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Abstract

We present an extension of the RSVD-∆t algorithm initially developed for resolvent analysis of statisti-
cally stationary flows to handle harmonic resolvent analysis of time-periodic flows. The harmonic resolvent
operator, as proposed by Padovan et al. [1], characterizes the linearized dynamics of time-periodic flows
in the frequency domain, and its singular value decomposition reveals forcing and response modes with
optimal energetic gain. However, computing harmonic resolvent modes poses challenges due to (i) the
coupling of all Nω retained frequencies into a single harmonic resolvent operator and (ii) the singularity
or near-singularity of the operator, making harmonic resolvent analysis considerably more computation-
ally expensive than a standard resolvent analysis. To overcome these challenges, the RSVD-∆t algorithm
leverages time stepping of the underlying time-periodic linearized Navier-Stokes operator, which is Nω

times smaller than the harmonic resolvent operator, to compute the action of the harmonic resolvent
operator. We develop strategies to minimize the algorithm’s CPU and memory consumption, and our
results demonstrate that these costs scale linearly with the problem dimension. We validate the RSVD-
∆t algorithm by computing modes for a periodically varying Ginzburg-Landau equation and demonstrate
its performance using the flow over an airfoil.

Keywords: Turbulence, Harmonic resolvent analysis, Randomized singular value decomposition, Time stepping,
Periodic flows

1 Introduction

Model reduction plays a critical role in the study of fluid mechanics due to the complex and high-dimensional
nature of fluid flows, especially turbulent ones. In particular, modal decompositions, both data-driven and
equation-based, have proven to be effective at identifying low-dimensional sets of modes associated with
interpretable coherent structures that significantly influence quantities of engineering interest such as kinetic
energy, heat and mass transfer, and noise emissions [2, 3]. In particular, resolvent analysis has been extensively
employed to comprehend, model, and control statistically stationary turbulent flows such as wall-bounded
turbulence [4], turbulent boundary layer [5], and jet flows [6]. However, real-world fluid systems often exhibit
non-stationary behavior, including periodicity, rendering resolvent analysis less effective. Examples of flows
exhibiting periodic behavior include internal waves in a stratified fluid [7], vortex shedding in the wake of a
bluff body [8], and pulsatile blood flow [9]. Recently, an extension of resolvent analysis, known as harmonic
resolvent analysis, has been developed by Padovan et al. [1]. This extension characterizes the perturbation
forcing and responses around a periodic base flow, providing a more effective tool for analyzing, modeling,
and controlling periodically time-varying flows. The harmonic resolvent operator can be considered a special
case of the harmonic transfer function introduced by Wereley [10], wherein the operator exhibits a dominant
frequency.
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Investigating the harmonic resolvent operator is one way to identify the optimal spatio-temporal per-
turbations and their corresponding responses in fluid systems. Unlike the resolvent operator, the harmonic
resolvent operator takes into consideration the periodicity of the base flow by representing it in the form
of a Fourier series. This allows for characterization of the dynamic behavior of the system, particularly
with respect to its spectral components and it provides a means to understand and explore the interactions
between input and output modes through the linearized dynamics. Harmonic resolvent analysis determines
the triadic interactions between the input frequency ω1, the base flow frequency ω1 − ω2, and the response
frequency ω2. The number of Fourier modes of the base flow is determined by its power spectral density
(PSD), which in turn determines the number of triads interacting with the forcing. Typically, periodic flows
with a dominant periodicity exhibit a multimodal nature with their most energetic modes being harmon-
ics of the base frequency. When the base flow is statistically stationary, linearization around the temporal
average is sufficient, and traditional resolvent analysis arises as a special case.

Recent studies have expanded on this research area to model and control the dynamics of turbulent
flows with periodic motions. Lin et al. [11] applied the harmonic resolvent framework for linear time-periodic
systems with more than one dominant frequency, offering a tool to study the flow control of a plunging
cylinder. In a distinct approach, Franceschini et al. [12] proposed a novel method aimed at capturing the
phase dependency of small-scale turbulent phenomena in flows exhibiting a periodic limit cycle. This method
builds upon classical spectral proper orthogonal decomposition (SPOD) and resolvent analyses but introduces
a quasi-steady approximation that effectively separates the high-frequency turbulent component from the
slow periodic oscillation. Moreover, Heidt and Colonius [13] have pioneered the theory and algorithm for
cyclostationary SPOD (CS-SPOD). This innovative approach extends the conventional SPOD algorithm to
effectively capture the characteristics of flows characterized by periodic motions. CS-SPOD is closely tied to
harmonic resolvent analysis, akin to the relationship between SPOD and resolvent analysis [3].

Harmonic resolvent analysis offers a promising avenue for new discoveries in physics. For example, recent
research conducted by Wu et al. [14] explored the response of a turbulent separation bubble to zero-net-mass-
flux actuation, with a base flow characterized by periodicity. The noteworthy finding revealed an agreement
between the reduction in separation bubble size identified through both harmonic resolvent optimal response
and direct numerical simulation. Another contribution in this realm comes from the work of Padovan and
Rowley [15], who investigated the driving mechanisms underlying vortex pairing in an incompressible forced
axisymmetric jet. They showed that the optimal forcing of the subharmonic resolvent operator featured
spatiotemporal structures leading to the nonlinear vortex pairing phenomenon. In general, harmonic resolvent
analysis can facilitate the understanding of energy transfer mechanisms [16] and is a potentially powerful
tool for secondary stability analyses involving periodic additions to the base flow, with applications such as
boundary layer stability and transition [17], screeching jets [18], and the effect of mass injection on secondary
instability [19].

From a computational standpoint, computing harmonic resolvent modes presents similar challenges to
resolvent analysis, including the need to invert sparse matrices in Fourier space. This challenge is further
exacerbated in harmonic resolvent analysis due to expanded system size, where all relevant frequencies are
merged into a unified operator, in contrast to resolvent analysis, where each frequency has its own inde-
pendent system. The second shared challenge involves performing the singular value decomposition (SVD).
Turbulent and other complex flows characterized by periodic motions require high-resolution meshes and
potentially large computational domains. This results in a sizable linearized operator, introducing formidable
computational challenges when it comes to matrix inversion and performing SVD. A modified randomized
SVD (RSVD) can be used to simultaneously overcome both computational challenges [1, 20, 21]. Neverthe-
less, the modified RSVD, referred to as “RSVD-LU” in this study, becomes impractical for tackling large-scale
turbulent flows since it requires the lower-upper (LU) decomposition of the harmonic resolvent operator.
Recently, RSVD-∆t, an improvement to RSVD-LU, addresses bottlenecks in resolvent analysis [22]. The
approach of time-stepping, initially developed by Monokrousos et al. [23] and further optimized by Martini
et al. [24], allows for computing the action of an operator on a vector without solving a linear system in
Fourier space, making it a key component of RSVD-∆t.

The main objective of this study is to expand the applicability of the RSVD-∆t algorithm, initially crafted
for resolvent analysis, to facilitate the computation of harmonic resolvent modes. A streaming approach is
adopted for time integration, reducing memory usage while maintaining computational efficiency. Moreover,
an efficient transient removal strategy is introduced, cutting the temporal length of the integration and
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thereby minimizing the CPU cost of RSVD-∆t for achieving a desired accuracy. The RSVD-∆t algorithm
for periodic flows maintains linear scalability in both CPU time and memory consumption. This scalability
enables the efficient computation of harmonic resolvent modes for large-scale turbulent flows that were
previously out of reach.

The structure of our paper unfolds as follows. We begin by explaining resolvent analysis in §2, followed
by the formulation of harmonic resolvent analysis in §3, where the computation of harmonic resolvent modes
using RSVD-LU is briefly described. The RSVD-∆t algorithm is introduced in §4. A comparison of the
computational complexity of algorithms and suggested improvements appear in §5. Further details on perfor-
mance and error analysis are presented in §6. In §7, we conduct two test cases to demonstrate the accuracy
and cost efficiency of RSVD-∆t for two periodic systems, and we conclude with final remarks in §8.

