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ABSTRACT

This thesis develops a data-driven approach to transient growth analysis. The transient

growth of perturbations made possible by the non-normality of the linearized Navier-Stokes

equations plays an important role in bypass transition. Traditionally, it is quantified via

a singular value decomposition of the matrix exponential of the linearized Navier-Stokes

operator, requiring direct access to the linearized operator.

In this thesis, we propose a data-driven approach to studying transient growth in which

we calculate optimal initial conditions, their responses, and the energy gains between them

directly from flow data. We present two equivalent formulations. In the first, inspired

by dynamic mode decomposition, data is used to approximate the matrix exponential via

a least-squares approximation, and modes and gains are obtained from its singular value

decomposition. In the second formulation, the typical definition of energy gain is directly

maximized under the assumption that the optimal initial conditions and responses lie within

the span of the data. We show rigorously that these two methods are equivalent.

The data-driven method converges to the operator-based solutions with increasing data,

provided that the data is noise-free. However, even moderate process or measurement noise

levels can lead to large errors. To remedy this, we introduce two regularization methods

inspired by the two formulations mentioned above. The first leverages a regularized variant

of dynamic mode decomposition, while the second directly regularizes the correlation of the

initial conditions to prevent its small eigenvalues, which are generally associated with noise,

from creating near-zero denominators in the gain quotient.

We validate the data-driven methods using a Ginzburg-Landau model problem corrupted

by process and measurement noise. It is found that the variant of dynamic mode decomposi-

tion can produce a consistent result over a range of noise. Meanwhile, regularizing the initial

condition can extract decent results over a broad range of the regularization parameters, and

outstanding results with some selected regularization values.

Finally, we apply our methods to study the spatial transient growth of distances in a

transitional boundary layer using data from the Johns Hopkins Turbulence Database. While

previous studies have addressed this problem using locally parallel methods, obtaining and

analyzing the non-parallel spatial evolution operator is non-trivial for this problem. The

x



data-driven method does not suffer from this complication since the simulation data naturally

includes the impact of non-parallel evolution. Our method successfully identifies the optimal

output response and provides plausible estimates of the transient spatial energy growth at

various spanwise wavenumbers.
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CHAPTER 1

Introduction

1.1 Motivation

The distinct properties of laminar and turbulent flows significantly impact various engineer-

ing disciplines. In aerospace, the transition from laminar to turbulent flow typically results in

increased drag, flow separations, heightened noise levels, and more. Conversely, in the energy

sector, turbulent flow enhances mixing, thereby improving heat and mass transfer. These

phenomena are closely linked to global health and environmental conditions. Consequently,

research into predicting the transition from organized laminar flow to highly nonlinear and

chaotic turbulent flow is paramount. This topic’s importance is underscored by its inclusion

in NASA’s computational fluid dynamics (CFD) vision 2030 [31].

Pioneering developments in flow stability theories date back to observations made by

Reynolds in the 19th century [24]. Early research efforts by Refs. [21, 42, 8] sought to iden-

tify natural transition points in flows, whereas others, such as Refs. [41, 18], explored the

effects of artificial perturbations. Additionally, the formulation of the Orr-Sommerfeld equa-

tion describes the hydrodynamic stability under the parallel flow assumption [19, 32]. The

unstable eigenmodes of this Linear Navier-Stokes Equation (LNS) system induce exponential

growth in perturbation energy, known as modal growth, as demonstrated by Refs. [36, 28, 30].

However, numerous laboratory experiments have reported significantly lower critical

Reynolds numbers than expected [35]. Further research uncovered the phenomenon of alge-

braic or transient growth, potentially triggering bypass transitions [13, 10, 12]. This growth,

stemming from the non-normality of the linear system, can under certain conditions amplify

energy to levels that either initiate modal growth or make nonlinear terms relevant, as de-

tailed by Refs. [23, 30, 34]. Transient growth, quantitatively represented by the first Singular

Value Decomposition (SVD) mode of the linear time evolution operator, plays a pivotal role

in various flow transition scenarios.

Operator-based transient growth analysis has elucidated the physics of flows across dif-
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ferent contexts, including parallel shear flow instabilities [22], flow over backward-facing

steps [3], and flow through expansion pipes [4]. However, defining the operator is usually

nonintuitive: it not only requires a base flow solution but obtaining the operator from the

base flow is also hard. The rapid advancement of computational technologies presents a

data-driven approach as a viable and promising solution to these challenges. Moreover,

data-driven methods often have the advantage of ease of use by obtaining the flow structures

directly from data.

1.2 Stability Theories in Flow Transitions

1.2.1 The Navier-Stokes Equation

Flow stability and transition theories have largely been developed based on the LNS equa-

tions for infinitesimal perturbation disturbances. In this context, we focus on formulations

assuming incompressible and parallel flow conditions. Accordingly, the flow velocity is rep-

resented as

ui → Ui + ui, (1.1)

where Ui symbolizes the parallel base flow solution, and ui represents the perturbations.

Expressing the flow state as a base flow plus perturbations helps to linearize the equation.

The linearized momentum equation and the continuity equation for flow perturbations are

expressed as

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −∂p

∂x
+

1

Re
∇2u (1.2)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Re
∇2v (1.3)

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
+

1

Re
∇2w (1.4)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.5)

where [x, y, z] are the streamwise, wall-normal, and spanwise directions; [u, v, w] are the

velocity perturbations in the corresponding directions; p is the pressure perturbation. U is

the streamwise velocity from the base flow solution. Since the parallel flow is assumed, the

base flow velocities in the other two directions are zero. Equations (1.2) to (1.5) delineate

the dynamics of disturbances under the specified assumptions, with the prime symbol (′)

denoting a derivative with respect to y. Then transform the Navier-Stokes equations into

their velocity-vorticity formulation, and apply the Fourier Transform in the homogeneous
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directions (x and z), the disturbance evolution is described by Ref. [30]

∂

∂t

[
v̂

η̂

]
= −i

[
LOS 0

LC LSQ

][
v̂

η̂

]
. (1.6)

Here, v̂ and η̂ represent the transformed wall-normal velocity and vorticity, respectively.

The operators LOS, LSQ, and LC correspond to the Orr-Sommerfeld, Squire, and cross-term

operators. This equation can be viewed as an initial value problem for small disturbances in

viscous flows. Simplifying further, we define q = [v̂, η̂]T and A =

[
LOS 0

LC LSQ

]
, leading to

d

dt
q = Aq, (1.7)

and,

qt = eAtq0 =Mq0. (1.8)

Here, qt ∈ Cn represents the state q at time t, and q0 is the initial state. Equations (1.7) and

(1.8) lay the foundation for discussing flow stability and energy growth within this paper.

1.2.2 Modal Growth and Transient Growth

The eigenvalues of A are an indication of the stability of q over time. If all of the eigenvalues

have negative real parts, the norm of the state always decays to zero, thus limt→∞ (∥qt∥) = 0.

On the other hand, if an eigenvalue has a positive real part, its corresponding eigenmode

will grow exponentially. This growth is often referred to as the modal growth. This sta-

bility analysis treats the stability as an eigenvalue problem. It is a powerful method that

comes directly from the Navier-Stokes operator and mathematically defines the condition of

instabilities. However, discrepancies between modal stability analysis and some experimen-

tal findings highlight its limitations. For instance, as reported in Ref. [35], the transitional

Reynolds number in plane Couette flow can be much lower than the critical Re that causes

model growth. Moreover, it has been demonstrated that flows can transition to turbulence

even when all eigenmodes are stable. This suggests that flow conditions may become nonlin-

ear before the unstable modes are significantly amplified, named the bypass transition. One

possible cause of this is explained by the theory of transient growth.

