1)π, (4.4)

for antisymmetric modes, where n is an integer (another solution for each symmetry may
be obtained if φ is set as zero, which will also be considered shortly). Considering φ a free
parameter, these equations may solved directly, leading to

ω = Mα ±
√

T
√
α2 + (kπ − φ)2. (4.5)

Here, the integer k replaces n in (4.3)–(4.4), with symmetric/anti-symmetric modes being
associated with even/odd values of k. The integer k must also be positive to ensure positive
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values for γi. The ± in (4.5) represents the two possible frequencies in the problem, but
only the solution associated with the positive sign leads to positive frequencies for negative
streamwise wavenumbers. Also note that the factor h was incorporated in the normalisation
of α and ω in the current expression.

Equation (4.5) is precisely the dispersion relation of a planar duct with an assumed
impedance at the wall (Rienstra & Hirschberg 2002); the limiting cases φ = −π and φ = 0
are associated with soft- ( p = 0) (impedance Z = 0) and hard-wall (∂p/∂y = 0) |Z| = ∞
boundary conditions. Any value of impedance in between these values may be represented
by the reflection phase φ, and the connection between this parameter and the impedance
of the wall Z may be obtained using the definition

Z = Zre + iZim = p
v

∣∣∣
y=0

=
(

1 + χi

1 − χi

)
(iω − iαM)

Tγi
=
(

1 + eiφ

1 − eiφ

)
(iω − iαM)

γiT
. (4.6)

The real and imaginary parts of impedance in (4.6) are also connected to the physical
behaviour of the mean transmitting sound. As described in Rienstra & Hirschberg (2002),
the imaginary component of impedance represents the inertia and elasticity of the medium
transmitting sound, while the real part is associated with resistance to the passage of
acoustic waves (or the absorption of energy by the surface). We are most interested in the
cases with total reflection (|χ | = 1), such that Z has zero real part and is purely imaginary.

Figure 13 shows the values of reflection phase and the equivalent imaginary part of the
impedance of the shear layer for M = 0.8 and T = 1 for frequencies and wavenumbers
where total reflection occurs. Note that the real part of the impedance for these waves
(associated with |χi = 1|) is always zero. The plots in figure 13 show that the reflection
phase φ varies from zero (close to the sonic line) to −π (incident angles close to 90◦).
The calculated impedance follows the expected behaviour for these reflection angles,
going from Zim → −∞ close to the sonic line to 0 as the incidence angle approaches
90◦ – again, these two limits are associated with hard- and soft-wall boundary conditions.
The behaviour of the impedance is quite different from the one observed for supersonic
phase velocities (oscillatory waves in the quiescent region), shown in figure 14. For these
frequency–wavenumber pairs, the imaginary part of the impedance is always zero, except
very close to the sonic line (represented by the red-dashed line in figure 14b), where it
becomes very high in magnitude. The real part, however, has non-trivial amplitudes in that
region. All these features are seen more clearly in figure 14(c), which shows the impedance
values for ω = 1 and phase velocities close to c = −1. Especially clear in this plot is the
fact that the real and imaginary parts of the impedance become very high in magnitude
as they approach the sonic line. These results suggest that, when total reflection occurs,
the shear layer behaves in a manner analogous to an elastic sheet that allows for pressure
transmission to the outside. This transmission leads to strong-but-evanescent (or decaying)
waves that can still carry significant amounts of energy in the upstream direction, as will
be seen shortly.

Equation (4.5) may be used to predict the frequency–wavenumber pairs for which the
standing wave in the scattering problem would fit inside of a jet of height h. This may
be done by finding the values of (ω, α) for which the phase of the reflection φ satisfies
(4.5). This solution is depicted by the red squares in figure 15, for both the symmetric and
anti-symmetric modes at M = 0.8 and M = 1.2. In the same figure, the soft- and hard-wall
duct dispersion relations are plotted, as well as the guided-jet mode solution obtained from
the DVS. It is clear that the behaviour of the mode for higher magnitudes of α is well
captured by the soft-wall duct dispersion relation, a result also observed in Towne et al.
(2017) for circular jets. However, the key new result here is that the branch point (which
must occur at the line α = −ω) of the guided-jet mode is bound by the hard-wall duct
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Figure 13. Reflection phase φ (a) and calculated imaginary part of the impedance Z at the shear layer (b) for
M = 0.8 and T = 1 and subsonic phase velocities.
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Figure 14. Real (a) and imaginary (b) parts of the impedance Z at the shear layer for M = 0.8 and T = 1 and
supersonic phase velocities. Behaviour of Z as function of phase velocity of the wave close to c = −1 (c).

