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Abstract.

Resolvent analysis is a powerful tool for studying coherent structures in turbulent flows.
However, its application beyond canonical flows with symmetries that can be used to
simplify the problem to inherently three-dimensional flows and other large systems has
been hindered by the computational cost of computing resolvent modes. In particu-
lar, the CPU and memory requirements of state-of-the-art algorithms scale poorly with
the problem dimension, i.e., the number of discrete degrees of freedom. In this paper,
we present RSVD-∆t, a novel approach that overcomes these limitations by combining
randomized singular value decomposition with an optimized time-stepping method for
computing the action of the resolvent operator. Critically, the CPU cost and mem-
ory requirements of the algorithm scale linearly with the problem dimension, and we
develop additional strategies to minimize these costs and control errors. We validate
the algorithm using a Ginzburg-Landau test problem and demonstrate its low cost and
improved scaling using a three-dimensional discretization of a turbulent jet. Lastly, we
use it to study the impact of low-speed streaks on the development of Kelvin-Helmholtz
wavepackets in the jet via secondary stability analysis, a problem that would have been
intractable using previous algorithms.

1 Introduction

Turbulent flows are characterized by chaotic and disorganized motions, but recurring dominant
patterns can play a significant role in laminar to turbulent transition (Schmid & Henningson,
2001) and sustaining turbulence (McKeon, 2017). These coherent structures can be seen as the
foundational building blocks of turbulence, and modal analysis is an important tool for identifying
and understanding these structures (Taira et al., 2017). Popular data-driven methods include
proper orthogonal decomposition (POD) (Sirovich, 1987a), dynamic mode decomposition (DMD)
(Schmid, 2010), and spectral proper orthogonal decomposition (SPOD) (Lumley, 1967; Towne
et al., 2018). In particular, SPOD identifies energy-ranked, single-frequency structures that evolve
coherently in space and time.
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Resolvent (or input-output) analysis originates from classical control theory (Dunford & Schwartz,
1958; Kato, 2013) and has become arguably the most important operator-theoretic modal decompo-
sition techniques in fluid mechanics (McKeon & Sharma, 2010; Taira et al., 2017; Jovanović, 2021).
Resolvent analysis has been applied to a wide variety of flows, including canonical wall-bounded
flows (Dawson & McKeon, 2019; Morra et al., 2019), turbulent jets (Jeun et al., 2016; Schmidt
et al., 2018; Lesshafft et al., 2019; Pickering et al., 2020), and airfoils (Thomareis & Papadakis,
2018; Yeh et al., 2020). It has been used for diverse tasks including design optimization (Chavarin
& Luhar, 2020; Ran et al., 2021), receptivity analysis (Kamal et al., 2023; Cook & Nichols, 2023),
and flow control (Yeh & Taira, 2019; Towne et al., 2020; Martini et al., 2020, 2022). Singular value
decomposition (SVD) of the resolvent operator is at the heart of input-output-based studies. The
left singular vectors of the resolvent operator, known as the response modes, are often related to
the coherent motions in the flow (Towne et al., 2018; McKeon & Sharma, 2010). Specifically, the
resolvent modes associated with the largest singular values provide an approximation of the leading
SPOD modes (Towne et al., 2018) and, in some cases, capture the majority of the power spectral
density (PSD) of the flow (Symon et al., 2019). The right singular vectors, also known as the
forcing modes, describe the optimal inputs that lead to the most amplified responses, characterized
by the largest singular values (gains), and offer information about the mechanisms driving these
responses.

Resolvent analysis can be computationally demanding. Two steps constitute most of the cost:
(i) forming the resolvent operator, which involves computing an inverse, and (ii) performing the
SVD. Both steps nominally scale like O(N3), where N is the state dimension. State-of-the-art
methods, described below, improve on this scaling, but the computational cost remains a strong
function of the state dimension N . The state dimension, in turn, depends acutely on the number
of spatial dimensions that must be numerically discretized. While the linearized Navier–Stokes
equations are nominally three-dimensional, they can be simplified by expanding the flow variables
into Fourier modes in homogenous dimensions, i.e., those in which the base flow about which
the equations are linearized does not vary. This markedly reduces the size of the discretized
operators that must be manipulated, decreasing the computational cost. Accordingly, inherently
three-dimensional flows that do not contain homogeneous directions or other simplifying symmetries
are particularly challenging.