The linear combination of two non-orthogonal vectors may experience temporal growth,

even as the individual vectors decay. A matrix with non-orthogonal eigenvectors is termed

non-normal, a common characteristic of A in fluid systems, particularly in shear flows. Thus,

transient growth can be defined as the maximum amplification at time t across all initial
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conditions [30], expressed as

G(t) = max
q0

∥q∥2

∥q0∥2
= max

q0

∥exp(At)q0∥2

∥q0∥2

= σ2
1 (expAt)

= σ2
1 (M)

(1.9)

where σ1 represents the first dominant singular value of the matrix exponentialM := expAt.

This temporal energy growth can be significant enough to render nonlinear terms influential,

thereby causing the flow to deviate from linear assumptions. Equation (1.9) is written

assuming the two norm. To be more general, ∥q∥2 should be written as

∥q∥2 = q∗Wq, (1.10)

where W is the weight matrix. When W is the identity matrix, ∥q∥2 corresponds to the

Euclidean norm. This W can also be understood through defined an observation y. Let

y := Lq, where L∗L = W. Given that the weight matrix is full-ranked, L always exists.

Consequently, the evolution of y is described by

dy

dt
= LAL−1y. (1.11)

The solution to Equation (1.11) is

y(t) = eLAL−1ty(0). (1.12)

This equation can be further transformed into

y(t) = LeAtL−1y(0) = Myy(0). (1.13)

Therefore, the transient growth, in a more general sense, can be obtained from the singular

value square of My.

1.3 Data-driven Methods in Fluid Dynamics

With advancements in computational technology, data-driven methods have garnered sig-

nificant attention in recent years. Proper Orthogonal Decomposition (POD) and Dynamic

Mode Decomposition (DMD) are two fundamental techniques for extracting flow structures

from data. Refs. [33, 26] offer a clear overview of the principles underlying these methods.
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Nevertheless, we provide a brief introduction to them, given their close relevance to our

approach.

1.3.1 POD

The POD method decomposes a set of zero-mean data into orthogonal modes. Introduced

to the fluid dynamics field by Lumley [17] to identify coherent structures in fluid flows, the

aim of POD is expressed as

q =
∑
j

ajϕj, (1.14)

where q represents the state perturbations around zero mean, ϕj denotes the POD modes,

and aj are the corresponding coefficients. The physical interpretation of the modes varies

depending on the specific definition of q. However, what remains constant is that POD

modes are the optimal modes that best represent the data. By employing a limited number

of modes and varying coefficients, the flow at different spatial or temporal points can be

estimated.

When calculating these modes, a prevalent method is the use of SVD, which for a data

matrix Q ∈ Cm×n is expressed as

Q = UΣV∗. (1.15)

Here, the symbol (∗) denotes the Hermitian matrix. U ∈ Cm×m represents the left singular

vectors, corresponding to the eigenvectors of the matrixQQ∗, and embodies the POD modes.

Conversely, V ∈ Cn×n relates to the POD modes in the reduced space, represented by the

eigenmodes of Q∗Q. The matrix Σ is a diagonal matrix containing the singular values

arranged in descending order, such that σ1 ≥ σ2 ≥ · · · ≥ σm.

Some variations of this methodology include the Balanced POD proposed by Ref. [25] and

spectral POD popularized by Refs. [17, 16, 37]. These extensions broaden the application

of the method, enhancing compatibility with flow control strategies and facilitating analysis

in the spectral space. This enables the resolution of flow structures within the space-time

domain, providing deeper insights into fluid dynamics.

1.3.2 DMD

DMD was first introduced by Schmid [29]. It aims to capture the dynamics of data by closely

approximating its evolution matrix. The version of DMD referenced later in this paper is

the algorithm presented by Ref. [40], termed “exact DMD.”

Similar to Equation (1.14), if we consider representing data that satisfies Equation (1.8)

5



with a set of DMD modes, [v1, v2, . . . , vn], the state can be discretely represented as

q(ti) =
∑
j

cje
λjtivj =

∑
j

cjµ
ti
j vj. (1.16)

Here, cj are constant coefficients, and λj ∈ C are interpreted as the eigenvalues of A,

determining the growth or decay rate and the oscillation frequency of the DMD modes. Let

yk, k ∈ [1,m] represent the set of observations of the data. If there exists a linear relationship

between yk and y′k, both belonging to the observation set, such as

y′k = Myk. (1.17)

then the DMD modes and eigenvalues can be derived directly from the eigendecomposition

of matrix M. If the observations with the aforementioned linear relations are specifically

selected to be equally spaced in time, it becomes the definition given by Ref. [29].

The challenge then lies in estimating this linear operatorM. An optimal estimate, in the

least squares sense, can be achieved using the pseudoinverse,

M = y′ky
+
k , (1.18)

where (+) denotes the pseudoinverse. Since the focus is solely on the eigenmodes of M, the

computation of the DMD modes and eigenvalues can be performed in a lower dimension.

This approach avoids the need to form the full M matrix, which is typically computationally

intensive. The details are referred to Ref. [40].

1.4 Contribution and Outline

This thesis aims to develop a robust data-driven tool for transient growth analysis that not

only captures the transient growth of perturbation energy but also identifies the optimal

modes. Additionally, as we apply our method to boundary layer data, we delve into the

physics of spatial growth in transitional boundary layers. The major contributions include,

1. Formulated Least-Square Approximation Method (LSAM) based on DMD and Cost

Function Method (CFM) based on direction maximizing the gain and showed the

equivalency.

2. Proposed TLSM and IRM based on the two formulations, improving the method’s

noise resistance.
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3. Empirically evaluated the method’s performance and robustness using the modal prob-

lem developed by the GL equation.

4. Applied the method to study spatial transient growth in a transitional boundary layer,

demonstrating qualitative agreement with theoretical predictions using data, without

the need for linear operators.

The work from Ref. [7] needs to be mentioned here, which is also targeted to obtain

a data-driven transient growth analysis through an idea extracted from DMD. However,

we think their method deviates from the definition of the optimal transient growth that

maximizes energy growth. They only find the optimal perturbation at t = 0, then evolve it

into the future time. Therefore, we don’t think their method has obtained transient growth.

Besides, in the spatial case, the linear operator, A, is changing when the final location moves

further downstream.

Chapter 2 details our method, introducing two independent inspirations that converge to

yield our approach. In Section 2.2, we address the robustness of the method by discussing

two distinct regularization strategies derived from our theoretical underpinnings.

In Chapter 3, we validate our method using the GL equation, assessing the impact of

parameters m and γ. Moreover, we compare the two regularization methods. These evalua-

tions enhance our understanding of the data-driven approach and its applicability to practical

scenarios.

Chapter 4 employs our method to detect spatial transient growth in data from a transi-

tional boundary layer. We first outline the preprocessing steps that prepare the input data,

followed by a presentation and comparison of our results with existing literature.