dispersion relation; the intersection between this dispersion relation and the sonic line
matches the DVS branch point perfectly. This is consistent with the results of figure 13
that the shear layer acts as a wall with the hard-wall boundary condition (Zim → −∞) for
sonic phase speeds in the scattering problem (at least if only two-dimensional disturbances
are considered). It is worth noting that this trend is also similar to the one identified in
Martini et al. (2019) when studying downstream-travelling supersonic modes, suggesting
that hard-walled duct behaviour is usually found for |c| = 1 for modes of similar nature.
Finally, the comparison between results from the DVS and the dispersion relation obtained
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Figure 15. Prediction of cut-on frequency–wavenumber pairs of totally reflected acoustic waves based on the
wavelength of standing waves. Solution for symmetric (a,c) and anti-symmetric (b,d) modes for M = 0.8 (a,b)
and 1.2 (c,d), with T = 1. Dotted (..) blue lines indicate the sonic line, magenta solid (-) and dashed (- -)
lines indicate the soft- and hard-wall duct dispersion relations, black dash-dot (-.-) lines indicate the guided-jet
mode obtained from the DVS dispersion relation and red squares (�) show the frequencies obtained from the
standing-wave argument using the SVS.

from the standing-wave argument leads to a perfect match, providing final proof that, at
least in a planar jet, wave reflection and transmission underpin the structure known as the
guided-jet mode. A derivation showing the equivalence of (4.5) and (2.23) is presented in
Appendix A.

As the solution at the branch point is associated with a hard-wall boundary condition, a
closed expression for that point may be obtained from the dispersion relation. After some
algebra, the Strouhal numbers of the branch points for symmetric modes are found to be

Stbr,S = 2n

2M

√
(M + 1)2

T
− 1

, (4.7)

and, for anti-symmetric modes,

Stbr,A = 2n + 1

2M

√
(M + 1)2

T
− 1

, (4.8)

where n is a non-negative integer. One should note that no branch point is recovered if M <√
T − 1. This is to be expected, as total reflection only occurs for α = −ω and −ω � α �

−ω/(√T − M) – no value of α is within this interval for M <
√

T − 1. Figure 16 shows
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Figure 16. Branch points for the symmetric (a) and anti-symmetric (b) solutions and T = 1 as a function of
Mach number. Note that the first symmetric branch point is at zero frequency.

the behaviour of Stbr as a function of Mach number, which is in line with results from
the literature (Gojon et al. 2019). These are also the equivalent forms of the expressions
obtained by Tam & Norum (1992) for a planar jet, derived by simply replacing α = −ω in
the DVS dispersion relation.

5. Wave propagation and energy flux

The analysis in the previous section provides insight into the dynamics of the guided-jet
mode, including the location where it is generated, its spatial support and a reasoning for its
discrete frequency–wavenumber behaviour. However, it does not provide any explanation
for its direction of propagation. As mentioned in § 3, the guided-jet mode may be defined
as the upstream-travelling part of the neutral discrete waves supported by a jet at negative
wavenumbers; if one follows each branch of the dispersion relation, it is clear that,
depending on the Mach number, waves belonging to that branch could be either upstream
or downstream travelling. We now proceed to uncover why this change in direction of
propagation occurs.

Considering first the part of the wave that is transmitted to the quiescent medium, for
the range of incidence angles considered in this work, it is straightforward to see that
any transmitted wave will travel upstream (90◦ � θo � 180◦). Even for the waves with
subsonic phase speed in the axial direction, there is no mechanism by which acoustic
waves in the quiescent region can produce a downstream propagation of energy. This is not
true in the flow region. Recalling that planar waves are defined in the frame of reference
of the stream, in the frame of reference at rest, waves impinging directly on the shear
layer (θi = 180◦) must be convected downstream. On the other hand, for subsonic Mach
numbers, waves travelling perpendicular to the shear (θi = 90◦) will carry energy in the
upstream direction. The angle at which the transition between upstream and downstream
transport of energy occurs can be obtained by rewriting the velocity of the wave in the
stationary frame of reference

vx =
√

T[M − sin (π − θi)]. (5.1)

The phase velocity associated with zero streamwise velocity is then given by

c0 = M −
√

T(b−2 + 1), (5.2)
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with
b = tan (π − asin M). (5.3)

The expression above defines the minimum phase velocity of acoustic waves that carry
energy in the upstream direction; if c < c0 (or α > ω/c0), the wave will transport energy
in the downstream direction. This value of phase velocity is also the one associated
with saddle points predicted in the spatial analysis of planar ducts (similar to Rienstra
& Hirschberg 2002; Towne et al. 2017).

5.1. Energy flux
To quantify the transport of energy by these waves, a streamwise energy flux (or intensity)
Ix,i per unit z may be defined in the same fashion as in Rienstra & Hirschberg (2002),
which can be rewritten consistent with the current normalisation as

Ix,(i,o) =
∫

1
Ti,o

Re
[
(1 + M2

i,o)pi,ou∗
i,o + Mi,oui,ou∗

i,o + Mi,opi,op∗
i,o

]
dy, (5.4)

where the superscript ∗ indicates the complex conjugate, which leads to a real-valued
energy flux. Here, this flux is integrated between y = −h/2 and 0 (or half the width of
a planar jet) in the flow region, and between y = 0 and ∞ in the quiescent region. The
integration limits are defined considering the symmetry of the problem, so as to provide
a clearer connection to the planar-jet problem. It is important to note that the flux is not
a well-defined quantity in linearised acoustics (Morfey 1971), and it can only provide an
approximation of the direction energy is carried in the flow. Eigen-analysis of these flows
leads to modes (frequency–wavenumber pairs associated with different waves in the flow)
that carry energy in the upstream or downstream direction; the propagation direction in this
case is well defined by the Briggs–Bers criterion (Briggs 1964). Modes are not defined in
the scattering problem, but it may be expected that (5.4) provides a good approximation
for the energy flux associated with each frequency–wavenumber pair, at least if waves are
acoustic-like and neutrally stable.

