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Abstract

This work aims to provide a more complete understanding of the resonance mech-
anisms that occur in turbulent jets at high subsonic Mach number, as shown
by Towne et al. (J. Fluid Mech., vol. 825, 2017, pp. 1113–1152). Resonance was
suggested by that study to exist between upstream- and downstream-travelling
guided waves. Five possible resonance mechanisms were postulated, each involv-
ing different families of guided waves that reflect in the nozzle exit plane and at
a number of downstream turning points. However, that study did not identify
which of the five resonance mechanisms underpin the observed spectral peaks.
In this work, the waves underpinning resonance are identified via a biorthogonal
projection of Large Eddy Simulation data on eigenbases provided by a locally
parallel linear stability analysis. Two of the five scenarios postulated by Towne et
al. are thus confirmed to exist in the turbulent jet. The reflection-coefficients in
the nozzle exit and turning-point planes are, furthermore, identified. Such infor-
mation is required as input for simplified resonance-modelling strategies such as
developed in Jordan et al. (J. Fluid Mech., vol. 853, 2018, pp. 333–358) for jet-
edge resonance, and in Mancinelli et al. (Exp. Fluids, vol. 60, 2019, pp. 1–9) for
supersonic screech.
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1 Introduction

The mechanisms underpinning the oscillator behaviour in fluid-mechanics problems
can be classified as short- or long-range. Short-ranged mechanisms are typically asso-
ciated with absolute instability [1], observed for instance in cold wakes [2] and hot jets
[3]. Long-range mechanisms involve a pair of upstream- and downstream-travelling
waves that interact at two end locations, where they are reflected into one another.
If the wave amplitude increases over the cycle between two reflections, a long-range-
resonant instability occurs. If the amplitude is unchanged, a neutrally stable global
mode is created, which, in turbulent flows, can be driven by the background turbu-
lence. Such mechanisms have been observed in many different flows, such as when jets
interact with edges [4, 5], in cavity flows [6, 7], impinging jets [8, 9], shock-containing
jets [10, 11], and high subsonic jets [12, 13]. The waves underpinning resonance can
frequently be modelled using linear mean-flow analysis [14–17].

In this study, we revisit the tones found in a turbulent jet with a Mach num-
ber of M = 0.9, postulated by Towne et al. [12] to be driven by waves resonating
between the nozzle exit and downstream turning points. Turning points represent
spatial locations where the upstream- and downstream-travelling waves can inter-
act and exchange energy through reflection and transmission processes. The turning
point is a downstream location characterized by the presence of a saddle point
where a pair of upstream- and downstream-travelling waves share the same frequency,
wavenumber and phase velocity. Upstream of this point, the downstream travelling
wave is propagating, while becoming evanescent after it. As evanescent waves do
not propagate energy, the energy of the incident wave is typically transferred to an
upstream-travelling reflected wave [18].

The waves in question are guided waves of positive and negative generalised group
velocities, denoted as k+ and k− respectively, as per Briggs [19] and Bers [20]. These
guided waves are neutrally stable at the resonance frequencies [12, 21] and can be
described using locally parallel linear stability analysis. The waves consist of one
downstream-travelling wave: the k+ duct-like mode, denoted here as k+T , and two
upstream-travelling waves: the k− duct-like mode and k− discrete shear-layer mode,
denoted here as k−d and k−p respectively. Additionally, the Kelvin-Helmhotz (hereafter

K-H) mode [14], denoted here as k+KH , which characterizes the convective instability
of the jet, is also considered. However, the K-H mode is not the primary focus of our
study as it does not contribute to the resonance mechanisms under investigation.

Figure 1 shows a schematic depiction of reflections at the nozzle exit plane and
at a downstream turning-point plane, the spatial position of which depends on the
frequency. At resonant frequencies, the k+ and k− guided waves propagate between
the nozzle exit and turning point, exchanging energy through reflections at these end
locations. At the turning point, the incident propagative k+T wave can be reflected
as a propagative wave (k−d or k−p ) and transmitted as an evanescent wave. The
reflected wave then propagates upstream until it reaches the nozzle exit plane where
it is reflected as a k+T wave that travels downstream until the turning point, hence
completing the resonance loop.