Finally, Chapter 5 explores potential future directions and applications of our method. We

discuss possible improvements and additional fields where our approach could be beneficial.
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CHAPTER 2

Data-Driven Transient Growth Analysis

2.1 Formulation

Consider the data matrices

Q0 = [q0,1, q0,2, . . . , q0,m] ,Qt = [qt,1, qt,2, . . . , qt,m] , (2.1)

which make Q0 and Qt ∈ Cn×m. The columns of Q are the state vectors, which represent

the state at a certain time. Each column is a distinct realization, like the yk defined in

Section 1.3.2. Therefore, we have

qt,k = Mq0,k, (2.2)

for k ∈ [1,m]. In fluid dynamics, it is common for n ≪ m. Under this condition, we can

assume Q0 possesses full column rank. Drawing from the dataset, two distinct formulations

are introduced: LSAM and CFM. Although these methods stem from different theoreti-

cal backgrounds, subsequent analysis demonstrates that they yield identical results. The

rationale for presenting both formulations is their implications for distinct regularization

strategies.

2.1.1 Least-Square Approximation Method

Similar to DMD, our method relies on two data matrices with linear relationships, as indi-

cated in Equation (1.17). Rewriting Equation (1.17) in terms of our data matrices yields

Qt = MQ0 (2.3)

M̂ = QtQ
+
0 . (2.4)

By appropriately defining the snapshots, the matrix M becomes the discrete representation

of the linear operatorM. Hence, in transient growth analysis, the square of its first singular
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value represents the optimal transient growth, expressed as

GLSAM(t) = σ2
1

(
M̂

)
= σ2

1

(
QtQ

+
0

)
(2.5)

Assuming Q0 has full column rank allows for the pseudoinverse to be defined as

Q+
0 = (Q∗

0Q0)
−1Q∗

0. (2.6)

Additionally, since Q∗
0Q0 is Hermitian, we can perform a Cholesky decomposition on it,

resulting in

Q∗
0Q0 = B∗B, (2.7)

where B is invertible. Substituting Equations (2.6) and (2.7) into Equation (2.4) gives

GLSAM(t) = σ2
1

(
QtQ

+
0

)
= σ2

1

(
QtB

−1
(
Q0B

−1
)∗)

. (2.8)

By representing the squared singular value as the eigenvalue of the product of a matrix and

its Hermitian transpose, and after a series of simplifications, we arrive at

GLSAM(t) = σ2
1

(
QtB

−1
(
Q0B

−1
)∗)

= λ1
(
QtB

−1
(
Q0B

−1
)∗ (

Q0B
−1
)
B∗−1Q∗

t

)
= λ1

(
QtB

−1
(
B∗−1Q∗

0Q0B
−1
)
B∗−1Q∗

t

)
= λ1

(
QtB

−1
(
B∗−1B∗BB−1

)
B∗−1Q∗

t

)
= λ1

(
QtB

−1B∗−1Q∗
t

)
,

(2.9)

which further simplifies to

GLSAM(t) = λ1
(
QtB

−1B∗−1Q∗
t

)
= σ2

1

(
QtB

−1
)
. (2.10)

The left and right singular values of M̂ represent the output and input mode respectively.

Or, it can also be understood as the eigenvectors of M̂M̂∗ and M̂∗M̂.

To obtain these modes, we can rewrite Equation (2.10) as

M̂M̂∗ = QtB
−1B∗−1Q∗

t = UΛU∗, (2.11)

where U is the eigenvector of QtB
−1B∗−1Q∗

t , and Λ is the gain described in Equation (2.10).

Subsequently, we want to compute the input mode, V. First, we need to write the SVD

9



representation of QtB
−1, which is

QtB
−1 = UΣV∗. (2.12)

Then compute M̂∗M̂,

M̂∗M̂ =
(
Q0B

−1
) (

QtB
−1
)∗ (

QtB
−1
) (

Q0B
−1
)∗
. (2.13)

Substitute Equation (2.12) into Equation (2.13), produces

M̂∗M̂ =
(
Q0B

−1V
)
Σ2

(
V∗Q0B

−1
)∗
, (2.14)

where Q0B
−1V defines the eigenvector of M̂∗M̂, which defines the input mode. Therefore,

the optimal I/O modes are columns in U and V corresponding to the first singular value σ1.

In other words, we may define

uin = Q0B
−1v1, (2.15)

uout = u1 =
1

σ1
QtB

−1v1. (2.16)

To be more general, we may start from Equation (1.13). By converting y into a data

matrix form and applying the pseudoinverse in the LSAM for y, the transient growth is

computed as

GW
LSAM(t) = σ2

1

(
YtY

+
0

)
, (2.17)

where Y0 = LQ0 and Yt = LQt. Applying the same pseudoinverse technique and converting

Y back to Q, we obtain

GW
LSAM = σ2

1

(
YtB

−1
W B∗−1

W Q∗
0L

∗) , (2.18)

where BW denotes the Cholesky decomposition of Y∗
0Y0 = Q∗

0L
∗LQ0. It can also be demon-

strated that B∗−1
W Q∗

0L
∗, multiplied by its Hermitian conjugate, results in the identity matrix.

Thus, the weighted growth is ultimately expressed as

GW
LSAM = σ2

1

(
YtB

−1
W

)
= σ2

1

(
LQtB

−1
W

)
. (2.19)

Correspondingly, Equation (2.15) and (2.16) in the weighted case is

uin = Q0B
−1
W vW,1, (2.20)

uout = u1 =
1

σ1
QtB

−1
W vW,1. (2.21)
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2.1.2 Cost Function Method

The cost function method, aimed at solving the optimization problem, is based on the

definition of transient growth as outlined in Equation (1.9). Consequently, the state vectors

qt and q0 are represented as

qt = Qtψ (2.22)

q0 = Q0ψ. (2.23)

By substituting these expressions into Equation (1.9), we derive

G(t) = max
ψ

∥Qtψ∥2

∥Q0ψ∥2
. (2.24)

Equation (2.24) reinterprets data-driven transient growth as the maximum energy amplifi-

cation achieved through optimal linear combination coefficients ψ. Given that Q0 ∈ Cn×m

with n≫ m, it is likely that Q0 possesses full column rank. In situations where the denom-

inator might approach zero, regularization techniques are applied, which are detailed in the

following section. Assuming the denominator remains non-zero, the optimization problem

can be expressed as

G(t) = max
ψ

ψ∗Q∗
tWQtψ

ψ∗Q∗
0WQ0ψ

. (2.25)

A cost function is formulated as

J = ψ∗Q∗
tWQtψ − λ (ψ∗Q∗

0WQ0ψ − 1) , (2.26)

to solve the maximization problem. Identifying the extremum of the cost function involves

solving ∂J
∂ψ

= 0. This approach, previously proposed by Ref. [39], translates the problem into

two sequential SVDs. Here, we introduce an alternate perspective utilizing the Cholesky

decomposition.

Starting from Equation (2.25), we define BW as previously outlined in Section 2.1.1.

Subsequently, by employing the Cholesky decomposition W = L∗L, Equation (2.25) can be

expressed as

G(t) ≈ GCFM = max
ṽ

ṽ∗B∗−1
W Q∗

tL
∗LQtB

−1
W ṽ

ṽ∗ṽ
, (2.27)

where ṽW = BWψ (and thereby ψ = B−1
W ṽW ). Following a Rayleigh quotient, the solution is

found to be

G(t) = σ2
1

(
LQtB

−1
W

)
. (2.28)
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Similarly, the I/O modes can be written using the coefficient of the optimal growth, ψ,

uin = Q0ψ = Q0B
−1
W ṽW ,

uout =
1

σ1
Qtψ =

1

σ1
QtB

−1
W ṽW .