2 Resolvent analysis

Before considering the time-periodic case, we briefly review standard resolvent analysis for stationary flows.
The Navier-Stokes equations can be linearized around a base flow via Reynolds decomposition of the state,
q = q̄+q′, where q̄ represents the temporal average of the flow, and q′ denotes the time-varying fluctuations.
The dynamics of perturbations are then described by the linear time-invariant system

dq′

dt
=A(q̄)q′ + f ′(q̄,q′), (1)

where A ∈ CN×N is the linearized Navier-Stokes (LNS) operator, N is the state dimension of the discretized
system, and f ′ represents an external forcing as well as nonlinear terms that are treated as an additional
forcing, as suggested by McKeon and Sharma [25]. It should be noted that A is time-independent because
the base flow is time-invariant. By taking the Fourier transform

F(⋅) = (̂⋅)(ω) = ∫
+∞

−∞
(⋅)e−iωt dt (2)

in time, we obtain
q̂(ω) =R(ω)f̂(ω), (3)

where ω represents the frequency and (̂⋅) denotes the frequency-domain representation of the time-domain
vector. The resolvent operator

R = (iωI −A)
−1

∈ CN×N (4)

is a transfer function that maps the input forcing to the output response. Here, i =
√
−1 and I is the identity

matrix of appropriate dimension.
To analyze the perturbation characteristics of a system, the transfer function can be examined across a

range of frequencies. Typically, the most amplified responses are identified by computing the left singular
vectors UR of the resolvent operator,

R = URΣRV
∗
R , (5)

where (⋅)∗ denotes complex conjugate transpose. The optimal forcing inputs that lead to the highest ampli-
fications comprise the right singular vectors VR, and the degree of amplifications are determined by the
singular values ΣR.

The SVD in 5 implies that disturbance amplitudes are measured in a Euclidean norm. More generally,
∣∣x∣∣2f = ⟨x,x⟩f = x

∗Wfx computes the f -norm of any vector x, and input and output norms can be different,
i.e., ∣∣ ⋅ ∣∣q = ∣∣ ⋅ ∣∣f is not necessary. Additionally, one can define an input matrix B to restrict the forcing and
an output matrix C to extract the output of interest from the state. For the sake of notational brevity, we
assumed the weight, input, and output matrices to be the identity, i.e., W = B = C = I, throughout this
paper. However, our algorithm, with minor adjustments, can accommodate non-identity weight, input, and
output matrices by computing the modes of the modified resolvent operator

R̃ =W 1/2
q CRBW

−1/2
f . (6)

For more details, please refer to Farghadan et al. [22].
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3 Harmonic resolvent analysis

In this section, we provide an overview of harmonic resolvent analysis. After reviewing its basic formulation,
we discuss the singularity issue that can arise in some special flows, the truncation of the harmonic resolvent
operator, and two variations of harmonic resolvent analysis, namely cross-frequency amplification and sub-
harmonic resolvent. Lastly, a brief overview is provided for the state-of-the-art algorithm used to compute
the harmonic resolvent modes and gains.

3.1 Formulation

Analogous to resolvent analysis, by inserting the generalized Reynolds decomposition q(t) = q̄(t)+q′(t) into
the Navier-Stokes equations, the linearization around a periodic base flow q̄(t) = q̄(t+T ) leads to the linear
time-periodic system

dq′

dt
=Apq

′
+ f , (7)

where Ap(t) = Ap(t + T ) ∈ CN×N is the periodic LNS operator, ωf is the fundamental frequency, and
T = 2π/ωf is defined as the fundamental cycle length. As both Ap and q′ are time-periodic, the Fourier
transform of (7) incorporates interactions between all pairs of frequencies. For simplicity, we drop the prime
notation for fluctuations from here on out.

Expanding Ap(t) and q(t) in terms of the Fourier series

Ap(t) =
∞

∑
j=−∞

Âp,je
ijωf t,

q(t) =
∞

∑
j=−∞

q̂je
ijωf t,

(8)

where (⋅)j denotes jth harmonic of ωf , and substituting these expansions into (7), we obtain

[T q̂]k = ikωf q̂k −
∞

∑
j=−∞

Âk−j q̂j = f̂k. (9)

Here, T is an infinite dimensional block matrix of the form

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋰

. . . L−1 −Â−1 −Â−2 −Â−3 . . .

. . . −Â1 L0 −Â−1 −Â−2 . . .

. . . −Â2 −Â1 L1 −Â−1 . . .

. . . −Â3 −Â2 −Â1 L2 . . .
⋰ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10)

where the diagonal entries are in fact the inverse of resolvent operators at various frequencies,

Lj =R
−1
j = ijωfI − Âp,0,∀j ∈ Z. (11)

The harmonic resolvent operator
H = T −1 (12)

transfers the harmonic inputs to the outputs for periodic base flows,

q̂ =Hf̂ . (13)

The SVD of the harmonic resolvent operator

H = UHΣHV∗
H (14)
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unveils the most amplified responses UH that correspond to optimal forcing VH , each accompanied by
associated amplification magnitudes ΣH . The matrix H encompasses the base flow, the fundamental fre-
quency, and higher harmonics. Whereas individual frequencies can be analyzed separately in a standard
resolvent analysis, all frequencies are coupled withinH in harmonic resolvent analysis and must be considered
simultaneously. Furthermore, the modes of the modified harmonic resolvent operator, defined as

H̃ =W 1/2
q CHBW

−1/2
f , (15)

can be computed using our algorithm with the same minor adjustments as detailed in Farghadan et al. [22].
In a special case where the base flow is time-independent, i.e., Âp,j = 0 for j ≠ 0, H reduces to

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋰

. . . R−1 0 0 . . .

. . . 0 R0 0 . . .

. . . 0 0 R1 . . .
⋰ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16)

so each frequency is decoupled. Therefore, resolvent analysis can be perceived as a special case of harmonic
resolvent analysis.

3.2 Singular or near-singular nature of T

The operator T tends to be ill-conditioned for many periodic systems [1]. A system is considered ill-
conditioned when the ratio of the largest and smallest singular values is large (κ = σmax/σmin ∼ O(104) or
higher). The smallest singular value of T can be shown to reach machine precision zero if the periodic base
flow satisfies the Navier-Stokes equations [1, 26], i.e., when

dq̄

dt
=N (q̄), (17)

where N is the nonlinear Navier-Stokes operator. Taking a time derivative of both sides,

d (dq̄
dt

)

dt
=
d (N (q̄))

dt
=
∂N
∂q̄

dq̄

dt
=Ap

dq̄

dt
. (18)

Taking a Fourier transform of (18) and recalling that T is obtained as shown in (9), d̂q̄/dt is a non-trivial
solution of

Tq = 0, (19)

residing within the null space of T , thereby proving the singularity of T . In systems where the base flow
approximately satisfies (17), T becomes nearly singular. Consequently, irrespective of the specific periodic
system under consideration, T might be poorly conditioned, presenting even more challenges when dealing
with large systems.

Padovan et al. [1] demonstrated that defining the harmonic resolvent operator in a manner that eliminates
the phase shift imparted by the Fourier coefficients of dq̄/dt is effective, without adversely affecting the other
dominant amplification mechanisms. By constraining T to a subspace U⊥ that is orthogonal to the direction
of the phase shift d̂q̄/dt, the range of the harmonic resolvent operator is limited to U⊥. The key concept here
is to eliminate the singular vectors associated with the smallest singular value of T without affecting the
other singular values and vectors of T . Given that the phase shift resides in the null space of T , the desired

right singular vector v = d̂q̄
dt

/∣∣
d̂q̄
dt

∣∣ is readily available. We can also solve

T ∗ũ = v (20)
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and compute the corresponding left singular vector as u = ũ/∣∣ũ∣∣. Upon obtaining v and u, the process
becomes straightforward: projecting out these modes from the forcing and response terms effectively restricts
T to U⊥. These steps are elucidated in detail in Padovan et al. [1].

To compute the action of the harmonic resolvent operator on a given vector (or matrix), our goal is to
determine the vector (or matrix) q that satisfies q =Hf . In brief, to compute the action of a singular H on
a vector f̃ , the component along u must be projected out as

f̃in = f̃ −u(u
∗f̃), (21)

and this will provide a response
T q̃ = f̃in → q̃ =Hf̃in, (22)

which is orthogonal to the direction of the phase shift. Nevertheless, to mitigate potential round-off errors,
it is advisable to refine the output by projecting out the component along v as

q̃out = q̃ − v(v
∗q̃). (23)

Similarly, when computing the action of singular H∗ on a vector, the initial step involves projecting out the
component along v. After the response is obtained, to mitigate round-off errors, the component along u is
projected out.

3.3 Truncating the harmonic resolvent operator

Computing harmonic resolvent modes is contingent upon T being of finite size. The size and block sparsity
pattern of T are determined by two key variables: the number of frequencies within the base flow, Nb, and
within the response, Nω. Here, we elucidate the impact of each variable on the operator.