Depending on the frequency, the k+T wave can form a turning point with either of
the k− waves, resulting in two possible resonance mechanisms. These two resonance
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Fig. 1: Sketch of waves interacting at the resonance end locations. At the nozzle exit plane:
(←−, blue) incident k−

d
wave; (←−, red) incident k−p wave; (←−, grey) transmitted waves;

(−→, dashed yellow) reflected k+
T

wave; (−→, purple) k+
KH

wave. At the turning point plane:

(−→, yellow) incident k+T wave; (−→, grey) transmitted wave; (←−, dashed blue) reflected

k−
d

wave; (←−, dashed red) reflected k−p wave.

mechanisms are among five possible mechanisms that potentially exist in the flow, as
proposed by Towne et al. [12]. While there were indications and speculation in that
work regarding the active resonance mechanisms, the lack of reflection-coefficient data
prevented a definitive conclusion. Consequently, it remained unclear which mecha-
nisms were actually active in these turbulent jet flows and why. In this study, we
address this question and provide a conclusive answer. By thoroughly examining the
time-resolved turbulent jet data, we quantitatively evaluate the presence of these
resonance mechanisms within the specified tonal frequency range.

We thus revisit the turbulent jet data with the goal of: (1) educing the waves present
in the data; (2) establishing which of these underpin resonance; (3) computing the
reflection-coefficients associated with energy exchange at the resonance end locations.

This third objective is crucial for simplified resonance models, such as proposed by
Jordan et al. [5], Mancinelli et al. [22, 23], where reflection coefficients serve as essential
components. In such models, the conditions required for resonance to occur for a pair
of k+ and k− waves involve both magnitude and phase constraints, respectively,

e∆αiL =| R1R2 |, (1)

∆αrL+ φ = 2nπ, (2)

where R1 and R2 are the complex reflection coefficients at the resonance end locations,
∆α = ∆αr+i∆αi represents the difference between the complex axial wavenumbers for
k+ and k− waves, i is the imaginary unit, φ is the argument of R1R2, L is the distance
between the two resonance end locations, and n is an integer. In the existing models,
the magnitudes and phases of reflection coefficients, R1 and R2, are unknown and thus
amount to parameters with which the models may tuned to match data, rather than
being informed based on flow physics. The physical representivity of such models is
enhanced by the inclusion of data- or flow-physics-based reflection coefficients.
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The paper is organised as follows. Section 2 presents the Large Eddy Simulation
(LES) database which is used. Local linear stability analysis is performed on the
jet mean flow in section 3.1. The LES data is then decomposed using bi-orthogonal
projections on the stability eigenbasis in section 3.2. It is shown how, at resonant
conditions, the LES data can be represented by a rank-4 model. This is the basis for the
calculation of reflection-coefficients at the resonance end locations. Section 4 presents
the reflection-coefficient eduction methodology and section 5 presents the final results
for a range of resonant frequencies.

2 LES database

We analyse LES data for an isothermal jet with a Mach number of M = 0.9 from
Brès et al. [24]. The jet is issued from a convergent-straight nozzle at a diameter-
based Reynolds number of 1×106. The nozzle-exit boundary layers are fully turbulent.
For this jet flow, the guided waves have been observed in the potential-core region
and associated discrete spectral tones have been detected in the near-nozzle region
[12, 13, 25].

The data, described in Brès et al. [24], covers a cylindrical grid with length 30D
and radius 6D, where D is the jet diameter. It contains 10000 timesteps over 2000
acoustic time units (tc/D, where c is sound speed), sampled every 0.2 acoustic time
units. The cylindrical coordinate system has its origin centered on the jet axis in the
nozzle plane.

LES fluctuation time-series data is represented by the vector qLES =
[

ρ ux ur uθ T
]⊤

, where ⊤ represents the transpose, ρ the density, ux the streamwise
velocity, ur the radial velocity, uθ the azimuthal velocity and T the temperature. This
vector is decomposed into Fourier modes,

qLES(x, r, θ, t) =
∑

ω

∑

m

q̂LES(x, r,m, ω) eimθeiωt, (3)

where x is the axial coordinate, r is the radial coordinate, θ is azimuthal coordi-
nate, m is the azimuthal wavenumber and ω is the angular frequency of fluctuation
quantities. The time-series is split into 153 realisations, where each realisation con-
tains 256 snapshots and an overlap of 75%. This leads to the frequency resolution of
∆St = ∆fD/Uj = 0.0217, where Strouhal number, St = fD/Uj, f is the frequency
of fluctuations and Uj is the jet velocity.