Recent advancements aim to overcome these two computational bottlenecks. The second bot-
tleneck can be alleviated by using efficient algorithms to compute only the SVD modes with the
largest singular values, which are typically of primary interest, rather than the complete decompo-
sition. Standard methods like power iteration and various Arnoldi methods have been frequently
applied for this purpose. More recently, randomized singular value decomposition (RSVD) (Halko
et al., 2011) has been shown to further reduce the cost of resolvent analysis of one- (Moarref et al.,
2013) and two-dimensional (Ribeiro et al., 2020) problems.

Regarding the first bottleneck, forming the resolvent operator by computing an inverse is fea-
sible only for small systems, e.g., one-dimensional ones. Fortunately, the aforementioned SVD
algorithms do not require direct access to the resolvent operator, but rather its action on a speci-
fied forcing vector, i.e., the result of applying the resolvent operator to that vector. Accordingly,
we can recast the first bottleneck in terms of the computational cost of computing the action of
the resolvent operator on a vector. The standard approach for doing so is to solve a linear system
whose solution yields the action of the resolvent operator on the right-hand-side vector via LU
decomposition of the inverse of the resolvent operator (which can be directly formed in terms of the
linearized Navier-Stokes operator; see §3 for details). The computational cost of this approach typ-
ically scales like O(N1.5) or O(N2) for two- and three-dimensional problems, respectively, which is
tolerable for most two-dimensional problems but quickly becomes intractable for three-dimensional
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problems. Numerous authors have used this LU-based approach along with Arnoldi methods (Sipp
& Marquet, 2013; Jeun et al., 2016; Schmidt et al., 2018; Karban et al., 2020). Brynjell-Rahkola
et al. (2017) used LU decomposition along with a power iteration with a Laplace preconditioner
to increase the convergence rate of the resolvent modes. More recently, Ribeiro et al. (2020) used
LU decomposition along with RSVD, which we call “RSVD-LU” in this study, and demonstrated
significant CPU savings compared to using an Arnoldi iteration. However, the poor cost scaling of
the LU decomposition with problem size N remains a limiting factor, impeding the investigation
of three-dimensional flows and other large systems.

Resolvent modes can be computed at a reduced cost for slowly varying flows, i.e., flows whose
mean changes gradually in some spatial direction, by using spatial marching methods to approxi-
mate the action of the resolvent operator. Spatial marching methods approximately evolve pertur-
bations in the slowly-varying direction. The best-known spatial marching method is the parabolized
stability equations (PSE), but the inherent ill-posedness of PSE (Li & Malik, 1996) requires delete-
rious regularization that makes it ill-suited to compute resolvent modes in most cases (Towne et al.,
2019). One exception is very low frequencies, where PSE has been used to compute resolvent modes
corresponding to boundary-layer streaks (Sasaki et al., 2022). The one-way Navier–Stokes (OWNS)
equations (Towne & Colonius, 2015) overcome many of the limitations of PSE; they are formally
well-posed and capture the complete downstream response of the flow. The original formulation did
not include a right-hand-side forcing on the linearized equations, which is fundamental to resolvent
analysis. This was addressed by a second OWNS variant formulated in terms of a projection opera-
tor that splits both the solution and forcing into upstream- and downstream-traveling components
(Towne et al., 2022). This method has been combined with a power-iteration approach to accu-
rately and efficiently approximate resolvent modes for a range of slowly varying flows ranging from
incompressible boundary layers to supersonic jets to hypersonic boundary layers. Recently, the cost
of this approach was further reduced by a new recursive OWNS formulation (Zhu & Towne, 2023).
The fundamental limitation of OWNS-based approaches is their restriction to (mostly) canonical
flows that contain a slowly varying direction.

Several data-driven methods for computing resolvent modes have been proposed, which avoid
working directly with the resolvent operator at all. Towne et al. (2015) and Towne (2016) intro-
duced empirical resolvent decomposition (ERD). Starting with data in the form of a set of forcing
and response pairs, ERD solves an optimization problem to identify modes within the span of
the data that maximizes the gain. Another recent approach uses dynamic mode decomposition
(DMD) (Schmid, 2010) to estimate the resolvent modes from data (Herrmann et al., 2021). This
approach benefits from the advancements in DMD (Schmid, 2022) and is robust, but to accurately
approximate the resolvent modes, many random initial conditions may need to be simulated.