The rows of T consist of Nb-stencil blocks, dictated by the presence of non-zero elements in Âp,j . In the
context of periodic flows, the time-dependent base flow can be expressed using a Fourier series expansion

q̄(t) = ∑
jωf ∈Ωq̄

ˆ̄qje
ijωf t. (24)

The set Ωq̄ encompasses the relevant frequencies associated with the dominant flow structures. Typically, Ωq̄
is a subset of jωf with j ∈ Z and encapsulates the majority of energy within the periodic flows. By retaining
the base periodicity and a limited number of higher harmonics, it becomes possible to simplify the base flow
representation, resulting in Nb frequencies within Ωq̄ and Nb non-zero elements within each row of T .

On the other hand, we aim to resolve perturbations occurring at temporal frequencies ω ∈ Ωq, where Ωq
represents a subset of jωf with j ∈ Z, although the specific choice of harmonics for Ωq may vary, as further
elucidated in §3.5. Typically, Ωq̄ is a subset of Ωq, i.e., the perturbation frequency content spans a wider
range of harmonics [1]. The number of frequencies Nω expanding both f and q determines the dimensions
of the block matrices, yielding a size of (NωN) × (NωN) for T .

We provide a simple example to visually observe the harmonic resolvent operator. Suppose we use Ωq̄ =
{−2,−1,0,1,2}ωf to expand the LNS operator and Ωq = {−4,−3, . . . ,3,4}ωf to expand the perturbations. In
this case, the stencil length would be Nb = 5, and the size of the block matrix would be (9N) × (9N). The
harmonic resolvent operator is then

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L−4 −Â−1 −Â−2 0 0 0 0 0 0

−Â1 L−3 −Â−1 −Â−2 0 0 0 0 0

−Â2 −Â1 L−2 −Â−1 −Â−2 0 0 0 0

0 −Â2 −Â1 L−1 −Â−1 −Â−2 0 0 0

0 0 −Â2 −Â1 L0 −Â−1 −Â−2 0 0

0 0 0 −Â2 −Â1 L1 −Â−1 −Â−2 0

0 0 0 0 −Â2 −Â1 L2 −Â−1 −Â−2

0 0 0 0 0 −Â2 −Â1 L3 −Â−1

0 0 0 0 0 0 −Â2 −Â1 L4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

. (25)
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The forcing and response vectors can be represented as

f̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f̂−4

f̂−3

f̂−2

f̂−1

f̂0

f̂1

f̂2

f̂3

f̂4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, q̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̂−4

q̂−3

q̂−2

q̂−1

q̂0

q̂1

q̂2

q̂3

q̂4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (26)

The accuracy of the obtained resolvent system in Fourier space depends on how well the chosen frequencies
capture the relevant flow information, and it is affected by the truncation limit imposed on the frequency
range. Although it is feasible to reduce the infinite-dimensional harmonic operator to a finite dimension based
on perturbation frequencies, the choice of frequency range is consequential. To demonstrate the influence of
truncation on response modes, consider a periodic flow with a dominant first harmonic, such that the base
flow can be expressed as

q̄(t) = ˆ̄q0 + ˆ̄q1e
iωt

+ ˆ̄q−1e
−iωt. (27)

Assume that the LNS equations are subjected to a constant forcing f(t) = f̂0. The LNS operator exhibits
frequency content at 0 and ±ω, indicating that a constant forcing will directly induce a response at these
frequencies. However, higher harmonics are also indirectly stimulated, and the triggering of responses at
higher harmonics follows a cascade pattern, with norms gradually decaying towards zero, i.e., limj→∞ ∣∣q̂j ∣∣ = 0.
Hence, the truncation must be set at a sufficiently high level to preserve the response norms.

In practice, by defining Ωq for both input perturbation and the response, we compute accurate harmonic
resolvent modes as long as the norms of higher frequency modes become less relevant within the spectrum. In
other words, if we set both forcing and response frequencies sufficiently high and, upon computing harmonic
resolvent modes, find that the norms of input and output modes with higher frequency content are relatively
small, it indicates convergence, and including higher frequencies has negligible impact on the results. In a case,
for instance, where response modes with higher frequency content remain relatively important, extending
the frequency range of the output modes is necessary without changing the input frequency content. In our
algorithm, the input and output frequency ranges are adjustable as needed.

3.4 Cross-frequency harmonic resolvent analysis

Harmonic resolvent analysis captures the interaction between various frequencies within Ωq̄ and Ωq, and
the typical objective is to identify the optimal forcing mode, potentially spanning various frequencies, that
produces the optimal response across a range of frequencies. Alternatively, one can compute the unit-norm
forcing at one frequency ω1 ∈ Ωq that triggers the most amplified response at another frequency ω2 ∈ Ωq.
This is achieved by defining

Hω2,ω1
= CHB (28)

and computing the modes and gains following the same procedure as before. Here, matrices B and C are
constructed to extract the ω1 and ω2 frequencies from the forcing and response modes, respectively. This
represents a special case of the modified harmonic resolvent operator in (15).

3.5 Subharmonic resolvent analysis

The frequency content of the forcing inputs is typically composed of harmonics of the base flow frequency.
However, Padovan and Rowley [15] have shown that the harmonic resolvent system may exhibit sensitivity
to subharmonic inputs. For instance, in the case where the fundamental base flow frequency is denoted by
ωf , the linearized system may be sensitive to forcing inputs with γ < ωf , such as ωf /2. More generally, if
the frequency content of a periodic LNS operator is limited to the frequency range Ωq̄, it may be desirable
to compute input-output modes with frequencies outside of this range, i.e., , γ ∉ Ωq̄. In such cases, the
subharmonic resolvent modes become relevant.
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To identify unique subharmonic inputs, we can take advantage of the linear nature of the harmonic
resolvent operator, which allows interaction with the fundamental frequency ωf and its harmonics. It can
be demonstrated that the interval (−ωf /2, ωf /2] encompasses all sets of subharmonic frequencies where the
input-output modes are unique. As discussed in §3, a forcing with a frequency γ ∈ (−ωf /2, ωf /2] can only
trigger responses at frequencies γ + jωf , where j is an integer. Therefore, the input and output modes exist
within the frequency range Ωγ = γ ⊕ Ωq̄, where ⊕ denotes element-wise addition. Harmonics of γ trigger a
unique set of outputs as long as jγ ≤ ∣ωf ∣. Due to the linear relationship, we can show that all harmonics are
isolated sets that need to be studied separately. Note that −ωf /2 is excluded since Ω−ωf /2 = Ωωf /2, resulting
in redundancy. For γ ∈ Ωγ , one can derive the subharmonic resolvent system as [15]

q̂ = (iγI − T )
−1f̂ . (29)

To further elucidate the point, consider an example where the subharmonic frequency of interest is ωf /5
along with its harmonics. Note that the valid harmonics are the ones that fulfill the condition jωf /5 ∈

(−ωf /2, ωf /2], which includes the set {−2/5,−1/5,0,1/5,2/5}. While Ω0 = 0 ⊕ {−Nb/2,⋯,Nb/2}, where Nb
is the number of active frequencies within the base flow, is identical to harmonic inputs, the sets Ω−2/5,
Ω−1/5, Ω1/5, and Ω2/5 represent distinct input-output modes. In general, for any two distinct subharmonic
frequencies γ1 and γ2 within the interval (−ωf /2, ωf /2], the corresponding subharmonic modes in Ωγ1

are
decoupled from those in Ωγ2

as there exists no common frequency γ1−γ2 ∈ Ωq̄. While our algorithm described
in §4 is described for harmonic resolvent analysis, it can be easily extended to compute subharmonic resolvent
modes, as described in Appendix A.

The approach used to eliminate the singularity of T described in §3.2 is not applicable for subharmonic
resolvent analysis (γ ≠ 0). Padovan and Rowley [15] formulated an alternative approach in which the domain
of T is constrained to a physically meaningful subspace for all choices of γ. In this approach, an oblique
projection operator is defined as

P (t) = I − v(t)u∗(t), (30)

where u and v are defined the same as in §3.2. The restricted operator can be written as

Tp = T P̂ . (31)

The resulting range of Tp is deliberately designed to be invariant under T . This projection facilitates steps
within the RSVD-LU algorithm, effectively addressing singularities. For more details on oblique projection
properties and the efficient computation of u and v, we refer the reader to Padovan and Rowley [15].