3 Decomposing turbulent jet data into the
resonating modes

To identify the waves that dominate the jet dynamics at the resonant frequencies,
the LES fluctuation data at a given streamwise station is projected onto eigenmodes
obtained from a locally parallel linear stability analysis that is described in the
following section.
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Fig. 2: Streamwise velocity mean profile at x/D = 0 for M = 0.9 jet: Fitted mean flow vs
mean flow extracted from LES

3.1 Local Stability Analysis

Stability analysis is performed around the LES turbulent mean flow. The radial profile
of the LES mean flow is fitted with an analytical profile [26]

Ux(r) =
Uj

2

[

1 + tanh

{

b

(

0.5

r/D
−

r/D

0.5

)}]

, (4)

where b is the fitting parameter. The fitting process is performed to ensure a smooth
flow profile so as to avoid any spurious or unphysical modes during stability analy-
sis. This is done so as to prevent errors that may arise in using the LES mean-flow
data: as this is stored on a different grid to that used for the stability analysis, it must
be interpolated on to the Chebyshev grid necessary for the pseudo-spectral approach
used for the stability analysis; such interpolation can lead to error, particularly fol-
lowing application of the differentiation operators as occurs in the eigenvalue problem
described in what follows.

The radial profiles of the fitted mean flow and the mean flow extracted from LES
at x/D = 0 are shown in figure 2. Similarly, fitted mean flow profiles were obtained
at other streamwise locations to perform the corresponding local stability analysis.

The normal-mode ansatz for the fluctuation field is given as,

q′(x, r, θ, t) = q̂(r)eiαxeimθe−iωt, (5)

where q′ =
[

ρ′ u′
x u′

r u′
θ T ′

]⊤
is the vector describing the fluctuating quantities,

q̂=
[

ρ̂ ûx ûr ûθ T̂
]⊤

gives the radial structure and α is the complex streamwise
wavenumber. α contains both the phase-speed information (ω/αr, where αr is the real
part of α) and the growth-rate information (αi, the imaginary part of α) .

This formulation allows the linearised N-S equations to be compactly written as,

Mq̂ = iαq̂, (6)
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with the spatial support, q̂(r), and streamwise wavenumber, α, of the waves obtained
via this eigenvalue problem.

The eigenfunctions, q̂(r), are then normalised such that each mode has: (1) 0o

phase angle for the streamwise velocity fluctuation at the jet axis (6 ûx = 0o at r = 0);
and (2) unit Energy norm, E [27], defined as

E =

∫ ∞

0

[

T

κρM2
| ρ̂ |2 +ρ | ûx |2 +ρ | ûr |2 +ρ | ûθ |2 +

ρ

κ(κ− 1)TM2
| T̂ |2

]

r dr,

(7)
where κ = 1.4 is the specific heat ratio, T is the mean temperature and ρ is the mean
density.

In the present work, we focus on the azimuthal mode m = 0 and the frequency
range 0.23 ≤ St ≤ 0.47, as this has been associated with the strongest power spectral
density (PSD) peaks in the near-nozzle region associated with potential-core reso-
nance [24]. However, the methodology presented here can be easily extended to higher
azimuthal modes and other frequency ranges. Stability analysis is conducted here for
m = 0 within this frequency range. The eigenspectrum for one of the tonal frequen-
cies, St = 0.39, is shown in figure 3(a), where the real and imaginary parts of α are
represented on the horizontal and vertical axes, respectively.