We start the analysis with the different flux components for the M = 0.8 case. Figure 17
shows the flux obtained from (5.4) in both the quiescent (a) and flow (b) regions. As
expected, the energy flux is negative in the quiescent region as the energy is transported
in the direction of propagation of the wave; there is no mechanism by which this wave
could transport energy downstream in this region. The flux magnitude in the quiescent
region is maximum at the sonic line (α = −ω), which is due to two factors. First, the
transmission coefficient is maximum at this point, which naturally increases the flux. The
second (and more important) factor is that the wave is oscillatory at the sonic line, and
becomes progressively more decaying in the y-direction as its phase velocity decreases in
magnitude. Given the integration is performed between the shear layer and infinity, the
damping of the wave with increasing distance from the shear layer means the contribution
of these perturbations to the integral (5.4) becomes vanishingly small as the wave becomes
increasingly confined.

In the flow region, the behaviour of the flux is qualitatively different, as shown in
figure 17(b). The flux may be positive or negative depending on the angle of propagation
of the wave, with the propagation angle that produces no net-energy propagation indicated
with the dashed red line. For wavenumbers to the left of the red line (blue region of the
plot), the energy flux is negative and energy is transported in the upstream direction. As
the incidence angles steepens (or as α increases in magnitude), more and more energy is
transmitted in the upstream direction, which is in line with the expected physical behaviour
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Figure 17. Streamwise energy flux for waves travelling in the quiescent region (a) and flow region (b) as a
function of frequency and wavenumber for M = 0.8. Logarithms of the absolute value of the ratio between
the fluxes (c) and the total-energy flux (d) are also shown. Black dashed lines indicate wavenumber–frequency
pairs where total reflection occurs, and the red dashed line indicates the phase speed associated with no energy
propagation in the streamwise direction. Grey dot-dashed lines indicate regions where the flux is zero, and
magenta dots represent the dispersion relation of the guided-jet mode.

for these acoustic waves. The equivalent behaviour is observed for wavenumbers to the
right of the red line (red region), where energy is transported downstream; the wave is
convected by the flow.

Since the fluxes in the flow and quiescent regions may have different signs depending on
the propagation angle, the frequency–wavenumber space may be divided into three distinct
zones, based on contribution of each region to the overall flux and the resultant direction
of net energy propagation. This is shown as log(|Ix,o|/|Ix,i|) in figure 17(c); magenta zones
in these plots indicate that the energy flux is dominated by the quiescent region (which
only carries energy upstream), and green zones indicate that the propagation of energy
is dominated by the flow region (which may carry energy upstream or downstream). In
this plot, it is clear that the quiescent region dominates the energy flux for waves with
phase velocity close to the quiescent-region speed of sound (zone 1). The behaviour
as streamwise wavenumber becomes more negative is not monotonic, with three zero
crossings and one discontinuity. The most complex behaviour is evident in zone 2,
which exhibits the following trends with reductions in the magnitude of streamwise phase
velocity: first, the relative contribution of the quiescent region to the total flux reduces
until the first zero crossing is reached, at which point the regions contribute equally. With
further reduction, the contribution from the flow region decreases until it reaches another
minimum; although the fluxes in both regions are reducing, the reduction is more rapid
in the flow stream. This then leads to a second zero crossing, before the ratio becomes
discontinuous as the phase velocity corresponding to no energy propagation (c = c0) in
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the flow region is reached. From this point onwards, the trends are monotonic, with one
final point of equal contribution before the flow region increasingly dominates as the phase
velocity reduces in magnitude; this monotonic region is referred to as zone 3.

To produce a final explicit link between the results of the acoustic-scattering problem
and the dispersion relation of the vortex sheet, we consider the total net flux across the
entire integration region. A comparison between this total flux and the dispersion relation
of the guided-jet modes is shown in figure 17(d). The group velocity of the discrete waves
predicted by the DVS is in close agreement with the values of flux computed in the
scattering problem; whenever the slope is negative (associated with upstream-travelling
waves), the mode is found to be in the blue region of the plot, while positive-group-velocity
waves are co-located with positive (downstream) energy flux. The magnitude of the phase
velocity also follows the strength of the flux computed by the model. The comparison is
not perfect; when the flux is very close to zero the scattering problem and the DVS predict
slightly different points of zero group velocity. Nonetheless, this result not only reinforces
the link between the two models, but also provides a lens through which to understand the
behaviour of the guided-jet mode: changes in the group velocity of the guided-jet mode
can be linked to changes in the total-energy flux between the jet and its environment.