Barthel et al. (2022) recently proposed a reformulation of resolvent analysis called variational
resolvent analysis (VRA). Using the same mathematics that underly ERD, VRA computes resolvent
modes by solving a Rayleigh quotient, avoiding the inverse that appears in the definition of the
resolvent operator. To make the method computationally advantageous, the response modes are
constrained to lie within the span of some other reduced-order basis. Barthel et al. (2022) obtain
this basis from a series of locally parallel resolvent analyses; if the basis is taken from data, VRA
becomes ERD. VRA showed speed-up compared to standard approaches for a canonical boundary
layer, but it remains to be investigated for more complex scenarios where an effective basis is not
evident.

Time-stepping methods offer an alternative approach to overcome the first bottleneck (these
methods are sometimes referred to as “matrix-free” approaches, as forming the LNS operator is not
necessary). The central idea is to obtain the action of the resolvent operator on a vector by solving
the linearized equations in the time domain. A pioneering study by Monokrousos et al. (2010) used
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time stepping along with power iteration to compute resolvent modes of a flat-plate boundary-layer
flow. Modes at a particular frequency of interest were computed by forcing the linearized equations
exclusively at that frequency and time stepping until a steady-state solution is obtained. Gómez
et al. (2016) proposed an iterative procedure for updating the initial conditions to reduce the time
required to reach the steady-state solution. This resulted in an 80% reduction of CPU time for
a test problem, but only the leading mode at each frequency was obtained. Martini et al. (2021)
introduced two additional variations of time-stepping approaches for computing resolvent modes
with improved efficiency. The first, referred to as the transitional response method, evaluates the
transitional response of the LNS to compact forcing. The second variation, known as the steady-
state response method, computes the steady-state solution of the LNS when it is forced with a set of
harmonic frequencies. Both methods allow all frequencies of interest to be simultaneously computed
by isolating each frequency in the flow response using a discrete Fourier transform. Additionally,
the steady-state method can be easily paired with more advanced SVD algorithms (e.g., Arnoldi,
rather than power iteration) to obtain multiple resolvent modes at each frequency.

Time-stepping methods for computing resolvent modes are potentially powerful because they
obtain the action of the resolvent operator without the need for inverses or LU decomposition.
Indeed, we will show that time time-stepping methods can achieve linear cost scaling with the
problem dimension N . However, achieving this potential and overall low CPU and memory costs
requires careful consideration of numerous factors.

In this paper, we present a novel approach, abbreviated as “RSVD-∆t”, that combines the
benefits of RSVD with the advantages of time stepping. In short, the method eliminates the
bottleneck in the RSVD-LU approach created by the LU decomposition by obtaining the action
of the resolvent operator via an optimized time-stepping approach. All frequencies of interest
as computed simultaneously using a steady-state response approach as in Martini et al. (2021).
Additionally, we develop a novel technique to remove the undesired transient component of the
response, shortening the temporal interval over which the equations are integrated and reducing
the CPU cost by an order of magnitude in most cases. To minimize memory usage, we utilize
streaming calculations for transferring data between the Fourier and time domains. The RSVD-∆t
algorithm is shown to exhibit linear scalability both in terms of computational complexity and
memory requirements and can be efficiently parallelized. Overall, these capabilities allow us to
compute resolvent modes for three-dimensional flows and other large systems that were previously
out of reach.

In the remainder of the paper, we provide a brief review of the formulation and computation of
resolvent analysis in §2, discuss the RSVD-LU algorithm in §3, explain the time-stepping method in
§4, and introduce our RSVD-∆t algorithm in §5. An overview of the computational complexity of
all approaches is given in §6, the sources of errors of our algorithm are detailed in §7, and approaches
to optimize the algorithm are developed in §8. Two test cases are defined in §9 to validate, examine
and compare the accuracy and performance of RSVD-∆t against other approaches. In §10, we use
RSVD-∆t to study the impact of streaks on the Kelvin-Helmholtz wavepackets in a jet. Concluding
remarks are made in §11.