Various families of modes can be seen in figure 3(a): (i) The resonating modes
leading to tones are marked with stars and are named as per Jordan et al. [5]. They are
guided propagative modes resonating between the end locations and are the focus of
the present work. The resonance loop consists of a downstream travelling mode (k+T )
and an upstream travelling mode (k−d and/or k−p ). The physics of these modes vary

within the tonal frequency range. Modes k+T and k−d belong to families of an infinite
number of such modes (marked by circles). At low frequencies, the k+T mode is largely
trapped within and guided by the jet, behaving like an acoustic wave in a soft-walled
cylindrical duct, while at high frequencies, it gains support in the shear layer and
behaves as a shear-layer mode. The k−d mode is trapped within and guided by the jet,
acting like a propagative acoustic mode in a soft-walled duct at high frequencies, but
becomes evanescent below a specific frequency. The k−p mode, however, is primarily a
shear-layer mode that becomes evanescent above a certain frequency. Further details
about these modes can be found in Jordan et al. [5], Towne et al. [12], Schmidt et al.
[13], Martini et al. [21]; (ii) The k+KH (K-H mode) is marked with a purple square
and is the only unstable mode of the system which leads to amplitude growth of
the coherent part of the fluctuation field which then stabilises and decays, forming a
wavepacket [16]; (iii) The modes marked with grey triangles in the first quadrant with
subsonic phase speed (the sonic line is at αr = ω/c) are stable and are distributed
in two separate branches: a near-horizontal branch consisting of critical layer modes
that have support in the shear layer, and a near-vertical branch with eigenfunctions
that have support in the core region of the jet [28].

Although all guided modes (marked with stars) are propagative at St = 0.39,
this is not the case for all St. Figure 3(b) shows the trajectories of the three guided
modes and the K-H mode in the complex α−plane as St varies from 0.23 to 0.47. At
St = 0.23, k+T and k−d are evanescent, and they move gradually towards the αi = 0

6
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Cut-off
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(b)

Fig. 3: Linear stability analysis at x/D = 0, m = 0 for M = 0.9 jet. (a) Eigenspectrum for
St = 0.39: (⋆, blue) k−

d
; (⋆, red) k−p ; (⋆, yellow) k+

T
; (�, purple) k+

KH
; ( , light green) sonic

line; (◦, blue) upstream-travelling trapped acoustic waves; (◦, yellow) downstream-travelling
trapped acoustic waves; (△, grey, horizontal branch) stable critical layer modes; (△, grey,
vertical branch) stable modes with support in the core region. (b) Modes trajectories for
St={0.23 → 0.47}: ( , blue) k−

d
; ( , red) k−p ; ( , yellow) k+

T
; ( , purple) k+

KH
.

axis and overlap at saddle-point 1, defining a cut-on condition at St = 0.37 [12]. The
modes remain propagative until saddle-point 2, a cut-off condition, which occurs at
0.428, where k+T and k−p modes meet. For St > 0.428, the k+T and k−p modes become

evanescent. At higher frequencies, other modes from the families of k+T and k−d cut on
leading to resonance, but these scenarios are not considered in the present work since
the most energetic resonance occurs for the considered scenario.

Cut-on and cut-off frequencies are points in the frequency spectrum where mode
behavior changes, marking the resonance frequency range. These are the saddle point
locations corresponding to zero group velocity for the modes where they can interact
and exchange energy. At the cut-on frequency, initially evanescent modes become
propagative, initiating wave propagation while at the cut-off frequency, modes that
were propagative become evanescent. For various streamwise locations downstream of
the nozzle exit plane i.e. for x/D > 0, stability analysis is performed to assess the cut-
on and cut-off conditions. The results are depicted in figure 4 where the frequencies
of the two saddle points are plotted as a function of the axial position, as obtained
through linear stability analysis in the tonal frequency range 0.37 < St < 0.43.

For any specific tonal frequency within this range, the k+T wave propagates down-
stream until it reaches the turning point, the spatial location where k+T forms a saddle
point with either of the k− waves, depending on the frequency. For 0.37 < St ≤ 0.413
(frequency range denoted as F1 in this work), it is the k−d wave, while for 0.413 ≤
St < 0.428 (frequency range denoted as F2 in this work), it is the k−p wave. These
represent two distinct resonance mechanisms.