5.2. The effect of Mach number
As detailed in Towne et al. (2017), the guided-jet mode exhibits a complicated dependence
on Mach number. Additionally, one of the least intuitive aspects of this mode is that it can
transport energy upstream in a supersonic jet, despite having peak amplitudes within the
supersonic core of the flow. We now consider the effect of Mach number, with four values
chosen to span the range over which the guided-jet mode exhibits qualitative changes in
behaviour, as shown in figures 18 (for the flow-region flux) and 19 (for the total flux,
with the results of the DVS superposed). The behaviour in the quiescent region remains
qualitatively the same as a function of M and is omitted for brevity. For sufficiently low
Mach number, the phase speed associated with stationary waves in the flow (c = c0, the
dashed red line in figure 17) is located to the right of the sonic line, meaning that all
subsonic waves are upstream travelling. This is exemplified in figure 18(a) for M = 0.6.
As such, for any incident wave with an upstream component, the resultant total-energy flux
must be negative; no downstream-travelling waves can be produced in this region at this
Mach number for upstream-travelling incident waves. This is confirmed by the results of
the DVS in figure 19(a); all discrete modes are upstream travelling for this case (see also
Jordan et al. 2018). As the Mach number increases, the line ω/α = c0 crosses the sonic
line, allowing for downstream-travelling disturbances in the flow region to be produced
by the interaction of upstream-propagating waves with the shear layer for this rage of
frequencies and wavenumbers. Increasing M further decreases the slope of the ω/α = c0
line, increasing the size of the parameter space where downstream-travelling waves are
allowed, while constricting the values of ω and α that correspond to negative energy flux.
Finally, at supersonic Mach numbers, no upstream-travelling wave is allowed within the
flow, and all waves in the flow will transfer energy in the downstream direction. This
is an entirely expected result, as no acoustic perturbation can propagate in the upstream
direction (in a frame of reference at rest) in a supersonic flow.

Considering the propagation of waves in the flow region offers some insight into the
behaviour of the guided-jet mode, particularly in the region 0.8 � M < 1. The total flux,
as presented in figure 19 can be examined to provide insight into the broad role of the
guided-jet mode. The grey lines in this figure indicate regions where the fluxes in both
regions are equal in magnitude and opposite in direction. These indicate regions where
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Figure 18. Streamwise energy flux for waves travelling in the flow region, integrated between y = −h/2 and 0
as a function of frequency and wavenumber for M = 0.6 (a), M = 0.7 (b), M = 0.9 (c) and M = 1.2 (d). Black
dashed lines indicate the region where total reflection occurs, and the red dashed line indicates the phase speed
associated with no energy propagation in the streamwise direction.

the total energy of the wave does not travel in either direction – or the energy flux in the
quiescent region is perfectly counterbalanced by the one in the flow region. Inspection of
figure 19 shows that these grey lines are very close to the position of the saddle points of
the guided-jet and duct-like modes, but they do not match perfectly. The reason for this
slight mismatch is not clear, but one possibility is that the definition of energy flux given
in Rienstra & Hirschberg (2002) (which considers acoustic homentropic disturbances and
uniform flow) may not be the most appropriate choice for the description of the present
phenomenon (Morfey 1971; Campos & Kobayashi 2013). Still, the energy fluxes provide
a very good first approximation of the saddle points and the direction of propagation of
the different waves in the flow, indicating that the upstream energy flux of the quiescent
medium is a key ingredient of the physics of this mode.

The flux analysis provides the final piece of the guided-jet mode puzzle. It shows that the
direction of propagation of the discrete waves with negative phase velocity from the spatial
Navier–Stokes spectrum can be approximated by their energy flux, which can be defined
in the context of an acoustic-scattering problem. This is the key to understanding why the
modes close to the acoustic line propagate in the upstream direction, even in supersonic
jets; due to the large outreach and high transmission coefficient of the transmitted wave in
the quiescent medium, its energy flux is so strong for those wavenumbers that it overcomes
the flux magnitude of the wave inside of the jet, which carries energy downstream. It
also explains the presence of different neutral saddle points in the spectrum, which are
associated with a change in flux direction; a change in flux also leads to a change in group
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Figure 19. Total-energy flux as a function of frequency and wavenumber for M = 0.6 (a), M = 0.7 (b),
M = 0.9 (c) and M = 1.2 (d). Black dashed lines indicate the frequency and wavenumber pairs where total
reflection occurs, and the red dashed line indicates the phase speed associated with no energy propagation
in the streamwise direction in the flow region. Grey dash-dot lines indicate the frequency/wavenumber pairs
where the flux is zero. The magenta dots indicate the frequencies and wavenumbers of the guided-jet mode.

velocity of the wave. Finally, the analysis of the flux also explains the behaviour of the
guided-jet and duct modes as a function of Mach number, as the flux in the flow region
changes considerably with that parameter.