2 Resolvent analysis

2.1 Formulation

Our starting point is the compressible Navier-Stokes equations written as

∂q

∂t
= N (q), (2.1)
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where the nonlinear Navier-Stokes operator N acts on the state vector q ∈ CN , which describes
the flow discretized in all inhomogeneous directions. A standard Reynolds decomposition

q(x, t) = q̄(x) + q′(x, t) (2.2)

partitions the flow state into the time-averaged mean q̄ and the fluctuation q′. Substituting (2.2)
into (2.1) yields

∂q′

∂t
= A(q̄)q′ + Bf ′(q̄, q′),

y′ = Cq′,
(2.3)

where A ∈ CN×N is the linearized Navier-Stokes (LNS) operator, B ∈ CN×Nf is an input matrix
that can be used to restrict the forcing f ′ ∈ CNf , and C ∈ CNy×N is an output matrix that extracts
the output of interest y′ ∈ CNy from the state. The forcing f ′ can represent an exogenous forcing
and/or the nonlinear perturbation terms from the Navier-Stokes equations.

Resolvent analysis is most natural when A is stable, i.e., all of its eigenvalues lie in the left-half
plane. If A is unstable, discounting can be used to obtain a stable system (Jovanovic, 2004; Yeh &
Taira, 2019). We assume that, if necessary, discounting has already been performed so that A is
strictly stable.

Resolvent analysis seeks the forcing that produces the largest steady-state response. Since the
steady state is of interest, the solution can be obtained in the frequency domain. Taking the Fourier
transform

F(·) = (̂·)(ω) =
∫ +∞

−∞
(·)e−iωt dt (2.4)

of (2.3) and solving for the output yields

ŷ(ω) = R(ω)f̂(ω), (2.5)

where ω is the frequency and (̂·) denotes the frequency counterpart of the time domain vector. The
resolvent operator

R = C(iωI − A)−1B (2.6)

maps the input forcing to the output response (here, i =
√
−1 and I is the identity matrix.)

The optimization problem for the most amplified forcing is formally defined as maximizing

σ =
||ŷ||q
||f̂ ||f

=
||Rf̂ ||q
||f̂ ||f

, (2.7)

where ||x||2f = ⟨x,x⟩f = x∗Wfx computes the f -norm of any vector x and (·)∗ denotes the
conjugate transpose. Wf is a weight matrix that accounts for numerical quadrature and allows us
to define arbitrary norms. Note that input and output norms can be different, i.e., || · ||q = || · ||f is
not required. For notational brevity, we assume identity matrices for the weight, input, and output
matrices in what follows. The minor adjustments to our algorithm to accommodate non-identity
weight, input, and output matrices are outlined in Appendix A.

Solving the Rayleigh quotient (2.7) is equivalent to computing the SVD of the resolvent operator
(Stewart, 1993)

R = UΣV ∗, (2.8)

where Σ contains the singular values (aka gains), and V and U are right and left singular vectors
corresponding to input and output vectors (aka forcing and response modes), respectively.
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2.2 Computation

Computing resolvent modes by following the definitions from the previous § involves two compu-
tationally intensive steps: (i) forming the resolvent operator by computing the inverse in (2.6) and
(ii) computing the full singular value decomposition in (2.8). Both of these steps nominally require
O(N3) operations. This is workable for one-dimensional problems, e.g., a channel flow (Moarref
et al., 2013), but quickly becomes intractable for two- and three-dimensional problems.

Instead, most applications of resolvent analysis to two-dimensional problems have adopted an
alternative approach that leverages LU decomposition and iterative eigenvalue solvers (Sipp &
Marquet, 2013; Jeun et al., 2016; Schmidt et al., 2018; Thomareis & Papadakis, 2018; Karban et al.,
2020). This approach utilizes a mathematical equivalence to compute the resolvent modes faster
than the natural approach. It is straightforward to verify that computing the right singular vectors
of the resolvent operator is equivalent to computing the eigenfunctions of R∗R, i.e., R∗R = VΣ2V ∗.
By computing the leading eigenmodes of R∗R, both right singular vectors and square of singular
values of the resolvent operator are obtained. Recovering the left singular vectors is done via
U = RVΣ−1. The leading eigenvalues and eigenvectors can be efficiently computed via Arnoldi
iteration (Arnoldi, 1951). The cost of the Arnoldi method relies on the desired number of modes and
the convergence threshold. Computing the LU decomposition of (iωI − A) circumvents computing
R directly. This is a common practice to speed up the process of constructing the orthonormal
basis of the Krylov subspace (Theofilis, 2011). However, the O(N2) scaling remains poor for three-
dimensional systems.