The two lines in figure 4 show the streamwise dependence of the frequencies of the
two saddle points. The streamwise position at which they intersect indicates a double
saddle point. This occurs at St = 0.413, indicating the possibility of both a dou-
ble saddle-point ringing mechanism, and a double turning point. This is possible on

7
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Fig. 4: Saddle points for k−/k+ modes from local linear stability analyses: ( , black) saddle
point for downstream- and upstream-travelling duct modes i.e. k+

T
and k−

d
; ( , green)

saddle point for downstream-travelling duct mode and upstream-travelling discrete shear-
layer mode i.e. k+

T
and k−p . Strouhal number, St = fD/Uj , is plotted against downstream

axial distance, x/D, from the nozzle exit.

account of the fact that, for this frequency, the three modes have the same wavenum-
bers, the same frequency and the same zero group velocity, allowing the k+T mode to
reflect into and resonate with both k−d and k−p modes.

3.2 Educing mode amplitudes by bi-othogonal projections

We here aim to educe the amplitudes of the three guided waves, which are postulated to
be responsible for the observed tones and the K-H mode, which is the main instability
of the jet. These amplitudes when multiplied with their corresponding eigenfunctions
will give the calibrated eigenfunctions for the modes.

The non-normality of the linearized Navier-Stokes equations prevents the eigen-
functions from forming an orthogonal system. However, by leveraging the bi-
orthogonality between the eigenfunctions of the direct and adjoint linear stability
problems [29–31], mode amplitudes can be obtained by bi-orthogonal projection
following the approach outlined by Rodŕıguez et al. [28, 32].

A basis for bi-orthogonal projection is constructed from the adjoint system,

MH q̂+ = iα+q̂+, (8)

where H represents the Hermitian transpose, α+ are the complex conjugate of
eigenvalues of the direct system and q̂+ are the adjoint eigenfunctions that we seek.

The adjoint eigenfunctions are normalized such that,

(q̂+
j )

H q̂j = 1, (9)

where j is the index of the mode being normalized.
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Fig. 5: Projections for St = 0.39, m = 0 at x/D = 0: Streamwise velocity fluctuations PSD
( , dashed black) LES; ( , blue) k−

d
; ( , red) k−p ; ( , yellow) k+

T
; ( , purple) k+

KH
;

( , black) reconstruction from 4 modes.

Before projection, q̂LES (from (3)) is interpolated onto the Chebyshev nodes, on
which the eigenfunctions are defined, using Piecewise Cubic Hermite Interpolating
Polynomials. Due to the fast decay of disturbances away from the jet, the points
outside the available LES grid locations are assigned a value of 0 for the fluctuation
quantities. This is corroborated by verifying that | (q̂+

j )
H q̂j | is almost the same with

or without this assumption ∀St, ∀j, and hence the projection amplitudes would be
negligibly affected.

The mode amplitudes are then obtained by biorthogonal projection,

anj = (q̂+
j )

H q̂n
LES , (10)

where q̂n
LES is the LES fluctuation data from the nth realisation; and anj is the expan-

sion coefficient that defines the contribution of the jth mode to the flow state in the
nth realisation, giving the amplitude and the phase of mode.

In figure 5(a), radial profiles of the PSDs of the streamwise velocity for a selection
of modes are compared with the PSD computed from the LES data for St = 0.39
at the nozzle exit plane. The guided modes have substantial magnitudes, consistent
with the resonance phenomenon observed at this tonal frequency. It is also clear that
within the jet core, the k−d and k+T dominate the fluctuation field. In the shear region,
k−d , k

−
p and k+T have comparable levels. On the low-speed side of the shear layer,

fluctuations are dominated by k−p and k+T . At the nozzle exit plane, negligible KH mode
magnitude suggests a rank-3 system locally, but as the KH mode grows exponentially
while travelling downstream, the system should be considered rank-4 globally.

A rank-4 reconstruction of the LES data, using these modes, is shown in figure
5(b) along with the LES fluctuation profile. At this resonance frequency, the rank-4
model provides a good overall description of the flow dynamics. We see that in the jet
core, the reconstruction amplitude is lesser than the amplitude for the most dominant
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mode (see k−d in figure 5(a)). This is due to the destructive interference between the
modes k−d and k+T as we found them to be antiphase to each other. The mismatch
for reconstruction in the mixing layer is likely due to disturbances originating in the
nozzle boundary layer, leading to energetic but stable mixing layer modes [33]. These
disturbances are insignificant beyond x/D > 1 as they decay quickly and do not
contribute to the resonance mechanisms, so they need not be taken into account.