6. Three-dimensional disturbances

6.1. Oblique waves
The previous sections connected the overall behaviour of the guided-jet mode with the
acoustic-scattering problem, shedding light on several characteristics of this mode. While
most of these conclusions may be naturally extended to the three-dimensional case, some
differences may be expected. A key difference is the position of the branch points and
the frequencies and wavenumbers where an acoustic wave can be oscillatory in the media.
The simplest way to consider three-dimensionality is to introduce a wavenumber in the
z direction, β, so that the normal-mode ansatz becomes q̃(x, y, z, t) = q( y) exp(−iωt +
iαx + iβz), where q is any of the flow variables introduced in § 2 or the z-velocity. The
final equation for pressure may be obtained using the three-dimensional linearised Euler
equations in the same fashion as in the two-dimensional case, and is given by

[
d

dy2 − (α2 + β2)+ (ω − αMi,o)
2

Ti,o

]
pi,o = 0. (6.1)
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Figure 20. Imaginary part of γo (a) and γi (b) and the respective absolute value of reflection (c) and
transmission coefficients (d) for M = 0.8, T = 1 and β = 5. Region between the two red dashed lines indicates
where total reflection occurs in the β = 0 case, while the region between the two black dot-dashed lines
indicates where total reflection occurs in the β = 5 case. Cyan solid lines indicate the dispersion relation
obtained from the planar vortex sheet for β = 5.

Thus, the introduction of a z-wavenumber leads to changes in the definition of the resulting
wavenumber in y, as γi,o now take the form

γi,o = i

√
(ω − αMi,o)2

Ti,o
− (α2 + β2). (6.2)

The equation above tells us that, for oblique waves (β /= 0), the wavenumbers α in which
waves may be oscillatory (defined as the frequencies and wavenumbers at which γi,o are
purely imaginary numbers) in either media are not the same as in the two-dimensional
case. This is shown in figure 20. For disturbances travelling in the quiescent region, the
range of frequencies and wavenumbers at which the transmitted waves are oscillatory
shrinks considerably, and the limiting point for which plane waves travelling directly
upstream are supported in that region now fall in the parabola α2 + β2 = ω2, and a
similar phenomenon occurs for disturbances travelling in the flow region. This also impacts
the reflection and transmission coefficients resulting from the scattering problem, also
shown in figure 20 (note that results of these coefficients for non-oscillatory waves in the
fast region should be disregarded). The behaviour of both coefficients is quite similar
to what has been observed in the two-dimensional case, but the region where total
reflection occurs has a significant change in its shape, going from a perfect triangle to
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a deformed/curved one. This also changes the frequencies and wavenumbers at which
the guided-jet mode is expected to be present, especially its branch point, which is now
observed to occur at supersonic streamwise wavenumbers. Interestingly, the inclusion of
a wavenumber in z also precludes the support of a guided-jet mode under the curve
(ω − αM)2/T − (α2 + β2) = 0, as waves are not oscillatory in the fast-stream region.
This is confirmed in the vortex-sheet calculations including β, also shown in figure 20.
The overall behaviour of the modes is very similar to the two-dimensional case, but the
first branch is obtained for (ω, α) = (β, 0), instead of (0, 0). Also, the first symmetric
mode does not have an upstream-travelling region close to the branch point, and only the
soft-duct-like behaviour is recovered for that mode. Modes of higher order follow their
usual behaviour, with modes varying from upstream to downstream travelling depending
on their frequency and wavenumber.

6.2. Cylindrical waves
The cylindrical-polar formulation does not lend itself to an inner-scattering problem in a
straightforward manner, so the present results cannot be directly extended to round jets.
However, some of the features identified in the planar-jet case can also be observed in the
cylindrical one. This is seen in figure 21, where the hard- and soft-duct dispersion relations
are overlaid with the guided-jet mode one for M = 0.8, 1.2 and m = 0, 1. As expected (see
Towne et al. 2017), the dispersion relation obtained from the CVS matches the soft-duct
one for higher frequencies – this is the region where the wave behaves like a confined duct
mode. For m = 0, the branch point is bounded by the hard-duct dispersion relation for
both Mach numbers, as in the planar-jet case. However, the comparison deteriorates for
m = 1; while each branch is still contained between the dispersion relations of hard- and
soft-wall ducts, the branch point occurs at a significantly higher frequency than predicted
by the hard-duct modes. These results are not new. Both in Tam & Hu (1989) and Tam
& Ahuja (1990), the authors recover the branch points (or cutoff points) directly from the
cylindrical dispersion relation. While the connection with duct modes is not made in these
works, it is clear that the reduced dispersion relations obtained for m = 0 modes match
perfectly that of the hard-duct modes, namely J′

0(γi/2) = 0 (Rienstra & Hirschberg 2002).
For m > 0, however, these branch points are predicted by the expression

2mIm

(γi

2

)
+ γi

2
T

(1 + M)2

[
Im+1

(γi

2

)
+ Im−1

(γi

2

)]
= 0, (6.3)

with γi evaluated at ω = −α. The first and second terms of the sum are associated with
the soft- and hard-duct dispersion relations, respectively; since both are non-zero for m >

0, the branch point may be interpreted as connected to the behaviour of a duct with a
complex impedance between −i∞ and 0 for the helical case. This behaviour could also
be reminiscent of the behaviour of the guided-jet mode for oblique disturbances, which
displays saddle points significantly closer to the sonic line compared with the planar case.