The main objective of this paper is to enable resolvent analysis for high-dimensional systems.
Therefore, we discuss state-of-the-art approaches and introduce an improved algorithm specifically
designed to tackle three-dimensional flows.

3 Computing resolvent modes using RSVD

RSVD is a recent randomized linear algebra technique that provides a low-cost approximation of
the leading singular modes of a matrix (Halko et al., 2011) by sampling its image and range. In
the following two subsections, we introduce the RSVD algorithm and discuss its application to
resolvent analysis.

3.1 RSVD algorithm

Algorithm 1 RSVD-LU

1: Input parameters: R, k, q
2: Θ ← randn(N, k) ▷ Create random test matrices
3: Y ← RΘ ▷ Sample the range of R
4: if q > 0 then ▷ Optional power iteration
5: Y ← PI (R,Y , q) ▷ Algorithm 2

6: Q ← qr(Y ) ▷ Build the orthonormal subspace Q
7: S ← Q∗R ▷ Sample the image of R
8: (Ũ,Σ,V )← svd(S) ▷ Obtain Σ,V
9: U ← QŨ ▷ Recover U

10: Output parameters: U,Σ,V

There exist several variations of the RSVD algorithm; here, we outline the algorithm from Halko
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et al. (2011). The first step is to sample the range of R by forming its sketch (line 3)

Y = RΘ, (3.1)

where Θ is a dense random test matrix (line 2) with k ≪ N columns that determines the number
of leading modes to be approximated. Increasing the number of test vectors slightly beyond the
desired number of modes enhances the accuracy of the leading modes. A feature of high-dimensional
random vectors is that they form an orthonormal set with high probability (Vershynin, 2018), such
that, on average, Θ projects uniformly onto all of the right singular vectors of R. Therefore, the
sketch preserves the leading left singular vectors of R. An orthonormal basis Q for the sketch is
obtained via QR decomposition (line 6), which is then used to sample the image of R (line 7) as

S = Q∗R. (3.2)

Computing the SVD of S (line 8), which is inexpensive due to its reduced dimension, provides an
approximation of the k leading right singular vectors V and singular values Σ of R. Finally, the
corresponding approximations of the left singular vectors of R can be recovered as U = QŨ (line
9).

RSVD accurately estimates the leading modes for matrices with rapidly decaying singular values.
For systems with slowly decaying singular values, performing q optional power iterations (lines 4-5
and Algorithm 2) enhances the accuracy of the estimates. The rationale of power iteration is to
increase the effective gap between singular values within the sketch by exponentiating them, since

(RR∗)qY = (UΣ(V ∗V )ΣU∗)qY = (UΣ2U∗)qY = (UΣ2qU∗)Y . (3.3)

Raising the singular values to a high power artificially accelerates the decay rate of the singular
values of R, improving the effectiveness of the RSVD algorithm. The QR factorizations improve
numerical stability, as discussed by Halko et al. (2011).

Algorithm 2 Power iteration

1: Input parameters: R,Y , q
2: for i = 1 : q do
3: Q ← qr(Y ) ▷ For stabilization purposes
4: Y ← R∗Q ▷ Sample the image of R
5: Q ← qr(Y ) ▷ For stabilization purposes
6: Y ← RQ ▷ Sample the range of R
7: Output parameter: Y

3.2 RSVD for resolvent analysis

The algorithm outlined in the previous section assumes direct access to the matrix R. In the
context of resolvent analysis, R is defined in terms of an inverse, which should be avoided. Ribeiro
et al. (2020) addressed this challenge by adopting the approach developed by Jeun et al. (2016) for
computing resolvent modes using an Arnoldi algorithm.