(2.29)

This demonstrates that both methods, as elucidated in Equations (2.19), (2.20),(2.21) and

(2.28), (2.29) yield identical results.

2.2 Regularization

As could be anticipated from its connection with DMD, the method derived above is sensitive

to noisy data. Building on the two formulations introduced in the previous section, we

propose two regularization methods to enhance robustness against noise. TLSM adapts the

algorithm from Ref. [6], representing an advancement specifically designed for the DMD

method. Conversely, the IRM is elucidated through the framework of the CFM.

2.2.1 Total Least Square Method

Expanding on the algorithmic principles common to DMD techniques, our investigation

extends to well-established strategies for managing noise, aimed at enhancing LSAM’s ro-

bustness against both measurement and process noise. Notably, the TLSM, initially put

forward by Ref. [11], marks a significant progression in this area. Ref. [6] later introduced a

slightly more efficient and computationally simpler variant, which we have incorporated into

our analysis. For completeness, we provide an overview of this TLSM methodology within

our discussion.

Our goal is to solve for M in the equation MQ0 = Qt, using the pseudoinverse to mini-

mize the least squares error. In an overdetermined system, the pseudoinverse is specifically

designed to minimize the error in estimating Qt, which can be articulated as

minimizing ∥EQt∥F in Qt + EQt =MQ0, (2.30)

where EQt represents the residual error in Qt. The minimization characteristic inherent to

overdetermined systems is leveraged by the TLSM approach. In fluid dynamics data, it is

common to encounter scenarios where n ≫ m, contrasting with the n < m condition. To

address this disparity, we can simplify the system by truncating POD modes, effectively tran-

sitioning from an underdetermined to an overdetermined system. Revisiting Equation (2.30),
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for data that exhibit ‘suitable and well-behaved’ characteristics [6], an inverse dynamic re-

lationship from Q′ to Q can be formalized as

Q0 = MinvQt, (2.31)

where Minv denotes the inverse dynamics system, estimated by

Minv = Q0Q
+
t . (2.32)

This ’backward’ pseudoinverse approach aims to minimize the error in estimating Q0 as

described by

minimizing ∥EQ0∥F in Qt =M(Q0 + EQ0). (2.33)

In contrast, the TLSM endeavors to minimize both errors concurrently, as explained in

Equation (2.34) and further elaborated in Equation (2.35),

minimizing ∥E∥F in Qt + EQt =M(Q0 + EQ0), E =

[
EQ0

EQt

]
, (2.34)

[M− I]

[
Q0 + EQ0

Qt + EQt

]
= 0. (2.35)

This approach presupposes the condition of an overdetermined system, 2n < m. Typically,

however, n > m, which necessitates reducing the count of the system’s POD modes to a

size r, thereby ensuring 2r < m. To solve Equation (2.35), we first perform the SVD of[
Q0 + EQ0

Qt + EQt

]
and then select the leading r POD modes, resulting in

[
Q0 + EQ0

Qt + EQt

]
= UΣ1:rV

∗. (2.36)

Equation (2.36) can be represented as a combination of r × r matrices,[
Q0 + EQ0

Qt + EQt

]
= UΣ1:rV

∗ =

[
U11 U12

U21 U22

][
Σ1 0

0 0

][
V ∗
1

V ∗
2

]
=

[
U11Σ1V

∗
1

U21Σ1V
∗
1

]
, (2.37)
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With Equations (2.34) and (2.37), the estimation of M in a reduced space, Mr, is given by

Mr = U21U
−1
11 . (2.38)

The algorithm of TLSM is implemented as follows

Algorithm 1: Total least square method

input : Q0, Qt

output: G, uin, uout
1 if 2n > m then

2 Q0 → Q̃0, Qt → Q̃t ; /* Truncate the POD modes to get Q̃t ∈ r × r */

3 Z←
[
Q̃0

Q̃t

]
;

4 [U,Σ,V]← SVD (Z) ; /* Take the SVD of Z and get U ∈ [2r, 2r] */

5 U→
[
U11U12

U21U22

]
; /* U can be rewrite into a set of r × r matrices */

6 Mr ← U21U
−1
11 ;

7 [UM ,ΣM ,VM ]← SVD (Mr);
8 G← σ2

1(Mr);
9 uin ← UM(1, :), uout ← VM(1, :);

2.2.2 Eigenvalue Regularization Method

As discussed in the preceding section, the presence of zero or relatively small eigenvalues

(compared to the largest one) in the denominator of Q∗
0Q0 can significantly influence the

system’s output. This issue is further compounded by the presence of noise. One approach

to mitigate this concern involves the regularization of the eigenvalues of the positive-definite

matrix Q∗
0Q0, which is expressed as

(Q∗
0Q0 + γI)ψ = ψ


σ2
1 + γ

. . .

σ2
n + γ

 , (2.39)

where γ ∈ R serves as the regularization factor, setting a minimum threshold for the eigen-

values. This adjustment reduces the impact of smaller eigenvalues in the denominator,

effectively addressing the distortions introduced by noise. Given that smaller eigenvalues

are often primarily associated with noise, this regularization method efficiently suppresses

such unwanted elements without negatively affecting the data critical to flow information.

We suggest that γ should be selected to fall between the largest and smallest eigenvalues of

Q∗
0Q0, to ensure minimal interference with essential data. The strategy for choosing γ will

be further detailed in subsequent sections, demonstrating that the range of suitable γ values
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is quite broad. The algorithm then involves performing the Cholesky decomposition on the

regularized matrix (Q∗
0Q0 + γI), expressed as

B∗B = (Q∗
0Q0 + γI) . (2.40)

The IRM is implemented as follows:

Algorithm 2: IRM

input : Q0, Qt, γ
output: G, uin, uout

1 B← Chol (Q∗
0Q0 + γI) ; /* Take the Cholesky decomposition */

2 [U,Σ,V]← QtB
−1;

3 ψ ← B−1V; /* ψ is the coefficients to obtain optimal response */
4 G← σ2

1 ; /* σ1 is the largest singular value in Σ */
5 uin ← Q0ψ, uout ← Qtψ
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CHAPTER 3

Validation With GL Equation

In this chapter, we apply our method to data generated by the GL equation to assess the

correctness and robustness of our approach. The GL equation is a simple linear modal

containing a temporal energy growth with its operator defined analytically. Therefore, it

is a good tool for us to validate our data-driven estimations by comparing them with the

operator-based results. In Section 3.1, the GL equation and the corresponding parameters

are introduced, which generate our dataset. Error metrics are included in Section 3.3, where

we proposed methods to evaluate our results according to the operator-based results. In

Section 3.2, we discuss the preprocessing steps required to format the data for our algo-

rithm. In Section 3.4, we first establish the criteria used to evaluate our methods. Then, we

demonstrate how the unregularized method, the TLSM, and the IRM perform under various

parameter choices.