7. The guided-jet modes as a necessary condition for resonance

In the previous sections, the most fundamental characteristics of the guided-jet mode
were linked to the behaviour of acoustic waves predicted by the Navier–Stokes equations.
In summary, it is now apparent that the guided-jet mode is a manifestation of
total-internal-reflection mechanisms, arising from the shear layer behaving like a hard
duct. After total reflection, only discrete streamwise wavenumbers may be supported by
the flow, with these wavenumbers dictated by the fact that the standing wave formed inside
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Figure 21. Solution for m = 0 (a,c) and m = 1 (b,d) modes for M = 0.8 (a,b) and 1.2 (c,d) and T = 1. Dotted
(..) blue lines indicate the sonic line, magenta solid (-) and dashed (- -) lines indicate the soft- and hard-wall duct
dispersion relations, black dash-dot (-.-) lines indicate the guided-jet mode obtained from the DVS dispersion
relation. Red circles indicate predictions of the branch points from Tam & Ahuja (1990).

of the jet must fit between the two shear layers. Close to the sonic line, the transmission
of this mode to the outside is maximum, leading to a net-energy flux directed upstream,
which dictates the direction of propagation of this mode in the eigenspectrum, providing
a clear connection to the more well-known soft-duct mode identified in Towne et al.
(2017). However, these results do not tell us why the guided-jet mode is important for
resonance. This section aims to provide some insight on this phenomenon, by considering
two possible explanations.

First, we recapitulate what is known about the role of the guided-jet mode in screeching
and impinging jets. Since the first clear evidence for this wave in screeching jets was
provided in Gojon et al. (2018), to the best of our knowledge there have been no published
examples of screech occurring at conditions where the guided-jet mode is not predicted to
exist, and a plethora of examples of screech occurring when it does (Edgington-Mitchell
et al. 2018; Gojon et al. 2019; Li et al. 2020, 2021; Sheng et al. 2022; Karnam, Saleem
& Gutmark 2023). For impinging jets, the evidence is more mixed, with many, but
not all, tones falling within the expected bands of the guided-jet mode (Gojon et al.
2016; Bogey & Gojon 2017; Jaunet et al. 2019; Liu et al. 2021; Li et al. 2023; Varé
& Bogey 2023). Evidently, jet screech cannot occur without the guided-jet mode, while
impingement tones are frequently, but not always, supported by the guided-jet mode. Why
does screech require the guided jet mode, while the resonance of an impinging jet does
not? In Edgington-Mitchell & Nogueira (2023) and other works, we have suggested that
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the guided-jet mode must be somehow more ‘efficient’ at carrying energy upstream in the
resonance cycle, essentially increasing one parameter of the gain equation first proposed
by Powell (1953). As impingement tones are typically much stronger than screech tones,
we had previously argued that the upstream component of resonance could therefore afford
a wider range of efficiencies, permitting either a free-stream acoustic wave or our theorised
more efficient guided-jet mode. We now proffer a different explanation.

In screeching jets, we now believe it is clear that the triadic-interaction mechanism
proposed by Tam & Tanna (1982) is responsible for the conversion of some fraction of the
downstream-propagating energy into upstream-propagating energy; extensive empirical
evidence is provided for this argument in Edgington-Mitchell et al. (2022). As this
interaction is occurring between the Kelvin–Helmholtz wavepacket and the shocks, and
the shocks are bounded by the shear layer of the jet (more specifically the sonic line),
it follows that the upstream-propagating wave can only be produced inside the shear
layer of the jet. Any wave produced inside the jet will inevitably be subject to reflection
and transmission at the jet boundaries, and as already discussed, what is the guided-jet
mode but a representation of an acoustic wave generated inside of the jet with particular
transmission and reflection characteristics? Critically, however, as detailed in § 4, the
required total-reflection mechanisms can only occur for particular wavenumber–frequency
combinations, which correspond to the wavenumber–frequency ranges over which the
guided-jet mode exists in the vortex-sheet dispersion relation. At these conditions, the
wave is transmitted to the outside of the jet, displaying an exponential decay rate with
increasing radius that is dependent on how close the phase velocity is to the sonic line.
This transmitted component travels upstream and closes the feedback loop. We can thus
state:

What has been termed the guided-jet mode is an acoustic wave generated within the flow, at
an angle and frequency such that the wave propagates upstream with a slow radial decay. In a
screeching jet, energy from the interaction of the downstream-propagating Kelvin–Helmholtz
wavepacket and the quasi-stationary shock cells is redistributed in the form of pressure
fluctuations. These fluctuations are generated inside the jet, and, if the aforementioned angle and
frequency conditions are satisfied, they propagate strongly in the upstream direction due to a high
degree of transmission through the shear layer, and lead to high flow responses inside the jet. This
suggests that screech can only occur if some region of the flow is able to support the guided-jet
mode.

We distinguish the mechanism by which resonance is closed from the mechanism for
the generation of far-field sound, which may instead be associated with shock-leakage
processes at the boundary of the jet as per Suzuki & Lele (2003), Shariff & Manning
(2013) and Edgington-Mitchell et al. (2021b); the relative contribution of each remains
an open question. We also note that the fact that in the vortex-sheet dispersion relation
the guided-jet mode appears as a discrete wave is essential to its role as a component in
describing the resonance process as an absolute instability (Nogueira et al. 2022c). As an
additional note, we wish to emphasise the degree to which the aforementioned conclusions
have been suggested implicitly or explicitly in the various works of Professor C. Tam. From
the identification of triadic interaction as the mechanism of energy transfer (Tam & Tanna
1982; Tam, Seiner & Yu 1986), to the link between the structure of the guided-jet mode and
the jet behaving as an acoustic waveguide (Tam & Hu 1989; Tam & Ahuja 1990; Tam &
Norum 1992), much of what we show here has been predicted, suggested or demonstrated
in another form in Professor Tam’s body of work, and we are indebted to him for this.