3.6 Computing harmonic resolvent modes using RSVD-LU

The RSVD algorithm [27] is a randomized linear algebra technique developed to efficiently identify the
singular vectors with the highest gains in a given matrix. In the context of harmonic resolvent analysis, the
matrix of interest is the harmonic resolvent operator. This operator, similar to the resolvent operator, relies
on the inverse of a sparse matrix, as shown in (12), making the computation of modes challenging. Modifying
the original RSVD algorithm is necessary to address these challenges, enabling harmonic resolvent analysis.
The modifications for resolvent analysis have been extensively documented in the literature by Ribeiro et al.
[21] and Farghadan et al. [22], while the outline for the harmonic resolvent operator can be found in the
appendix of Padovan et al. [1].

In brief, the computation involves computing the action of H and H∗ for sketching the range and image
of the harmonic resolvent operator, respectively, and approximating the leading harmonic modes. Computing
actions of H and H∗, however, requires solving linear systems

T q̂ = f̂ ,

T ∗q̂ = f̂ ,
(32)

respectively, in Fourier space. These linear systems are solved via LU-decomposition of T , but due to its
large size and ill-conditioned nature, computing its LU decomposition can be a formidable computational

8



Fourier Transform

Time-domain integration

Solving a single coupled linear system
=

Discrete or fast Fourier transform
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d

Fig. 1 Flowchart depicting the action of H on a forcing comprised of Nω frequencies within the RSVD-LU (top route)
and the RSVD-∆t (bottom route) algorithms. Both routes produce the same result, but the bottom route is computationally
advantageous for large systems.

obstacle, particularly for flows with three inhomogeneous directions. We propose an alternative way in the
following section.

4 Computing harmonic resolvent modes using time stepping

In this section, we show how time stepping can be used to efficiently compute harmonic resolvent modes. The
same concept was first used by Monokrousos et al. [23] in the context of the resolvent analysis and further
optimized by Martini et al. [24] and Farghadan et al. [22]. Here, we introduce the extension of our algorithm
to compute the harmonic resolvent modes and gains.

4.1 Computing the action of H using time stepping

Computing the action of H in the Fourier space poses a bottleneck within the RSVD-LU algorithm. To
overcome this limitation, we propose to use time-stepping as an effective surrogate approach. Given that Ωq̄
represents the frequency content of the base flow around which T is constructed, we define the time-domain
linearized operator as

Ap(t) = ∑
jωf ∈Ωq̄

Âp,je
ijωf t. (33)

The action of H on f̂ in Fourier space is expressed in (13), where the frequency content of the forcing lies
within Ωq.

The steady-state solution of (7) is given by

q̂s =Hf̂ , (34)

when subjected to the forcing represented as

f = ∑
jωf ∈Ωq

f̂je
ijωf t. (35)

The steady-state response can be obtained through time-stepping before taking a Fourier transform. The
time-domain forcing is constructed to include frequencies identical to those present in f̂ . Since the time-
domain and frequency-domain frequencies are the same, both approaches yield identical results, i.e., q̂s = q̂.
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In practice, the time-stepping method is inherently discrete, and the frequencies are retained up to the
maximum limit determined by the chosen time step (below the Nyquist frequency [28]). By employing a
suitably small time step, we can capture frequencies up to the desired limit.

The equivalence between computing the action of H in both the RSVD-LU and RSVD-∆t algorithms
is depicted in figure 1. In the upper route, within the RSVD-LU algorithm, the LNS equations are first
transformed into Fourier space before solving a coupled linear system in the frequency domain for a given
forcing. In the lower route, within the RSVD-∆t algorithm, the LNS equations are initially integrated in the
time domain before being transformed into Fourier space. Both routes produce identical outputs so long as
numerical artifacts are minimized.

4.2 RSVD-∆t for harmonic resolvent analysis

By recognizing the equivalence between time stepping and solving linear systems in the frequency domain, we
can effectively address the limitations of the RSVD-LU algorithm, leading to the development of RSVD-∆t.
The time-stepping aspect of RSVD-∆t relies on the linearized operator Ap without explicitly constructing
H in Fourier space. The algorithmic steps for extending RSVD-∆t to harmonic systems are presented in
Algorithm 1.

Algorithm 1 RSVD-∆t for harmonic resolvent analysis

1: Inputs: Ap, k, q,Ωq,Ωq̄,TSS, dt, Tt
2: Θ̂ ← randn(NNω, k) ▷ Create random test matrices
3: Ŷ ← DirectAction(Ap, Θ̂,TSS, dt, Tt) ▷ Sample the range of H
4: if q > 0 then ▷ Optional power iteration
5: Ŷ ← PI(Ap, Ŷ , q,TSS, dt, Tt) ▷ Power iteration with time-stepping
6: end if
7: Q̂Ω ← qr(ŶΩ) ▷ Build the orthonormal subspace Q̂Ω

8: Ŝ ← AdjointAction(A∗
p, Q̂,TSS, dt, Tt) ▷ Sample the image of H

9: (ŨH ,ΣH ,VH)← svd(ŜH) ▷ Obtain ΣH ,VH
10: UH ← Q̂ΩŨH ▷ Recover UH
11: Outputs: UH ,ΣH ,VH

Algorithm 1. Inputs: linearized operatorAp, number of modes k, number of power iterations q, frequency range of the perturbations

and LNS operator Ωq and Ωq̄ , respectively, time-stepping scheme abbreviated as TSS (e.g., backward Euler), time step dt, and the

transient length Tt. Outputs: k response modes UH , k forcing modes VH and the corresponding gains ΣH . Here, k, q,Ωq,Ωq̄ are

common parameters with RSVD-LU. (⋅)Ω indicates all frequencies are merged into a single column. DirectAction and AdjointAction

are functions that solve the direct and adjoint LNS equations, respectively, with a predefined forcing. PI is a function that performs

the power iteration.

The algorithm proposed in this study is based on the RSVD-∆t algorithm introduced by Farghadan
et al. [22], and we will provide a concise overview of the key steps. Initially, a random matrix Θ̂ ∈ CNNω×k is
generated (line 2) to compute the sketch of H through time stepping (line 3). The dimensions of the random
matrix are determined by the state dimension N , the number of frequencies to resolve Nω, and the desired
number of modes to compute k. . DirectAction is a function that computes the action of H onto a given
forcing using time-stepping and transforms the steady-state responses to Fourier space. As outlined in §4.1,
DirectAction solves (7) with zero initial condition over a sufficiently long time interval, causing the initial
transient response to dissipate. Tt represents the duration of this interval before the transient diminishes. The
forcing term in (7) is constructed via inverse Fourier transform of Θ̂ and the steady-state response undergoes
a Fourier transform to obtain Ŷ . Next, an optional power iteration (PI) is performed (lines 4 and 5) via q
successive applications of DirectAction and AdjointAction, enhancing the accuracy of harmonic resolvent
modes. QR decomposition is performed to obtain Q̂Ω (line 7) before constructing S via time stepping (line
8). AdjointAction is the function that computes the action of H∗ onto a given forcing using time-stepping
and transforms the steady-state responses to Fourier space. This function is similar to DirectAction, but
it evolves the adjoint system. The forcing term in AdjointAction is constructed via the inverse Fourier
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transform of Q̂. An SVD (line 9) is conducted to obtain the optimal forcing modes VH ∈ CNNω×k and gains
ΣH ∈ Rk×k of H. Lastly, the optimal response modes UH ∈ CNNω×k are recovered in line 10.

Compared to the RSVD-∆t algorithm for resolvent analysis [22], two notable differences are present. In
the extension of RSVD-∆t, the response modes at various frequencies are merged prior to both the QR
decomposition and the SVD steps. This deviation from the original algorithm is motivated by the nature
of the problem that requires interactions between frequencies, unlike in resolvent analysis where the QR
decomposition and SVD are performed separately for each individual frequency of interest. The second
difference is the generation of LNS operators over time, whereas in resolvent analysis, the LNS operator
remains constant throughout the integration.

If T approaches machine precision singularity, it is necessary to project out the forcing along the u
direction before the DirectAction and along v before the AdjointAction, as described in §3.2. Moreover, to
mitigate numerical artifacts, it is advisable to project out the response along v and u after the DirectAction
and AdjointAction, respectively.

5 Computational complexity

A brief comparison is conducted between memory requirements and CPU cost of the RSVD-LU and RSVD-
∆t algorithms. We also propose strategies to minimize the memory consumption. Throughout, we assume that
the linearized operatorAp is sparse, i.e., that its number of non-zero entries scales as nnz(Ap) ∼ O(N). Sparse
operators are obtained when using sparse discretization schemes such as finite differences, finite volume, or
finite elements. For more detailed information on the CPU and memory scaling of the LU decomposition of
the resolvent operator, we refer readers to Farghadan et al. [22]. To offer empirical insights and confirmation
of the theoretical scalings discussed below, we present a two-dimensional test case in §7.