4 Reflection-coefficient eduction methodology

We now present a method used to compute reflection-coefficients between pairs of k−

and k+ waves at the resonance end locations. Referring back to figure 1, at the turning
point, an incident k+T wave reflects as a k−d or k−p wave and transmits as an evanescent
wave. The reflected wave propagates upstream to the nozzle exit, where it reflects
as a k+T wave, which then propagates downstream to the turning point, completing
the resonance loop. The relation of magnitude and phases of these waves among each
other are described by reflection and transmission coefficients at the corresponding
end locations. Note that at the nozzle plane, apart from the contribution from k−d or
k−p waves, k+T wave may also be driven by nozzle fluctuations, or by the reflection of
other upstream-travelling k− waves.

4.1 Reflection equations for nozzle exit plane

At the nozzle exit plane, the expansion coefficients of the k+T wave are related to
expansion coefficients of k− waves through complex reflection-coefficients as

a+T = Rn,d− a−d +Rn,p− a−p + ao (11)

where, Rn,d− is the reflection-coefficient for k−d reflecting into k+T and Rn,p− is the
reflection-coefficient for k−p reflecting into k+T . Here, Rn,d− a−d is the contribution to

a+T that arises from reflection of a−d ; Rn,p− a−p is the contribution from reflection of
a−p ; ao groups all other contributions, e.g., reflections of other waves or disturbances
coming from within the nozzle.

To evaluate the reflection-coefficients Rn,d− and Rn,p−, following the procedure

of Bendat and Piersol [34], we multiply (11) with both a−d
H

and a−p
H

and take the
expected value, giving

〈a+T a
−
d

H
〉 = Rn,d−〈a

−
d a

−
d

H
〉+Rn,p−〈a

−
p a

−
d

H
〉+ 〈aoa

−
d

H
〉, (12)

〈a+T a
−
p

H
〉 = Rn,d−〈a

−
d a

−
p

H
〉+Rn,p−〈a

−
p a

−
p

H
〉+ 〈aoa

−
p

H
〉. (13)

We assume that the contributions from the nozzle boundary layer disturbances and

other wave reflections are uncorrelated with the resonance dynamics, thus 〈aoa
−
d

H
〉 =

〈aoa
−
p

H
〉 = 0. With this assumption, (12) and (13) can be solved, expressing the

reflection-coefficients, Rn,d− and Rn,p−, in terms of expansion coefficient correlations.
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Fig. 6: At the nozzle exit, x/D = 0. (a) Coherence function: ( , blue) k−
d
/k+

T
; ( , red)

k−p /k+T ; ( , yellow) k−
d
/k−p ; ( , purple) k−

d
/k+KH ; ( , dashed purple) k−p /k+KH . (b) Mode

amplitudes: ( , blue) k−
d
; ( , red) k−p ; ( , yellow) k+T ; ( , purple) k+KH .

4.2 Reflection equations for turning point plane

We now present the system of equations used to calculate the reflection-coefficients
at the turning point location where the k+T reflects as k−d and k−p (figure 1). Turning
point locations are educed from the saddle point curves presented in figure 4.

Following a similar procedure to that of section 4.1, we can say that, at the turning
point,

a−d = Rtp,d− a+T + ao & a−p = Rtp,p− a+T + ao, (14)

where Rtp,d− and Rtp,p− are the turning point reflection-coefficients for k+T reflecting
into k−d and k−p respectively.

Multiplying (14) with a+T
H

and taking the expected value gives,

〈a−d a
+
T

H
〉 = Rtp,d−〈a

+
T a

+
T

H
〉+ 〈aoa

+
T

H
〉 & 〈a−p a

+
T

H
〉 = Rtp,p−〈a

+
T a

+
T

H
〉+ 〈aoa

+
T

H
〉.

(15)

With the assumption of 〈aoa
+
T

H
〉 = 0, (15) can be solved for Rtp,d− and Rtp,p−.