Why then, is the guided-jet mode always necessary for jet screech, but appears to
only sometimes govern the resonance of impinging jets? The mechanism by which the
downstream-propagating wavepacket transfers energy to the upstream-propagating wave
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is quite different in the case of impingement on a surface or edge. A consideration
of the extant literature on jet impingement tones reveals significant variation in the
identified sound source mechanism and location. Considering imperfectly expanded jets,
Henderson et al. (2005) identified fluctuations of the wall jet at a radial distance of 1.3D
from the centreline impingement point as the source of upstream-propagating waves,
and Weightman et al. (2017) observed a transient shocklet at this distance producing
a sharp upstream-propagating wavefront. In contrast, in the nearly ideally expanded
numerical simulations of Bogey & Gojon (2017) and Varé & Bogey (2023), the effective
source appears to be at the impingement point itself, i.e. contained within the core
of the jet. This then would explain why in some configurations the guided-jet mode
appears to dictate impingement tones, while in others it does not; the conversion of
downstream-propagating energy into the upstream may occur outside the jet (which
is especially relevant in shock-dominated impingement phenomena), in which case the
guided-jet mode is irrelevant, or it may occur within the core of the jet, in which case it is
a requirement.

8. Conclusions

In the present work, the behaviour of discrete modes with negative phase velocity (namely
the guided-jet mode and duct-like modes) in the linearised Navier–Stokes spectrum
was analysed by connecting it with an acoustic-scattering problem. Recent works have
highlighted the importance of these modes in a myriad of resonance phenomena including
screech (Edgington-Mitchell et al. 2018; Gojon et al. 2018; Mancinelli et al. 2019;
Nogueira et al. 2022c), impingement/edge tones (Tam & Ahuja 1990; Tam & Norum
1992; Jordan et al. 2018) and high-subsonic jet resonance (Towne et al. 2017). However,
the nature of this mode and a clear explanation for its behaviour as a function of frequency
have not been expounded.

Analysis of the scattering problem with waves originating in the quiescent region reveals
that there is no mechanism through which a planar wave travelling directly upstream
can be transmitted to the flow region, precluding the generation of patterns such as that
associated with the guided-jet mode. On the other hand, waves generated in the flow
region can experience total reflection for a range of frequencies and wavenumbers, and
the range of frequency and wavenumber pairs over which this occurs matches the range
for which discrete modes are observed in the planar-jet vortex sheet. In this range, the
phase of the reflection determines the wavelength of the standing wave formed in the
flow region. Even though the reflection coefficient is unitary in this range, maximum
transmission is observed when disturbances are sonic (despite the fact that disturbances
in the quiescent region are decaying, as highlighted by Keller 1955); the transmission
coefficient then rapidly decreases as this wave becomes more and more subsonic, leading
to mode structures confined to the flow region, which assume the shape of a standing wave
in y. By imposing a requirement that this structure must match with the width of a planar
jet, the dispersion relation of the discrete modes is recovered perfectly.

To obtain the direction of propagation of the resulting wave, the energy flux in the
streamwise direction was calculated and compared with the dispersion relation obtained
from the DVS model. It was shown that, at frequency–wavenumber pairs close to the
sonic line, the energy flux is dominated by the quiescent-region direction (a consequence
of high transmission values in this regime), with increases in wavenumber producing
a concomitant increase in the flux associated with the flow region. Depending on the
Mach number, both upstream- and downstream-travelling waves are obtained from the
flux calculation, which closely match the behaviour of the group velocity of the discrete
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modes from the vortex-sheet model. The frequency–wavenumber pairs for which the net
flux over both regions is zero closely approximate the saddle points from the vortex-sheet
model.

These results altogether suggest that the discrete modes in the negative part of the
Navier–Stokes spectrum are of acoustic origin, with the particularity that disturbances
are totally reflected (or trapped) inside of the jet. For high wavenumbers, this trapped
wave has no support in the quiescent region, with the jet behaving almost like a soft
duct. However, for wavenumbers close to the sonic line, the amplitude of the transmission
is strong, but the wave is nonetheless evanescent/decaying in y. Even though it decays
exponentially in y, this wave still carries significant amounts of energy in the upstream
direction, critical to the function of the guided-jet mode in closing resonance. The current
results build upon the work of Martini et al. (2019) in unifying the different eigenvalues in
the negative-wavenumber half-plane previously studied by Tam & Hu (1989) and Towne
et al. (2017) under a single label: acoustic duct-like modes. While they seem to share
the same nature, details such as direction of propagation, transmission rate and spatial
support are defined by their streamwise wavenumber and the other physical parameters of
the problem, such as Mach number and temperature ratio.