3.1 Ginzburg-Landau Equation

The GL equation is formulated as

∂q

∂t
= Aq =

(
−ν ∂

∂x
+ γg

∂2

∂x2
+ µ

)
q,

q(x, t) <∞ as x→ ±∞,
(3.1)

where ν and γg are the flow convection and dissipation coefficients, respectively, and µ =

µ0 − c2u represents the characteristic of exponential instability in the equation. The matrix

A combines the evolution factors into a single operator. The state generation code is based

on the model described by Ref. [2]. In this study, we used µ0 = [0.2, 0.38, 0.4]. A value of

µ0 = 0.2 models a modest transient growth of the initial state. With µ0 = 0.38, the state

experiences significant growth but ultimately decays. However, at µ0 = 0.4, the state is

unstable and continues to grow over time. For our applications, we selected µ0 = 0.38 and
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other parameters that are consistent with Ref. [2]. Figure 3.1 provides a sample visualization

of the state with these µ values.

Figure 3.1: The output from GL equation with µ0 = [0.2, 0.38, 0.4].

For further discussions, multiple runs with various random initial conditions were con-

ducted. These initial conditions have zero mean, a variance of var(q0) = 1, and a spatial

correlation length, λ, of 2. The initial condition is further discussed in Section 3.2.1. This

randomly generated state vector is also utilized for simulating measurement and process
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noise.

3.2 Data Matrix Construction

Given the definition of the data matrix as presented in Equation (2.1) and further elaborated

in Section 1.3.2 and by Ref. [40], two key elements are required to extract the transient

growth, G(t), over time. Firstly, the data pair q0,i, qt,i ∈ Cn n = 220, must span the time

range of interest. Secondly, a sufficient number of realizations, m, is necessary so that our

system can span the space that maximizes growth. Moreover, there are no restrictions on

the relationships between q0,i and q0,j, for [i, j] ∈ [1,m]. There are two options to construct

the state matrices. One is to perform a single iteration over time, and then the state defined

in Equation (2.1) becomes

Q0 = [q0, q1, . . . , qm∆t] ;Qt =
[
qt, q(1+t), . . . , qm∆t+t

]
. (3.2)

The state matrices are chosen from neighboring times. However, we have an overall decaying

system, with a temporal growth initially. This indicates the domination of slow decaying

modes in a long time block. Meanwhile, the number of realizations is essential for spanning

the energy space, further enforcing the length of the time block. This method might likely

overlook the transient modes. Instead, our approach involves conducting m time evolutions,

each with a duration T = Nt× dt, and each starting from different initial conditions, where

qt,i are all from different time-iterations but at the same time location, t. This enables us to

span the space better and capture the transient physics.

3.2.1 Initial Conditions

To ensure our initial conditions are both physically plausible and varied across different

realizations, we employed an algorithm provided by Ref. [9], which generates random ini-

tial conditions with Gaussian spatial correlations. The spatial correlation is defined by a

Gaussian function, as expressed in

Ci,j = E [q(xi), q(xj)] = e

(
xi−xj

λ

)2

, (3.3)

where q (xi) denotes the state at the spatial coordinate xi, and λ represents the correlation

length. Figure 3.2 presents several representative examples of the initial conditions utilized

in our study. We selected λ = 2 for our parameters.

Each initial condition depicted in Figure 3.2 forms one column of Q0. Using these initial
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Figure 3.2: Initial condition with parameters λ = 2. Three examples are shown here. For
Illustration purposes, the magnitude of each has been increased by 10 (all curves are zero
mean).
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Figure 3.3: The process of constructing the input matrix. The matrices in the first row
represent different simulations, with each column color-coded according to its position in
time. These columns are reorganized by time in the second row, forming Q0 and Qt ∈ Rn×m.

conditions, we evolve each one over time to generate Qt. As illustrated in Figure 3.3, the first

row shows that each matrix represents one time evolution, with a total of m such evolutions.

In the second row, we rearrange each column from the first row according to their temporal

sequence. This reorganization creates our input matrix.

3.2.2 Measurement and Process Noise

The robustness of the methods is a crucial factor in determining their applicability. To assess

the resistance of our regularization methods to noise, we introduced both measurement and

process noise into the data. These two types of noise are incorporated into the system as

follows

dq

dt
−Aq = W, (3.4)

q′ = q +N, (3.5)

where W represents process noise, and N denotes measurement noise. Here, q′ signifies the

state including the measurement noise. The noises were generated based on the same method

discussed to create the initial condition. In addition, the process noise is band-limited in

time with cuton and cutoff frequencies of [0.001, 0.5].

The specific values of the parameters selected in Section 3.2 are not critical. The values

we used were chosen to ensure consistency and formality in our evaluation setup.
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3.3 Error Metrics

Given our knowledge of the GL operator, it is possible to calculate an analytical optimal

growth along with the corresponding mode. Based on this, we proposed several metrics for

comparing our data-driven output with the analytical results.

Peak percent difference (ϵp): This metric quantifies the relative discrepancy between the

peak transient growth values predicted theoretically (Gmax,AN) and those obtained via the

data-driven models (Gmax,DD). It is defined as

ϵp =
Gmax,DD −Gmax,AN

Gmax,AN

, (3.6)

where the subscript DD refers to data-driven results, and AN refers to analytical outcomes.

This measure offers insight into the precision of peak growth predictions by the data-driven

methodologies.

Input/output mode error (ϵi): A standard method for comparing two vectors involves

calculating

ϵi = 1− |⟨uDD, uAN⟩|
∥uDD∥ ∥uAN∥

, (3.7)

where u can represent either uin or the output mode uout. This metric is utilized to assess

the accuracy of input/output mode estimations.

3.4 Results

3.4.1 Effect of the realization number

The number of realizations, m, represents the count of independent state vectors evolving

over time or space, serving essentially as the sample size in the direction of evolution. Ideally,

a larger number of samples leads to more accurate results. However, an increase in m not

only escalates computational costs but may also amplify noise if present. Since transient

growth is characterized by the square of the largest singular value of the linear operator

matrix, capturing the full dimension of the state is not required. It is widely recognized that

working within a reduced space is adequate for accurately determining transient growth. In

the context of data-driven methods, the choice of m may be constrained by the dataset at

hand, highlighting the need for a technique that is effective across various m values.

To start with, it is useful to evaluate the impact of m in the absence of noise. Figure 3.4

illustrates the transient growth and its optimal modes for m ∈ [55, 220] using the unreg-

ularized method. The transient growth plot indicates that the estimation improves as m
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Figure 3.4: Transient growth and the optimal I/O modes with clear data. ( ) represent
m = 55, which transitions into ( ) as m increases to 220.( ) is the analytical results
obtained from the operator.

increases, with smaller m values yielding lower growth rates. The input mode results are

less accurate due to the input mode existing in the full space, whereas the operations are

conducted in a reduced space. An exact match with the input mode is achieved when n = m.

Conversely, the results for the output mode closely align with the analytical outcome for all

values of m.

However, what occurs when noise is present? Subsequently, moderate noise levels (|W| =
|N| = 0.03) are introduced. The IRM with γmax = n

m
γ = [0, 50, 100] and the TLSM are

chosen for comparison. We introduce a γmax here to establish a linear relationship between

m and γ. This approach is taken because the eigenvalues increase roughly linear according

to m. Moreover, typically we aim to avoid making m larger or close to n as additional

realizations would become redundant and computationally inefficient. However, for the sake

of exploration, we experimented with m = [55, 110, 165, 220], which are ranging from 1
4
n to

n. As shown in Figure 3.5, larger m increases the potential of the growth regardless of the

regularization method used. With IRM, a larger γ can better mitigate the noise, but the

growth can be underestimated. It can provide a reasonable estimation of G(t) across a range

of m values within a certain γ range. Comparing the dotted lines in Figure 3.5 (a), (b), and

(c), we can observe that the estimated growth is very noisy for the unregularized method.