5 Results and discussions

5.1 Coherence analysis

Before evaluating the reflection-coefficients, we examine the relation between expan-
sion coefficient signals from the modes through the coherence function,

γ2
12 =

〈a1a
H
2 〉2

〈a1aH1 〉 〈a2aH2 〉
, (16)

where a1 and a2 are the expansion coefficients (see (10)) for the two modes, and 〈·〉
represents the expected value, derived from the available realisations, obtained by
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Fig. 7: Reflection-coefficients. At the nozzle exit: Rn,d− and Rn,p− correspond to the reflec-

tion of k−
d

wave and k−p wave respectively into the k+
T

wave. At the turning point: Rtp,d− and

Rtp,p− correspond to the reflection of k+
T

wave into the k−
d

wave and k−p wave respectively.

averaging across these realisations. This relation provides an initial insight into the
resonance mechanisms at play. A pair of k+ and k− modes exhibiting strong coherence
magnitudes suggests that they are the resonating pair of modes, reflecting into each
other at the resonance end locations.

For the present system of modes, coherence-function dependence on St at x/D = 0
can be seen in figure 6(a). For low St, a strong coherence is observed between k−d and
k+T which suggests that the k−d /k

+
T resonance pair is active at these frequencies.

As St increases, the coherence function decays for k−d /k
+
T while rises sharply for

k−p /k
+
T . This suggests a change in the resonance mechanism, as frequency increases,

towards a scenario where the k−p /k
+
T pair is dominant. The small coherence of the k+KH

mode (γ2 < 0.3) with the k− waves signifies its absence in the resonance mechanisms,
and for this reason, it is excluded from the forthcoming discussion.

The variation of mode amplitudes with St at x/D = 0, as shown in figure 6(b),
tells a similar story. At low St, the k+T amplitude decays with increasing St following
the trend of k−d ; but at high St, it grows with increasing St, following the trend of
k−p , again reflecting a change of the dominant resonant mechanisms with increasing
frequency.

5.2 Reflection-coefficients at the resonance end locations

In the nozzle exit plane, the magnitudes and phases of the reflection-coefficients, Rn,d−

and Rn,p−, are presented as a function of St in figures 7(a) and 7(b). High magnitudes
for both the reflection-coefficients indicate strong reflections. We also observe that as
St increases, | Rn,d− | decreases while | Rn,p− | decreases and then increases. The
phase angles for both reflection-coefficients are close to 180o indicating out-of-phase
reflection.

At the turning point, the magnitudes and phases of the reflection-coefficients are
shown in figures 7(a) and 7(b) as well. From the local stability analysis, the k+T mode
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Fig. 8: Contribution of k−
d

and k−p to k+
T

at the nozzle exit plane.

is evanescent downstream of the turning point (see figure 3(b)). This implies perfect
reflection in the turning-point plane, as beyond here, the k+T mode cannot propagate
energy downstream. This is exactly what is found for the reflection-coefficients in the
turning-point plane i.e. | Rtp,d− |∼ 1 & 6 Rtp,d− ∼ 180o for the lower St (0.37 < St <
0.41); and | Rtp,p− |∼ 1 & 90 < 6 Rtp,p− < 180o for the higher St (0.41 < St < 0.43).

5.3 Resonance-mechanism dependence on St

The results from sections 5.1 and 5.2 conclude that for the frequency range 0.37 <
St < 0.41, it is the k−d /k

+
T pair of modes that resonates while for 0.41 < St < 0.43, it

is the k−p /k
+
T pair that resonates. The resonance mechanism switches near St = 0.415.

These two resonance mechanisms were proposed by Towne et al. [12] and can be
seen in figure 4. For the lower frequencies, St = 0.39 for instance, the saddle point at
the turning point exists between k−d and k+T modes, which means that the acoustic
resonance at St = 0.39 is being led by the k+T /k

−
d pair. This is exactly what we see

in figures 6 and 7(a), where the k−d /k
+
T pair of modes has strong coherence and large

reflection-coefficient magnitudes.
For the reflections at the nozzle-exit plane at St = 0.39, the individual contribu-

tions of k−d and k−p to k+T are better seen in figure 8(a) (see (11) for reference). The

plot displays the square magnitude of mode amplitudes for k+T (in yellow), as well as
the contributions of k−d and k−p (in blue and red, respectively) across consecutive LES

realizations. Figure 8(a) demonstrates that k+T is primarily underpinned by reflection
of k−d . Despite the high magnitude of Rn,p− at the nozzle-exit plane (figure 7(a)), the
contribution of the k−p is much smaller than that of k−d , due its smaller amplitude
(figure 6(b)).