As a way to introduce some three-dimensionality to the problem, oblique waves were
also considered. The analysis shows that the regions where one may expect to find discrete
modes in the spectrum is deformed for non-zero z-wavenumbers; in fact, the branch point
occurs for subsonic streamwise wavenumber, and the flow displays a region in which no
discrete mode may be found. Despite the simplicity of the model, this result suggests
that carefully breaking the z symmetry (by means of chevrons or vortex generators, as
in Samimy et al. 1998) in high-aspect-ratio rectangular jets may mitigate resonance, as
neutral upstream-travelling discrete modes are not predicted in these cases. Finally, the
round-jet problem is briefly analysed in light of the results obtained in the planar problem.
Overall, the trends are very similar, with differences observed mainly for azimuthal modes
m > 1. For these values of m, the frequency–wavenumber pairs at the branch point do
not fall on the hard-duct dispersion relation, which is also predicted directly in the CVS
problem. In fact, these pairs could be associated with a duct with an impedance-wall
boundary condition that is dependent on the azimuthal wavenumber analysed.

Finally, an explanation is proffered for why resonance in screeching jets always seems to
depend on the existence of the guided-jet mode, while in impinging jets the dependence is
less clear. The guided-jet mode is simply a representation of the reflection and transmission
of pressure fluctuations generated within the bounds of the jet, fluctuations that can only
transmit energy upstream for certain combinations of frequency and wavenumber. In
screeching jets, the current understanding suggests that the pressure fluctuations relevant to
resonance are always generated in the core of the jet, thus screech requires the guided-jet
mode, i.e. the duct-like acoustic mode, to be sustained. Impinging jets can, depending
on the operating condition, generate the upstream-propagating pressure fluctuation either
inside or outside the jet, and thus only require the guided-jet mode to be supported for
resonance in some configurations.

Funding. This work was sponsored by both the Australian Research Council through the Discovery Project
scheme (DP220103873) and the Office of Naval Research (ONR), under grant number #N00014-22-1-2503.
The views and conclusions contained herein are those of the authors only and should not be interpreted as
representing those of ONR, the U.S. Navy or the U.S. Government.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Petrônio A.S. Nogueira https://orcid.org/0000-0001-7831-8121;

999 A47-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-7831-8121
https://orcid.org/0000-0001-7831-8121
https://doi.org/10.1017/jfm.2024.797


Guided-jet waves

André V.G. Cavalieri https://orcid.org/0000-0003-4283-0232;
Eduardo Martini https://orcid.org/0000-0002-3144-5702;
Aaron Towne https://orcid.org/0000-0002-7315-5375;
Peter Jordan https://orcid.org/0000-0001-8576-5587;
Daniel Edgington-Mitchell https://orcid.org/0000-0001-9032-492X.

Appendix A. Equivalence between the standing-wave argument and the DVS
dispersion relation

It has been shown in § 4.3 that the scattering problem recovers the same neutral modes
from the DVS dispersion relation if the standing wave resulting from total reflection is
forced to fit inside the width of a jet. In this section we provide mathematical proof of this
result. Starting from (4.2) one may write, using trigonometric identities and angle addition
theorems,

cos (2γih/i + φ) = cosφ. (A1)

Applying angle addition formulae twice, after some manipulation, leads to

cos2 (γih/i)− cos (γih/i) sin (γih/i) tanφ = 1, (A2)

which results in
tan (γih/i) = − tanφ. (A3)

In order to recover (2.23), all terms should be expressed as a function of γi/2. Using the
angle addition theorem again leads to

tan2
(
γih
2i

)
− 2

tanφ
tan

(
γih
2i

)
− 1 = 0. (A4)

Solving for tan(γih/2i) leads to

tan
(
γih
2i

)
= 1 ±

√
1 + tan2 φ

tanφ
. (A5)

For any real angle ψ , the tangent may be written as

tanψ = 1
i

(
eiψ − e−iψ

eiψ + e−iψ

)
. (A6)

Using the above expression in conjunction with (2.18) allows us to write tanφ as

tanφ = 1
i

(
eiφ − e−iφ

eiφ + e−iφ

)
= 1

i

(
2ESVS

1 + E2
SVS

)
. (A7)

Replacing (A7) into (A5), after some manipulation, leads to

tan
(
γih
2i

)
= iE±1

SVS. (A8)

Finally, using (A6) again results in

ESVS +
(

eγih/2 − e−γih/2

eγih/2 + e−γih/2

)±1

= ESVS +
(

eγih/2 ∓ e−γih/2

eγih/2 ± e−γih/2

)
= 0, (A9)
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which, after replacing the expression for ESVS (2.12), leads to

(
1 − αM

ω

)2 1
T
γo

γi
+
(

eγih/2 ∓ e−γih/2

eγih/2 ± e−γih/2

)
= 0, (A10)

or

1
T

(
1 − αM

ω

)2

+ γi

γo

(
eγih/2 ∓ e−γih/2

eγih/2 ± e−γih/2

)
= 0. (A11)

Expression (A11) is identical to the DVS dispersion relation (2.23) once the frequency
and wavenumbers are scaled by the jet width h (the natural scaling for the DVS), showing
that the equivalence obtained in figure 15 is exact.
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