5.1 Memory benefits of RSVD-∆t

In the case of resolvent analysis, the memory scaling of the LU decomposition is empirically O(N1.2) and
O(N1.6) for two- and three-dimensional systems, respectively [22, 29]. The memory scaling of LU decomposi-
tion is expected to be worse for the harmonic resolvent operator, as the lower- and upper-triangular matrices
are denser. When T is singular or nearly singular, the computational task becomes even more challeng-
ing, as discussed in Padovan et al. [1]. An alternative approach for solving (32) involves leveraging iterative
solvers, such as Krylov subspace methods [14, 30]. This approach eliminates the need for computing the LU
decomposition and becomes more memory-efficient, especially for large systems. However, finding a suitable
preconditioner remains a challenging task.

On the other hand, the memory usage of RSVD-∆t for harmonic resolvent analysis is contingent on the
sizes of various matrices, specifically the sparse LNS operators Âp ∈ CN×N×Nb , and the dense forcing matrix

F̂ ∈ CNNω×k and response matrix Q̂ ∈ CNNω×k, all of which are stored in Fourier space. The scaling for
resolvent analysis is O(NNω), and the sole extra space is for the storage of LNS operators.

One approach to generating LNS operators for all time points involves retaining Nb coefficients in Fourier
space and subsequently constructing AΩ = {Ap,1,Ap,2,Ap,3, . . . ,Ap,Nt} once for all time steps within a
period. However, this approach can be memory-intensive for large systems, especially when Nt ∼ O(103−105).
An alternative strategy to reduce memory consumption is to create LNS operators on the fly, as shown in
figure 2. As a result, no time-domain LNS operator is permanently stored in memory. Each LNS operator is
created on the fly using the discrete Fourier transform (DFT) of Nb Fourier coefficients,

Ap(t) =
Nb/2

∑
j=−Nb/2

Âp,je
ijωf t. (36)

Since Ap is very sparse, nnz(Ap) ∼ O(N), resulting in an overall memory consumption of O(NNb). The
methods employed for generating LNS operators, both in the streaming and memory-intensive approaches,
mirror those used for creating forcing terms in resolvent analysis, as elaborated in Farghadan et al. [22].
Additionally, the CPU cost of this procedure scales as O(nnz(Ap)Nb) or O(NNb).
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Fig. 2 Schematic of the action of H with streaming DFT/iDFT to transform between the Fourier and time domains.

Streaming DFT is indeed effective in reducing memory consumption; nevertheless, additional memory
savings can be specifically achieved for real-valued LNS operators. In many cases, Ap is real-valued, i.e., con-

fined to RN×N , yielding Âp,j =
¯̂
Ap,−j , where (̄⋅) denotes the complex conjugate. Hence, Âp,j with j ≥ 0

suffices to construct Ap as

Ap(t) = Âp,0 + 2Re
⎛

⎝

Nb/2

∑
j=1

Âp,je
ijωf t

⎞

⎠
, (37)

resulting in halving the number of Fourier coefficients of the LNS operator to ⌊Nb/2⌋+1. Here, Re represents
the real part.

Another opportunity to reduce memory usage for real-valued LNS matrices arises from the symmetry
between positive and negative frequencies. Rewriting (9) for −kωf yields

i(−kωf)q̂−k −
∞

∑
j=−∞

Â−k+j q̂−j = f̂−k, (38)

and the complex conjugate version of (9) becomes

−ikωf ¯̂qk −
∞

∑
j=−∞

¯̂
Ak−j

¯̂qj =
¯̂
fk. (39)

Both equations (38) and (39) yield the same output for a given
¯̂
fk = f̂−k since

¯̂
Ak−j = Â−k+j , inducing

the harmonic resolvent response and forcing modes containing UH,j = ŪH,−j and VH,j = V̄H,−j for j ≠ 0,
respectively. Hence, we only keep ⌊Nω/2⌋+1 Fourier coefficients of the forcing and response modes, reducing
memory consumption by half when storing these dense matrices.

5.2 CPU benefits of RSVD-∆t

The computational cost of computing harmonic resolvent modes using RSVD-LU is predominantly deter-
mined by the LU decomposition of T . In the case of resolvent analysis, the CPU scaling of the LU
decomposition is O(N1.5) and O(N2) for two- and three-dimensional systems, respectively [22, 29]. When,
in general, block matrix T contains Âp,i terms, and yields a denser matrix than block diagonal with a com-
plex sparsity pattern, the scaling is expected to be O((NωN)1.5) or O((NωN)2) or worse. Alternatively,
iterative solvers may outperform LU decomposition in terms of CPU scalability, contingent on improving
the condition number of T via applying an appropriate preconditioner [14, 30], which itself may or may not
be inexpensive to obtain.

The cost of using RSVD-∆t is directly tied to the cost of computing the actions ofH andH∗. In resolvent
analysis, the total CPU cost is proportional to the state dimension N . This cost can be broken down into
three main components: (i) time-stepping, e.g., Adams-Bashforth methods, which scales as O(N) when A is
sparse, (ii) creating forcing from Fourier space to the time domain, which scales as O(NNtNω), (iii) taking
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the response from the time domain to Fourier space, which scales as O(NN2
ω). Among these components,

the time-stepping part is the most significant contributor to the overall cost. The CPU cost of harmonic
resolvent analysis can be assessed similarly to resolvent analysis, with one exception. For periodic flows, the
LNS operator varies over time, whereas it remains constant for statistically stationary flows. We showed in
§5.1 that the cost of creating LNS operators over time scales as O(NNb) for sparse matrices.

In summary, the CPU and memory costs of RSVD-∆t exhibit linear scaling with respect to the state
dimension N , regardless of whether the base flow is steady or periodic. Moreover, the dominant terms in
the CPU cost are independent of the number of retained frequencies Nω. Both of these properties make the
RSVD-∆t algorithm considerably more scalable than RSVD-LU for harmonic resolvent analysis.

6 Minimizing the CPU cost of RSVD-∆t

Similar to time stepping in the context of resolvent analysis, periodic systems may also experience a slow
decay of transient response, which is undesirable, since we require the steady-state response in isolation to
compute the action of the harmonic resolvent operator using time stepping. This phenomenon might be
linked to instances when T is near singularity. Regardless, in cases where the LNS equations are absolutely
stable but exhibit slowly decaying modes, we propose a strategy that can effectively reduce the CPU cost of
time stepping.

6.1 Stability analysis: Floquet theorem and transient response

The steady-state response of the LNS equations, subject to forcing as described in equation (7), is of interest
for our analysis. In the case of a linear time-invariant system where A is independent of time, the decay
rate is controlled by the least-damped eigenvalue of A. This decay rate can be estimated by integrating a
homogeneous system over a sufficiently long period. However, for a linear time-periodic system, the decay
rate is determined by the least-damped Floquet exponent.

Assuming Φ(t) is the fundamental solution of (7), the monodromy matrix is constructed as

M = Φ(0)−1Φ(T ), (40)

where T is the period of the flow. When Φ(0) = I,Φ(t) is referred to as the principal fundamental matrix,
and the monodromy matrix simplifies to Φ(T ). In other words, we evaluate the principal fundamental matrix
at the end of the first period. The eigenvalues of M , known as Floquet multipliers µj , allow us to determine
the Floquet exponents λj = log(µj)/T . The least-damped Floquet exponent has the smallest real part and
it determines the decay rate of the transient response. If any mode is located in the unstable half-plane,
i.e., Re(λj) > 0, the system is globally unstable.

It is worth noting that the transient length remains independent of the steady-state period. This char-
acteristic is particularly important as it ensures that the length of integration does not rely on T , thereby
avoiding potential deterioration in the performance of RSVD-∆t for flows with low periodicity. In practice,
both finding the principal fundamental matrix and determining the Floquet exponents can be computa-
tionally expensive, especially for large-scale systems. As with autonomous cases, it is possible to run a
homogeneous simulation to analyze the long-term behavior of the transient response for periodic flows. This
equivalence has been illustrated on a test case in §7.

If T is singular but all other modes are stable, then the Floquet exponent with the smallest real part will
be zero with d̂q̄/dt as the corresponding Floquet mode. This is a well-known fact from Floquet theory [10]
and can also be seen from (18), where the phase shift direction is a non-trivial solution of the homogenous
system. Leclercq and Sipp [26] have also shown that dq̄/dt is associated with a zero Floquet exponent under
the assumption that the base flow satisfies the Navier-Stokes equations as in (17).