While in (b), with a slightly higher γ, the curve gets the peak well but still shows some

noise at high t. Using an even larger γ, as shown in (c), the noise at high t becomes lower

in amplitude, however, it undershoots the peak growth. The TLSM, on the other hand,

is more reliant on the choice of m. It shows a high level of noise with a large m. At the

m that it can estimate the peak correctly, there are still large noises at high t. When m
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Figure 3.5: Example results of transient growth over time. The line style , , and
, separately represents m = [55, 110, 165, 220]. The color , , and , individually

shows the γmax = [0, 50, 100] and the TLSM.

gets low enough that the noisy data at high t disappears for TLSM, it also undershoots the

peak. Still, we can conclude that with an appropriate selection of m, the TLSM can also

yield reasonable estimations of G(t). Figure 3.6 graphically presents the error metrics ϵp

and ϵi. The analysis of ϵp indicates that the TLSM yields better results at lower m values

but experiences a significant decline in performance as m surpasses a certain threshold,
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Figure 3.6: (a) ϵp of the growth, and ϵi of the (b) input and (c) output modes. The color
scheme is the same as in Figure 3.5.

particularly for m > 180 in this case. On the contrary, the IRM with γmax > 0 showcases

remarkable stability with increasing m, surpassing the TLSM in most scenarios.

The trend for ϵi is similar for the IRM but not for the TLSM. As depicted in Figure 3.6,

the IRM demonstrates an improvement in accuracy with higher m and γ. However, the

TLSM exhibits superior performance at larger m values. This suggests that an increased

number of realizations positively impacts mode capture. Furthermore, since an additional

estimation is required for the input mode, accurately predicting this mode proves significantly

more challenging.

Furthermore, when comparing the IRM with varying γ values to the TLSM, we can

conclude that the TLSM offers consistent results. However, the IRM can achieve better

estimations with a careful selection of γ. This observation underscores the importance of

conducting a more detailed investigation into the optimal choice of γ, which will be discussed

in the following section.

3.4.2 Effect of the Regularization Parameter

As previously mentioned, we select our γ by assuming a linear relationship between γ and m,

such that γ = m
n
γmax. We determine γmax based on the eigenvalues of Q∗

0Q0. The sensitivity

of the method stems from the significant disparity between the maximum and minimum

eigenvalues of Q∗
0Q0. The smallest eigenvalues can be easily affected by noise, but after

applying the pseudoinverse, their influence significantly increases. The IRM introduces a

regularization factor to mitigate the disparity in magnitude between the largest and smallest

eigenvalue. Consequently, the range of γmax is defined to lie between the maximum and
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minimum eigenvalues, which can be expressed as

γmax ∈ [λn (Q
∗
0Q0) , λ1 (Q

∗
0Q0)]. (3.8)

In exploring the impact of the regularization parameter γ, Figure 3.7 demonstrates how

the peak percentage error fluctuates with different γmax values and m, depicted on a loga-

rithmic scale. The range of γmax showed is in the range of [0, 100], while λ1 (Q
∗
0Q0) ≈ 3000.

It is observed that for m values exceeding a particular threshold, approximately m ≈ 70, a

wide range of γ values effectively regularizes the data, reducing the error to below 10%.

Figure 3.7: ϵp for varying γmax and m under the same noise condition as in Figure 3.5.
ϵp = 10−2 and ϵp = 10−1 marked out.

However, ϵi exhibits varied dependencies on γ and m. As shown in Figure 3.8, the error

for both I/O modes is predominantly determined by the number of realizations. A higher m

leads to a lower error for the input mode, while a smaller m favors the output mode. This

suggests that estimating the input mode entails estimating the higher dimensional data with

lower dimensions, inherently resulting in a higher baseline error. The advantages of increased

flow information from a largerm surpass the incremental error. In contrast, the output mode

can be estimated accurately with fewer realizations, and larger m values negatively affect
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the results by introducing noise. These observations regarding ϵi also indicate that there is

a flexible range for selecting γ, as long as it is above a specific threshold.

Figure 3.8: Variation of ϵi with different γmax and m for (a) input mode and (b) output
mode.

Subsequent analysis involved selecting typical γ values to evaluate their effectiveness

across different levels of process and measurement noise, with the TLSM serving as a bench-

mark for comparison. The results, depicted in Figure 3.9 (a), show that an unregularized

approach (γ = 0) may align perfectly with analytical predictions in the absence of noise.

However, its effectiveness decreases as noise levels increase. Figures 3.9 (b) and 3.9 (c)

examine scenarios with γmax = 50 and γmax = 100, respectively. Both configurations demon-

strate the ability to accurately estimate maximum transient growth in the presence of noise,

whereas the TLSM also provides consistent outcomes, albeit with slightly higher errors.
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Figure 3.9: ϵp of TLSM and IRM with m = 110, and (a) γmax = 0,(b) γmax = 50,(c)
γmax = 100.

Figure 3.10 presents similar findings for both IRM and TLSM. This analysis confirms

that, for the GL equation, our method delivers reasonable results within a flexible parameter

range. The next section will apply this methodology to transitional boundary layer data,

further demonstrating its applicability and robustness.
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Figure 3.10: ϵi of TLSM and IRM for input mode on the first row and output mode on the
second. From left to right γmax = [0, 50, 100], and the last column is the TLSM. All cases
were run with m = 110.
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CHAPTER 4

Spatial Transient Growth in Transitional

Boundary Layer

Previous sections have demonstrated the robustness of our method with the GL equation. In

this chapter, we aim to address a less-explored area: spatial transient growth in a non-parallel

boundary layer.

According to Refs. [1, 30], the state vector in the spatial case can be assumed to be

q(x, y, z, t) = q̂(x, y) exp[i(βz − ωt)], (4.1)

where q is the state vector, q̂ is the state after transformed into the frequency domain.

This enables Equation (1.7) to be solved by constructing the eigenmodes to A. In the later

discussions, the (̂ ) is dropped for simplicity. Ref. [1] provide another assumption: with a

relatively high-level free-stream disturbance, which is elongated in the streamwise direction

and varies slowly with time, the equations can be considered steady. Therefore, an input-

output view of the state is considered as

qx = Mx(x)q0. (4.2)

The operator is now dependent on x, which makes the method from Ref. [7] not applicable.

Meanwhile, the procedure of defining this operator Mx(x) is hard, but our method can be

used on the simulated data directly.

In this chapter, we first describe the dataset, then outline the details of the preprocessing

steps in Section 4.2, followed by the presentation of nondimensionalization and the results

in Section 4.3 and 4.4.
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Figure 4.1: (a) the time and spanwise averaged streamwise velocity, u, of the flow. (b) The
perturbation energy of the streamwise velocity u.