For the higher frequencies, St = 0.42 for instance, the saddle point at the turning
point exists between k−p and k+T modes, hence the acoustic resonance is governed by

the k+T /k
−
p pair. This is also what we observe in figures 6 and 7(a). The individual

contributions of k−d and k−p to k+T in the figure 8(b) shows that k+T follows k−p much
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more closely than k−d at this St. Hence, k+T is the direct reflection result of k−p at
St = 0.42.

6 Conclusion

Resonating guided waves in the potential core of a Mach 0.9 turbulent jet which lead
to tones previously observed in experiments and numerical simulations [12, 24] have
been studied. The resonating guided waves consisted of a downstream-travelling duct-
like wave (k+T ), an upstream-travelling duct-like wave (k−d ), and an upstream-travelling
discrete shear-layer wave (k−p ). Through a comprehensive analysis of time-resolved
turbulent jet data, the presence of these frequency-dependent resonance phenomena,
within the specified tonal frequency range, has been demonstrated.

The reflection-coefficients associated with energy exchange at the resonance end
locations have also been evaluated. Such evaluations are crucial for refining simplified
resonance models, such as by Jordan et al. [5], Mancinelli et al. [22, 23], in which
the reflection-coefficients, being unknown, amount to parameters by which a model
can be tuned to match data, rather than be informed a priori based on flow physics.
The present method provides a physics-based estimate of these reflection coefficients,
which may be used both as input for such resonance models, and, later, to support
the elaboration of models of the reflection process in itself.

Bi-orthogonal projection of LES data onto eigenmodes obtained from a linear sta-
bility analysis based on the turbulent mean flow was used to provide amplitudes
of the resonating waves at the resonance end locations: the nozzle exit plane and
downstream turning points. The dynamics of the flow at resonance frequencies are
well described by a rank-4 model, comprising these neutrally stable guided waves
(k+T , k

−
p and k−p ) and K-H instability wave. The reflection-coefficients at the reso-

nance end locations were computed under the assumption that contributions from
non-resonant modes are uncorrelated with the resonant modes. For the range of tonal
frequencies, 0.37 < St < 0.43, the mode amplitudes, coherence among them, and
reflection-coefficients were presented.

Depending on the frequency, either of the k− waves was found to be taking part in
the resonance loop i.e. for 0.37 < St < 0.41 (F1 frequency range), the pair k−d /k

+
T was

active while for 0.41 < St < 0.43 (F2 frequency range), the pair k−p /k
+
T was active.

This frequency-dependence of resonance mechanism had been suggested by Towne
et al. [12] where it was shown that the k+T mode forms a turning point at the saddle
point where upstream- and downstream-travelling waves exchange energy, with k−d
mode in the F1 frequency range and with k−p mode in the F2 frequency range. Among
the five possible resonance mechanisms postulated by Towne et al. [12], these two have
now been identified as those that underpin the peaks observed in the experimental
and LES data.

Although this study focuses on a specific case of an isothermal Mach 0.9 jet, the
methodologies and analyses presented can be applied to other scenarios such as: (i)
Jet-flap interaction noise, where resonance end location at the downstream is the flap,
a physical boundary and the downstream-traveling k+ mode involved in resonance is
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the K-H mode [5]; (ii) Screech tones in supersonic jets, where shock cells act as the
resonance end locations [11, 22]; among other potential applications.
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[32] Rodŕıguez, D., Sinha, A., Bres, G.A., Colonius, T.: Inlet conditions for wave
packet models in turbulent jets based on eigenmode decomposition of large eddy
simulation data. Physics of Fluids 25(10) (2013)

[33] Towne, A., Colonius, T.: One-way spatial integration of hyperbolic equations.
Journal of Computational Physics 300, 844–861 (2015)

[34] Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Proce-
dures, John Wiley & Sons (2011)

17






	Introduction
	LES database
	Decomposing turbulent jet data into the resonating modes
	Local Stability Analysis
	Educing mode amplitudes by bi-othogonal projections

	Reflection-coefficient eduction methodology
	Reflection equations for nozzle exit plane
	Reflection equations for turning point plane

	Results and discussions
	Coherence analysis
	Reflection-coefficients at the resonance end locations
	Resonance-mechanism dependence on St

	Conclusion