6.2 Efficient transient removal

Our strategy leverages the periodic nature of the steady-state part and the linear evolution of the transient
part of the solution to directly compute and eliminate the undesired transient portion. For a given pair
of solutions q1 and q2 at times t1 and t2 = t1 + T , respectively, they can be expressed as a sum of their
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steady-state and transient components as

q1 = qs,1 + qt,1,

q2 = qs,2 + qt,2,
(41)

where qt,1 and qt,2 represent the transient part which decays to zero as t →∞ and qs,1 and qs,2 denote the
steady-state part which evolves periodically. The time distance between two snapshots is one period, hence

qs,2 = qs,1. (42)

Also, the evolution of the transient part can be expressed as

qt,2 = Φ(T )qt,1, (43)

where Φ is the principal fundamental matrix of (7). Simplifying (41), (42), and (43) leads to

(Φ(T ) − I)qt,1 = b, (44)

where b = q2 − q1 is known.
By obtaining qt,1 from solving (44), the steady-state solution can be recovered as qs,1 = q1 − qt,1. The

central challenge in removing the transient is the computational cost associated with solving the linear system
in (44). Instead, we employ Petrov-Galerkin (or Galerkin) projection to obtain an approximate solution to
(44) in a more cost-effective manner.

A low-dimensional representation of the transient part can be expressed as

qt,1 = φβ1, (45)

where φ ∈ CN×r is an orthonormal low-dimensional trial basis with r ≪ N , and β1 ∈ Cr represents the
coefficients describing the transient response in this basis. Substituting (45) into (44), the linear system

(Φ(T ) − I)φβ1 = b (46)

is overdetermined. We use Petrov-Galerkin projection with a low-dimensional test basis ψ ∈ CN×r to close
(46), yielding

M̃β1 = ψ
∗b, (47)

where
M̃ = ψ∗

(Φ(T ) − I)φ (48)

is the map between coefficients. Solving (47) for β1 is inexpensive due to its reduced dimension, and from
(45) the transient estimate is obtained as

qt,1 = φ(ψ
∗φ − M̃)

−1ψ∗b. (49)

The reduced operator M̃ is obtained by integrating the columns of φ for one period, giving Φ(T )φ, and
then projecting (Φ(T ) − I)φ against the columns of ψ. This integration happens once and its CPU cost
is equivalent to integrating the LNS equations for r periods. The analogous process occurs for the adjoint
equations.

How should the trial and test bases be selected? We have found a trial basis spanning the least-damped
modes to be effective. Rather than determining these modes through an exhaustive Floquet analysis, we
employ a homogenous simulation as illustrated in the top row of the flowchart in figure 3. By initiating a
sufficiently long simulation from a normalized random initial condition, the system asymptotically converges
to the least-damped modes. The longer the integration length, the lower-dimensional the space becomes. As
demonstrated in a test case in §7, the dimension of the trial bases can, in some cases, be as small as a single
column. Our test cases employ Galerkin projection with identical trial and test bases.
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Fig. 3 Flowchart depicting the action of H using time stepping (a) with efficient transient removal strategy and (b) with
natural transient decay.

The obtained trial basis effectively captures the transient response at a specific phase θ. Utilizing φ and
performing Galerkin projection, we obtain M̃ . The time stepping is then carried out for a sufficiently long
duration to allow the initial transients to vanish before applying (47) to determine the transient at phase θ
as shown in the middle row of the flowchart in figure 3. Once the steady-state response at the same phase is
updated as qs,1 = q1 − qt,1, it is used as a new initial condition, which is synchronized with the forcing and

will not excite a transient response (within the span of the bases used to construct M̃). Then, integration for
one period is sufficient, and Nω steady-state snapshots are collected as desired. The resulting steady-state
snapshots are identical to those obtained by a prolonged wait in the case of natural decay, as illustrated in
the bottom row of the flowchart in figure 3. This procedure is also applicable to the adjoint LNS equations.
Given that the adjoint equations differ from the LNS equations, a new basis needs to be constructed for
them. Implementing this strategy can reduce the integration length by a factor of 10 or more, depending on
the desired accuracy.

7 Test cases

We assess the effectiveness of RSVD-∆t in periodic systems using two test cases. First, we use a modified
Ginzburg-Landau equation to validate the RSVD-∆t algorithm and to illustrate the transient removal strat-
egy. Second, we consider a periodic flow around an airfoil, similar to a test case from Padovan et al. [1], to
evaluate the accuracy and cost-savings of the RSVD-∆t algorithm compared to RSVD-LU.

7.1 Periodically varying complex Ginzburg-Landau equation

The one-dimensional complex Ginzburg-Landau equations is a widely used model for understanding and
controlling the non-modal growth of instabilities in transitional and turbulent shear flows [31–35]. Here,
a modified system is used as an inexpensive test case to validate our algorithm. The original complex
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Ginzburg-Landau system follows the form of (1) with

A = −ν
∂

∂x
+ γ

∂2

∂x2
+ µ(x),

µ(x) = (µ0 − c
2
µ) +

µ2

2
x2,

B = C = I.

(50)

Following Bagheri et al. [33], we set cµ = 0.2, µ2 = −0.01, γ = 1 − i, and ν = 2 + 0.2i. This system is globally
stable when µ0 < µ0,cr ≈ 0.3977 [33]. By substituting µ0(t) = µ̄0+µpsin(ωf t−π/2) in place of µ0, we transform
the Ginzburg-Landau equations to a periodically varying system with fundamental frequency ωf , following
the form of (7). We set µ0 = 0.395, µp = 0.1, and ωf = 0.1; the mean value of µ(t) is equal to µ0, whose value
is close to the critical value µ0,cr to promote significant growth. The periodic linearized operators Ap,j are
constructed using a central finite-difference method for x ∈ [−50,50] with N = 1000 grid points, and we set
W = I on account of the uniform grid.

Nine operators are built within the interval [0, T ), with T = 2π/ω0 ≈ 62.83, such that Ap(t) =Ap(t + T ),

before conducting a DFT to obtain Âp. Figure 4(a) depicts the Frobenius norm of Âp up to the fourth har-
monic, normalized relative to the maximum norm. The spectrum reveals that only the mean and the first
harmonic are active, as expected, since µ0(t) oscillates at a single frequency. Accordingly, Ap can be recon-

structed at any given time using Âp,0, and Âp,±1, and the harmonic resolvent operator is constructed around
Ωq̄ = {−1,0,1}ωf , i.e., Nb = 3. Notably, the first harmonic’s norm is several orders of magnitude smaller
than that of the base flow. Nonetheless, it should not be disregarded, as we will elucidate its significance in
subsequent discussions.
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Fig. 4 Ginzburg-Landau test case: (a) the normalized Frobenius norm of Âp,ω up to the fourth harmonic. (b) The norm of
the transient response over time (blue) along with the expected decay rate from Floquet analysis (red).

An essential initial step involves ensuring the stability of Ap. Typically, this is achieved by integrating
the homogeneous system, i.e., integrating (7) with zero forcing, starting from a normalized random initial
condition. However, the compact size of this system allows us to validate the time-stepping approach for
computing the least-damped decaying mode against a Floquet stability analysis. The least-damped Floquet
exponent, computed as λl = −0.0021−0.0477i, is expected to govern the decay rate of the transient response.
Figure 4(b) displays the norm of snapshots of the homogeneous system response over time, along with a
reference line representing eλlt. The natural decay rate aligns with the reference line, as expected, ensuring
that the transient run will ultimately converge to the least-damped Floquet mode. Additionally, the system
is not singular, as the transient dynamics never reach a naturally stable state, and none of the Floquet
exponents have a zero real value.

Before proceeding to the computation of harmonic resolvent modes and gains using RSVD-∆t and RSVD-
LU, the transient removal strategy is demonstrated, and computing the actions of H and H∗ are validated
for a given random forcing containing Ωq ∈ {−10,−9, ...,9,10}ωf , i.e., ω ∈ [−1,1] with ∆ω = 0.1. The responses
have been computed up to the 20th harmonic, i.e., ω ∈ [−2,2], using both time stepping and directly in
Fourier space as outlined in (13). We used a 4th order Runge–Kutta (RK4) integration scheme and a time
step of dt = 0.001 and Tt = 15000 for this purpose.
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Figure 5(a) depicts the spectrum of response norms. In order to highlight the substantial difference in
output generated by the harmonic resolvent operator around the base flow (Ωq̄ = {0}ωf ,Nb = 1), the norm
of the responses for the same input forcing is also presented. Figure 5(b) displays the relative errors. The
harmonic resolvent with Nb = 1 produces inaccurate results across the entire spectrum and has zero response
for ∣ω∣ > 1 since the modes at different frequencies are entirely decoupled. Therefore, neglecting Âp,±1 is
impractical, as mentioned earlier, and induces significant alterations in the harmonic resolvent modes and
gains. On the other hand, the time-stepping output exhibits almost machine-precision accuracy within ∣ω∣ ≤ 1,
and its accuracy diminishes as response norms decrease within ∣ω∣ > 1. The validation of H∗ follows a similar
procedure but is omitted here for brevity.
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Fig. 5 Ginzburg-Landau test case: (a) the norms of the Fourier space response for Nb = 3 (black) and Nb = 1 (blue), along with
the norm of the steady-state response obtained via time-stepping (red). (b) The relative errors of the norms, with the norms
from Fourier space with Nb = 3 (black line in (a)) serving as the reference.