4.1 Turbulence Boundary Layer Data

The Boundary Layer (BL) data is sourced from Johns Hopkins Turbulence Data Base

(JHTDB) [20, 14, 43]. The flow depicted in the dataset undergoes a bypass transition,

with the transitional phase occurring at approximately x ≈ 350Lp. Here, x represents the

dimensional distance from the leading edge, and Lp denotes the half-thickness of the plate.

This transition location is evident in the plot of skin friction coefficient, Cf , against the

momentum Reynolds number, ReΘ, as illustrated in Figure 4.2.

It should be noted that all length scales in this dataset are nondimensionalized by Lp.

As a result, in this dataset, the Reynolds number based on the half-plate thickness, ReLp =
U∞Lp

ν
= 800. The time-averaged streamwise velocity is depicted in Figure 4.1. What’s more

the minimum y location in the wall unit is y+min = (uτy) /ν = 0.124. This is later used to

define convection velocities.

We confined our analysis to the laminar region of the flow, consistent with the assumption

of linearity. This range can be estimated by looking at its skin-friction coefficient given by

Ref. [43], as shown in Figure 4.2. The results shown in the result section are all to the left
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Figure 4.2: Skin-friction coefficient of the data ( ) compare to laminar ( ) and turbulent
( ) estimations.

of this vertical line.

4.2 Data Matrix Construction for Boundary Layer

Data

Under the assumption of linearity, we can analyze flow in the frequency domain, given

that there are no cross-spectral interactions. This means that a Discrete Fourier Transform

(DFT) can be conducted both in the spanwise direction and over time. This approach offers

two advantages. Firstly, it reduces computation time, as analyzing the data at a specific

wavenumber β and frequency ω reduces the original 4D matrix to 2D. Additionally, it enables

the examination of flow properties at various frequencies and facilitates comparisons with

results from other modal analyses.

The data matrix is structured so that m similar blocks of data are present at each stream-

wise location, capturing the spatial-temporal evolution of flow structures. The proposed pro-

cedure is illustrated in Figure 4.3. Figure 4.3 (a) shows the raw data as a four-dimensional

matrix of size [Nx, Ny, Nz, Nt] = [556, 112, 1024, 4701]. In Figure 4.3 (b), an DFT is per-

formed in the spanwise direction, and a single wavenumber, β, is selected, reducing the data
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Figure 4.3: The procedures to obtain input to our algorithm.

dimension to three. Realizations are chosen at each x location, with a certain level of overlap

demonstrated. Three realizations are shown for illustration purposes. As time progresses,

the blocks of realizations also advance in time. The ratio of spatial to temporal steps is

dictated by the concept of convection velocity, Uc, aiming to capture identical flow struc-

tures in each block and thus keep the spatial-temporal development within each realization’s

span. In Figure 4.3 (c), each realization has a size of [Ny, Ntblock ]. An additional DFT is

applied in the time direction for each realization at every x location, with Ntblock defining

the frequency range under consideration. Performing steps (b) and (c) for all three velocity

components and selecting one ω results in Figure 4.3 (d), where the transformed data is or-

ganized into matrices Qx,ωi,βj ∈ [n,m], with n = 3Ny. This methodology effectively captures

the spatial-temporal development of the flow with a minimal input matrix size.

The colored blocks selected in steps (b) and (c) are defined by two parameters: the size of

the block, tsize, and the step length in time, tstep. tsize dictates the range of frequencies

we aim to investigate. Together, these two parameters determine the number of realizations

that can be obtained from the limited 4701 time steps. Besides, under the linear assumption,

Equation (4.2) is exact only in an infinity frequency domain. However, this requires taking

Fourier transform to an infinite time block, which is unrealistic. In practice, we must take

finitely long transforms. Under this constraint, we maximize the causal relationship between
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Q0 and Qt by taking these transforms on temporal windows that are staggered in time.

To advance these blocks in the streamwise direction, they are also shifted in time. A

previously mentioned convection velocity, Uc, is chosen to quantify these shifts. This value

helps us follow the evolution of a specific fluctuation. According to Refs. [5, 38], Uc is defined

as

Uc = argmax
U

∫ +∞

−∞
R(Ut, t)dt, (4.3)

where R(rx, rt) represents a spatial-temporal two-point correlation. An exact Uc can be

calculated from Equation (4.3). However, our method does not rely on the precise value of Uc.

A robust method should be independent of specific parameters. In this case, we aim for the

convection velocity to fall within a range that keeps the flow structures within the selected

state matrices. Therefore, we may choose a value around a typical nondimensionalized

U+
c = Uc/Uτ ≈ 10 as provided by Refs. [5, 38], where Uc is nondimensionalized by the friction

velocity Uτ . A simple derivation below converts this quantity to the shifting parameters, nx

and nt, as defined in Figure 4.3 (b). Note that in the domain of interest, the data is equally

spaced in x with a constant time step, allowing the distance skipped in x and t to be expressed

as nx∆x and nt∆t. In the dataset, ∆x/Lp = 0.5844 and ∆t = 0.25Lp/U∞. The dimensional

Uc in Figure 4.3 can then be expressed as

Uc =
nx∆x

nt∆t
(4.4)

=
nx

nt

(
∆x

Lp
Lp

U∞

0.25Lp

)
(4.5)

=
nx

nt

(
∆x

Lp

U∞

0.25

)
. (4.6)

Nondimensionalizing Uc by U∞ yields

Uc
U∞

= 4
nx

nt

∆x

Lp
. (4.7)

As previously given in Chapter 1,

y+min =
uτymin
ν

= 0.124 (4.8)

ymin
Lp

= 0.0036 (4.9)
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Table 4.1: Example nx and nt with corresponding U+
c .

nx nt U+
c

1 3 18.12
1 4 13.59
1 5 10.87
1 6 9.06

By substituting Equation (4.9) into Equation (4.8), and with ReLp = 800, we have

UτLp
ν

=
0.124

0.0036
Uτ
U∞

U∞Lp
ν

=
0.124

0.0036
Uτ
U∞

=
0.124

(0.0036) (800)

= 0.043.

(4.10)

Combining Equation (4.7) and Equation (4.10), it is straightforward to derive that

Uc
Uτ

= 54.36
nx

nt
(4.11)

Given that nx and nt are integers, the combinations close to Uc/Uτ ≈ 10 are listed in

Table 4.1.

Through these steps, the input for our algorithm is clearly defined. In the following

section, we present our results and compare them to previous findings obtained under parallel

flow assumptions using operator-based methods.

4.3 Nondimensionalization of the Results

Before the discussion of the results, some adjustments to the coordinates and nondimen-

sionalization need to be defined. Firstly, the x coordinates are updated to fit the Blasius

boundary layer estimation. Since data from the simulation is stored starting from x/Lp ≈ 30,

along with the thickness of the leading edge, the result is not exactly Blasius. To compare

with the operator solutions, a small manual adjustment of the streamwise location should

be performed. As shown in Figure 4.4, The blue curve is the displacement thickness in the

original x coordinate, and the dashed line is the displacement thickness of a Blasius bound-

ary layer. It is obvious that they have similar trends but start at different locations. As we
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Figure 4.4: Adjusting the x coordinates to fit the Blasius boundary layer estimation.

moved the blue curve to its left as represented by the arrow, the new boundary layer, δ∗, is

first aligned with the Blasius estimation and then diverges.