The transient norm decay rate, as shown in figure 4(b), follows e−0.0021t. This indicates that approximately
40 periods are necessary for the transient norm to decay to 1%. However, we can significantly reduce this
duration by employing our transient removal strategy. To begin, we precompute the trial basis by conducting
a sufficiently long homogeneous simulation, and we find that a single mode suffices. Next, we integrate the
orthogonalized basis for one period to obtain M̃ and complete the preprocessing step.

Employing the same forcing as the validation case, we obtain the responses in time at the identical phase
(initiated at t = 0 or θ = 0 with a time interval of ∆t = T ), and compare them with the solutions after
the removal of transients. Figure 6(a) presents the norm of the responses, which illustrates the effectiveness
of our strategy commencing from the second period. This plot suggests that after two periods using our
transient removal strategy with Galerkin projection, we obtain an accurate steady-state snapshot which can
be used as the synchronized initial condition for the forced equations. Figure 6(b) demonstrates that the
snapshots ultimately align perfectly with the updated snapshot. Hence, using our strategy, a total of three
periods are required – two periods before transient removal and one period after the initial condition is
obtained – to acquire all Nω steady-state snapshots, a 10-fold speed-up compared to the natural decay. A
similar observation was made regarding the adjoint equations. In brief, our strategy can significantly reduce
computational costs, potentially by one or more orders of magnitude, depending on the desired level of
accuracy.

Finally, RSVD-∆t employing an RK4 integration scheme with dt = 0.003 and Tt = 2T is carried out along
with our efficient transient removal strategy to compute the harmonic resolvent modes for k = 5 and q = 1. To
establish a reference, the harmonic resolvent modes are also computed using RSVD-LU with an equivalent
number of test vectors and power iterations. Figure 7(a) illustrates that RSVD-∆t computes the five leading
gains identically to RSVD-LU. The gain relative error in figure 7(b) confirms that relative errors remain
below 10−9 across all modes. The inner products of response and forcing modes, computed via RSVD-∆t and
RSVD-LU, demonstrate parallel directions as the relative errors remain below 10−8 across all modes. The
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Fig. 6 Ginzburg-Landau test case: (a) the response norms before (black) and after (red) transient removal at the same phase,
i.e., snapshots with ∆t = T interval. (b) Comparison of the normalized response at the second period in blue, the 50th period
in black, and the second period after transient removal in red.

inner-product error between two unit-norm vectors v1 and v2 is defined as

eip = 1 − ⟨v1,v2⟩. (51)
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Fig. 7 Ginzburg-Landau test case: (a) the five leading gains using RSVD-∆t (blue) and RSVD-LU (red). (b) The corresponding
gain relative error (purple) and relative inner product errors (51) between the response modes (cyan) and the forcing modes
(green) computed via RSVD-∆t and RSVD-LU.

7.2 Flow over an airfoil

Our second test case consists of the flow over a NACA0012 airfoil at a low Reynolds number of Re = 200
and a steep angle of attack of α = 20○, which is dominated by periodic motions. This problem serves as a
benchmark for computational cost and accuracy comparisons. A direct numerical simulation is conducted
using the “CharLES” compressible flow solver. To mimic the incompressible simulations by Padovan et al. [1],
we set the Mach number to 0.05. The simulation employs a C-shaped mesh with a total of 62,000 cells. The
leading edge of the airfoil is located at the origin (x/Lc, y/Lc) = (0,0), where Lc = 1 is the chord length. The
computational domain spans x/Lc×y/Lc ∈ [−49,50]×[−50,50]. A constant time step of ∆tU∞/Lc = 6.88×10−5

is used, corresponding to a Courant-Friedrichs-Lewy number of 0.91, where U∞ is the inflow streamwise
velocity. Integration continues for a sufficient duration until the flow reaches a periodic state. Figure 8(a)
displays the power spectral density computed from the transverse velocity at (x/Lc, y/Lc) = (3.0,−0.43),
where a pronounced vortex shedding occurs behind the trailing edge. The shedding frequency is Stf = 0.114,

where the Strouhal number is defined as St = ωLcsin(α)
2πU∞

. The consistency between the dominant frequency
identified in the power spectral density and obtained from our linearized code has been confirmed in our
previous work [36].
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Fig. 8 Airfoil test case: (a) the PSD spectrum based on transverse velocity at (x/Lc, y/Lc) = (3.0,−0.43). (b) The normalized

Frobenius norm of Âp,St up to the eighth harmonic.

The linearized operators are constructed at 100 time points within T = 2π/Stf ≈ 55. Performing a DFT

on the Ai, we generate 100 LNS operators Âj in Fourier space to be used for harmonic resolvent analysis.

The Frobenius norms ∣∣Âp,St∣∣F , depicted in figure 8, indicate that Ap(t) can be accurately reconstructed
using up to the 5th harmonic. Given that the linearized operator Ap(t) is real-valued for this problem,
we retained only ⌊Nb/2⌋ + 1 = 6 coefficients, i.e., the zeroth and 5 positive harmonics. For time stepping,
dt = 0.0045 is chosen to ensure the stability and accuracy of the RK4 integration scheme. The input and
output perturbation frequency range spans up to the 7th harmonic, i.e., Nω = 15. The domain of interest
is x/Lc × y/Lc ∈ [−4,12] × [−2.5,2.5], identical to that in Padovan et al. [1]. We seek optimal forcing and
response under the Chu energy norm [37], which has been used in several previous studies [3, 13, 38]. The
number of test vectors is set to k = 5, and q = 2 power iteration proves sufficient for the convergence of both
gains and modes.

A homogeneous simulation of the time-periodic system exhibits a slow decay rate, so we employ the
transient removal strategy. Three snapshots constitute the trial basis, obtained after a sufficiently long
time interval where most initial transients are eliminated. A random forcing, encompassing the set Ωq ∈

{−7,−6, ...,6,7}Stf frequencies, is applied to the LNS equations for over 30 periods. The snapshot norms
slowly approach towards the steady-state norm but remain far from converging, as illustrated in figure 9.
Utilizing our strategy, the relative norm error falls below the 1% threshold after 20-30 periods in most cases
with different random forcings. The efficacy of our strategy is further emphasized in figure 9(b), where the 1%
relative error is achieved before 10 periods for the optimal forcing (from RSVD-∆t output). Ultimately, we set
Tt = 29T and conducted our simulations for a total duration of 30 periods to compute the actions of H and
H∗. Extrapolating the natural decay rate suggests that, in the absence of our transient-removal strategy, the
norms reach the 1% threshold after around 2000 periods, demonstrating over a 60-fold acceleration in time
stepping and overall algorithm performance with our strategy. This observation holds true for the adjoint
equations as well.
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Fig. 9 Airfoil test case: (a) the response norms before (black) and after (red) transient removal, and the true steady-state
norm (blue), at the same phase, i.e., snapshots with ∆t = T interval, for a random forcing. (b) The relative error between the
steady-state response norm and the response norms before (black) and after (red) transient removal.
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The optimal forcing and response modes (apart from the phase shift mode) are forcing and response
modes are shown in figure 10. The vorticity patterns of the first output mode of the harmonic resolvent
closely predict vortical structures observed in simulations that are induced by sinusoidal perturbations to
the periodic base flow across all frequencies[1]. This close match is attributed to the low-rank nature of
the harmonic resolvent operator of the airfoil. This agreement also implies that regardless of the forcing
type, resultant flow perturbations resemble the suboptimal output modes. Moreover, the proximity of forcing
modes to the airfoil suggests sensitivity to perturbations near it. The significance of harmonic resolvent
analysis lies in its ability to uncover flow structures that would remain hidden when linearizing around the
temporal mean. It reveals the intricate interplay between different frequencies, the base frequency and its
harmonics, which collectively contribute to the observed flow patterns during real perturbation analysis.