The new x coordinate is passed to define the nondimensionalization. Since the length

scale in the simulation is the half-thickness of the plate, which does not have any physical

meaning for boundary layer discussions, some other length scale should be used. In the

streamwise location,

Rex =
U∞x

ν
=
U∞Lp
ν

x

Lp
= ReLp

x

Lp
. (4.12)

ReLp is given in the dataset documentation while the x coordinate reported in the data is

x/Lp. Meanwhile, the length scale of the wall-normal and spanwise directions are different

according to Ref. [1, 15]. They scale these two directions with the boundary layer thickness.

δ =
√
νx/U∞ is defined, in the Blasius case δ = 1.72δ∗. The spanwise wavenumber, originally

computed from the dataset should be βLp. However, a proper nondimensionalization now

should be βδ. With previous defined Rex and δ, βδ can be calculated as

βδ = (βLp)
(
ReLp

)−1/2
√

x

Lp
. (4.13)
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Figure 4.5: The growth over distance to the initial location in the data. , , represents
βδx0 = [0, 0.1243, 0.2834]. (a) is the result from IRM, while TLSM is shown in (b).

4.4 Result

Similar to the cases presented in Refs. [1, 15], we have examined scenarios for various β

values and ω = 0. Besides, according to the range of γ discussed in Chapter 3, we choose

γ = 0.01λmax(Q
∗
0Q0).

The growth trends of the two regularization methods are depicted in Figure 4.5. In

(a), we observe smooth growth, which we believe represents the transient growth in the

flow, despite the curve not showing further decay in x for some wavenumbers. This could

be attributed to the involvement of nonlinear terms. Even though we have simulated the

nonlinearities with process noise, the nonlinear terms in this boundary layer data could

have a larger magnitude and have correlations that further deviate the system from the

linear assumption. Besides, the magnitude of the growth by IRM is sensitive to γ, unlike

the GL case. However, the TLSM yields an incorrect result. The cause of this is not

entirely clear; one potential explanation could be the insufficient number of realizations,

m. Since TLSM involves initial projection into a low-dimensional POD space, this step

could significantly reduce the accuracy of the result. Besides, TLSM is originally targeted to

resolve measurement noise. It could be fundamentally different from this Direct Numerical

Simulation (DNS) dataset, which has close to zero measurement noises and, potentially, a

higher level of non-linearity. Both methods demonstrated good agreement with the literature

results on the output mode of the streamwise velocity, u. As observed, except for the plots

with high β values, parts (b), (c), (e), and (f) in Figure 4.6 show very close agreement with

the findings in Refs. [1, 15], regardless of x or β. However, at zero β, a two-peak structure

is observed. This structure bears resemblance to the Tollmien-Schlichting (T-S) modes as
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described in Ref. [30]. Though it is aligned with the modal growth, which is strongest at

β = 0, we cannot definitively claim these are the T-S modes. Further investigation is required

to establish any connection with modal growth.

Figure 4.6: The output mode at Rex = [5.79, 8.41, 14.30] × 104 and βδx0 = [0, 0.124, 0.283].
The top row shows results from IRM, and the bottom is from TLSM. Lighter colors represent
higher in Rex.

Finally, in Figure 4.7, we plotted the growth G/Rex over βδ, consistent to Refs. [1,

15]. Since according to them, G/Rex approaches to a constant when limRex→∞. It shows

that there exists a consistent frequency βδ ≈ 0.52, where the growth appears to peak.

This shape and magnitude of the growth are also consistent with findings in Refs. [1, 15].

The curves converge at high Reynolds numbers, aligning with the literature. However, in

their studies, the peak is expected to occur at βδ = 0.45. Factors such as early bypass

transition, lift-up mechanisms, or strong freestream perturbations might be influencing our

results. Nonetheless, further investigation may necessitate more testing and simulations

under different conditions. Overall, our results qualitatively match the theories for spatial

transient growth.
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Figure 4.7: Growth over the spanwise frequency at different Rex. The curves are smooth
with movmean in MATLAB.
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CHAPTER 5

Conclusion

This chapter summarizes the thesis and recommends some avenues for future work.

5.1 Summary of Contribution

In conclusion, we have developed a robust data-driven transient growth analysis method,

which has been verified by comparing it with the operator-based solution of the GL equation.

This method manifests its value by producing reasonable results in a non-parallel transitional

boundary layer flow condition.

The data-driven method we proposed is derived from two distinct approaches. The LSAM

modified the DMD, estimates the matrix exponential through the least squares method, and

then calculates the SVD mode of it. This method is intuitive, as it directly involves taking a

pseudoinverse of the resulting state. However, it is not immediately clear how this method

relates to the maximization of energy. Consequently, the CFM was developed, starting from

the principle of maximization. To solve the maximization problem, a Rayleigh quotient can

be used.

For both methods, we developed regularization techniques to mitigate sensitivity to noise.

The TLSM was selected as it is a well-justified method intended to enhance DMD. The IRM

emerged naturally from CFM, effectively narrowing the gap between the maximum and

minimum eigenvalues to prevent the inverse of the minimum eigenvalue from dominating the

result. We compared these methods using the GL equation. From this comparison, TLSM’s

effectiveness was found to depend on the number of realizations, m largely. In contrast, IRM

demonstrated robust consistency across different m and γ values. Although it introduces

an additional parameter, we discussed a principled approach to selecting these parameters,

highlighting the flexibility in their choice.

Lastly, we applied our method to the transitional boundary layer to identify spatial tran-

sient growth. It is noted that our method is limited when facing the nonlinearities in the flow
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data. This can be easily noticed when the growth curve becomes jagged. Thus it is important

to select data that might majorly contain linear growth of perturbations. Our prediction for

the output mode of the streamwise velocity component aligns closely with operator-based

results. We also identified a spanwise frequency that contributes significantly to transient en-

ergy growth. The discrepancies between our results and the literature include differences in

the growth over the streamwise location and the spanwise frequency that maximizes energy

growth. Investigating these differences would be the focus of future studies.

5.2 Future Work

This method still holds significant potential for further investigation. The future of this

approach can be broadly categorized into two directions: completing the analysis of spatial

transient growth and extending its application to other fields. The expected trajectory for

each direction is discussed below.

As highlighted in Chapter 4, there remain some unanswered questions in the results. For

instance, why does the growth not decay before increasing further for a range of spanwise

wavenumber? Can this method also capture modal growth? What constitutes the optimal

mode for the spanwise and wall-normal velocities? Several aspects can be explored to ad-

dress these questions. Firstly, nonlinearity may undermine our method, prompting us to

identify when nonlinearity begins to dominate the flow and its impact. One approach could

involve adjusting the strength of inflow perturbations to observe their effects on the tran-

sition location and the corresponding changes in our method’s results. Moreover, for the

TLSM, the step involving modal reduction could be updated to employ methods other than

POD, potentially offering a more robust capture of spatial-temporal flow information. A

comprehensive understanding of our method’s performance in spatial growth would enrich

our knowledge of both the methodology and the physics of the transitional boundary layer.

Given that our method is data-driven, it is inherently adaptable to various flow conditions.

A particularly promising area is hypersonic flow transitions. As noted by Ref. [27], flow

transition in these high-speed environments is intricately linked to skin friction, thermal

performance, and the acoustics of high-speed vehicles, where linear stability analysis tools

also play a crucial role. This underscores the potential motivation and capability of our

method to contribute to the analysis of hypersonic flows.
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