The results from RSVD-∆t closely align with the existing data obtained from RSVD-LU by Padovan
et al. [1], despite variations in the CFD solver, boundary conditions, domain setup, and energy norm. The
gain plot in figure 11(a) exhibits a similar pattern to Padovan et al. [1], with the exception that we have
retained the optimal gain associated with the phase shift (the exact values differ due to differences in the
problem setup). We noted that the leading mode and gain, i.e., the mode associated with the phase shift,
converged without power iterations due to a substantial two-orders-of-magnitude gap between the optimal
and suboptimal gains.
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Fig. 10 Airfoil test case: real part of the vorticity field computed from (a, c, e, g) the input mode and (b, d, f, h) the output
mode associated with the first suboptimal gain.

From a computational standpoint, a fair comparison between the RSVD-LU and RSVD-∆t algorithms
is feasible when both utilize the same parameters. However, the use of Nb = 11 proves to be excessively
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memory-intensive for the RSVD-LU algorithm, exceeding the available 3.5 TB of memory on our cluster.
The CPU and memory scaling plots in figure 11(b) and (c), respectively, depict the LU decomposition of T
with Nb = 3, maintaining a constant N while varying the number of blocks Nω from 5 to 15 with ∆Nω = 2.
On the same plots, we present the cost of computing the action of H on a vector using time-stepping. The
total duration is set to 30 periods to obtain an accurate solution. We only vary Nω while keeping Nb = 3, the
overall cost of RSVD-∆t remains constant and unaffected by changes in Nω. This implies that the creation of
LNS operators and the time-stepping process incur significantly higher costs compared to the transformations
between Fourier space and the time domain for forcing and response. The memory of RSVD-∆t to store
LNS operators remains independent of Nω, as expected (see §5.1), while storing Q and F matrices grows
linearly with the number of frequencies Nω.

RSVD-LU is estimated to require 1543 CPU-hours for the LU decomposition of T , and an additional 15
CPU-hours for solving the LU-decomposed system for each test vector, yielding a total cost of CPURSVD-LU ≈

1543 + 15 × 5 × 2 × 2 = 1843 CPU-hours for k = 5, q = 1. On the other hand, employing RSVD-∆t with the
aforementioned time-stepping parameters and Nb = 11 and Nω = 15 incurs a cost of approximately 7 CPU-
hours per period for a test vector, resulting in a total cost of CPURSVD-∆t ≈ 30×7×5×2×2 = 4200 CPU-hours.
The cost of QR decomposition and the final SVD are ignored as they are orders of magnitude faster. In
terms of memory consumption, RSVD-LU peaks at RAMRSVD-LU ≈ 2036GB for the LU decomposition of
T . RSVD-∆t , on the other hand, stores ⌊Nb/2⌋+ 1 = 6 sparse matrices, each of size 0.4 GB, and three dense
matrices of size Nk(⌊Nω/2⌋ + 1) = 313630 × 5 × 8, totaling RAMRSVD-∆t ≈ 0.4 × 6 + 0.185 × 3 ≈ 3GB. This
translates to a memory saving of approximately three orders of magnitude, even with an unbalanced number
of base frequencies. Overcoming the memory consumption hurdle, which is typically the limiting factor in
practice, RSVD-∆t emerges as a viable tool for analyzing larger-scale flows compared to RSVD-LU.
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Fig. 11 Airfoil test case: (a) the five leading gains using RSVD-∆t . (b) The CPU-hour, and (c) memory usage scaling of
RSVD-LU (red) and RSVD-∆t (blue) to compute the action of H onto a vector, i.e., k = 1. The memory usage of RSVD-∆t is
decomposed into memory required to store LNS operators (solid) and forcing and response matrices (dashed).

8 Conclusions

This paper presents an extension of the RSVD-∆t algorithm that was originally developed for resolvent anal-
ysis of steady base flows to handle harmonic resolvent analysis of periodic flows. Specifically, we demonstrate
that the time-stepping technique employed within RSVD-∆t can effectively replace the actions of H and its
complex conjugate H∗ in Fourier space. In terms of CPU cost, the RSVD-∆t algorithm exhibits a scaling
of O(N) for both resolvent and harmonic resolvent analyses. This offers a significant advantage, considering
that the LU decomposition of T scales as O((NωN)c) with c ≥ 1.5. Regarding memory usage, our algorithm
only stores relevant matrices in Fourier space and exhibits O(NNω) scaling; in contrast, the memory peak
of LU decomposition of T empirically scales with O((NωN)1.5) or worse. One difference between applying
RSVD-∆t to resolvent and harmonic resolvent analyses lies in the necessity to update the LNS operators
during the time-stepping process for the latter. These operators are efficiently generated on the fly from their
Nb Fourier components.

The error sources in our algorithm align with those in resolvent analysis, extensively investigated in
Farghadan et al. [22]. A unique contribution of this paper is the introduction of a novel transient removal
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strategy for harmonic resolvent analysis. While reminiscent of our approach for resolvent operators, the
challenge in harmonic resolvent analysis lies in the intertwining of all retained frequencies. Our strategy
takes advantage of the differing evolution of the steady-state and transient components of the response and
Petrov-Galrkin or Galerkin projections.

A validation of RSVD-∆t against RSVD-LU is conducted using a periodic Ginzburg-Landau system.
Additionally, we verify the governing role of the Floquet exponent in determining the decay rate of the
least-damped mode of the system. Extending the application of our algorithm, we analyze a two-dimensional
flow passing an airfoil, providing insights into the CPU and memory complexities. Despite dealing with a
mid-sized flow scenario, a substantial memory gap persists between RSVD-LU and RSVD-∆t algorithms.
The computed forcing and response modes corresponding to the first suboptimal gain closely resemble
those obtained by Padovan et al. [1]. The adaptation of the transient removal strategy for these test cases
significantly enhanced the performance of RSVD-∆t, resulting in a 10-fold speed-up for the Ginzburg-Landau
problem and a 60-fold speed-up for the airfoil to reach a 1% relative error. The speed-up is even greater for
lower error tolerances.

Moreover, our algorithm exhibits versatility, accommodating non-identity weight, input, and output
matrices. This capability extends to computing modes for the modified harmonic resolvent operator, and in
particular, the analysis of cross-frequency amplification mechanisms via Hω2,ω1

. Our algorithm tackles the
computation of subharmonic resolvent modes if desired. Implementation of the RSVD-∆t algorithm within
Petsc [39] and Slepc [40] environments leverage parallel computations for enhanced efficiency. Our time-
stepping approach allows for a matrix-free application. This can be implemented using any code equipped
with linear direct and adjoint capabilities, bypassing the explicit formation of T [24, 41]. Finally, the time
stepping within our algorithm can also be used along with other SVD algorithms, e.g., Arnoldi and power
iteration, if desired.

In turbulent flows, where the state dimension N can become very large due to higher resolution require-
ments, CPU cost and memory requirements can swiftly impose constraints on the applicability of RSVD-LU.
This limitation applies even to steady problems and is further exacerbated for harmonic resolvent analysis
due to the inflated frequency-domain operators necessitated by triadic frequency coupling. Our algorithm cir-
cumvents this issue by strategically operating in the time domain, avoiding the need for limiting operations
like LU decomposition, leading to linear cost scaling. Because of this key distinction, the RSVD-∆t could
enable harmonic resolvent analysis of previous intractable turbulent flows.
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Appendix A RSVD-∆t for the subharmonic resolvent operator

In §3.5, we provided an overview of subharmonic resolvent analysis. In this appendix, we briefly outline the
application of RSVD-∆t in computing subharmonic resolvent modes and gains. Consider the frequency of
interest as γ ∈ Ωγ . This set specifies the perturbation frequency, while the base flow frequency content is
confined to Ωq̄.
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To compute the actions ofH andH∗ using time-stepping, we must adhere to both the base flow frequency,
enforcing a duration of T = 2π/ωf , and the perturbation frequency, enforcing a duration of Tp = 2π/γ, in
order to obtain Nω steady-state solutions to (7). Thus, we need to integrate for Tsub such that Tsub/T ∈ N
and Tsub/Tp ∈ N, during which Nω equidistant snapshots are saved. For instance, if we consider γ = ωf /5,
requiring Tp = 2π/(ωf /5) = 5T , integrating for Tsub = 5T is sufficient to obtain the steady-state solutions. All
the other steps remain the same as introduced in Algorithm 1.
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