The idea is to replace multiplication of R or R∗ by solving an equivalent linear system. For
example, Y = RΘ (line 3 of Algorithm 1) can be obtained by solving the linear system

(iωI − A)Y = Θ (3.4)
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since R−1 = (iωI − A). Similarly, S = Q∗R (line 7 of Algorithm 1) can be replaced with solving

(iωI − A)∗S∗ = Q. (3.5)

The same concept can be used to replace multiplication by R and R∗ in Algorithm 2.
Typically, the linear systems are solved by computing an LU decomposition

(iωI − A) = LP, (3.6)

where L and P are the lower and upper triangular matrices (we use P to denote the upper triangular
matrix instead of U to avoid confusion with the left singular vectors). The same LU decomposition
can be used also for (iωI − A)∗ since

(iωI − A)∗ = (LP)∗ = P∗L∗. (3.7)

Solving these linear systems is indeed significantly less computationally demanding than computing
the inverse of (iωI − A) to form R and performing subsequent matrix-matrix multiplication in the
RSVD algorithm. The remaining steps of the algorithm incur negligible computational costs and
are not altered. In the remainder of our paper, we will use the term “RSVD-LU” to refer to the
modified version of RSVD that is compatible with resolvent analysis (Ribeiro et al., 2020).

4 Computing resolvent modes using time stepping

An alternative class of methods for computing resolvent modes utilizes time stepping. This idea
was first proposed by Monokrousos et al. (2010) and recently was improved upon by Martini et al.
(2021), who introduced two methods: the transient response method and the steady-state response
method. The latter was found to be better suited for complex algorithms, and we will employ and
extend this method in the present paper.

4.1 The action of the resolvent operator via time stepping

The central idea of the time-stepping approach is to obtain the action of the resolvent operator on
a vector (or matrix) by solving the linear system that underlies the resolvent operator in the time
domain. In this context, the action of a matrix R on a vector (or matrix) b is defined as follows;
Given b, our objective is to compute x = Rb, which is equivalent to solving the linear system
R−1x = b for x.

Starting with a harmonically forced ordinary differential equation (ODE)

dq

dt
= Aq + f , (4.1)

where
f(t) = f̂eiωt (4.2)

is the harmonic forcing with frequency ω ∈ R and f̂ ∈ CN is an arbitrary vector. The steady-state
response of (4.1) is

q(t) = q̂se
iωt, (4.3)

where
q̂s = (iωI − A)−1f̂ = Rf̂ (4.4)
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Tt Ts

dtΔt

Ts = Nsdt = NωΔt

Figure 1: Schematic of the response waveform. The solution contains a transient portion of length
Tt before the steady-state solution of period Ts is achieved. The numerical solution contains Ns

time steps of size dt within one period of the steady-state solution, but only Nω points with ∆t
spacing are required to decompose the Nω frequencies of interest without aliasing.

is the Fourier-domain solution. Therefore, the action of R can be obtained by computing the steady-
state solution q(t) of (4.1) and subsequently taking a Fourier transform to obtain q̂s. Similarly, the
action of R∗ can be obtained by computing the steady-state response z(t) of the adjoint equation

−dz

dt
= A∗z + f ,

f = f̂eiωt,

(4.5)

backward in time and taking a Fourier transform to obtain

ẑs = (−iωI − A∗)−1f̂ = R∗f̂ . (4.6)

The arbitrary harmonic forcing term f̂ can be a matrix instead of a vector by defining F̂ ∈ CN×k.
In that case, each column of the solutions Q̂ and Ẑ corresponds to one specific column of the forcing
matrix.

4.2 Direct and adjoint actions for a range of frequencies

This section describes an important contribution from Martini et al. (2021) that allows us to
compute the action of the resolvent operator for a set of desired frequencies while time-stepping the
equations only once. Integrating (4.1) typically generates a transient response Tt before obtaining
the desired steady-state solution, as shown in figure 1. The length of Tt affects the length of time
stepping and the accuracy of the output, as discussed in §7.2.2. The discrete nature of time stepping
encourages the usage of discrete Fourier transform (DFT) where q̂s(ω) can be obtained for a base
frequency, ωmin, and its harmonics, nωmin, where n ∈ Z. The DFT necessitates a specific time
length of Ts = 2π/ωmin in order to accurately resolve the longest wavelength of interest. The
number of snapshots within the steady-state period Ts determines the lowest frequency that can
be resolved.

In order to compute resolvent modes for all frequencies of interest

Ω = {0,±ωmin,±2ωmin,±3ωmin, ...,±ωmax}, (4.7)
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Fourier transform
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Solving 

decoupled linear systems

Fourier transform
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AIi

Figure 2: Flowchart depicting the action of R on Nω inputs for the RSVD-LU (upper route) and
the RSVD-∆t (bottom route) algorithms. Both routes produce the same result, but the bottom
route in computationally advantageous for large systems.

where ωmax represents the highest frequency of interest, the forcing term

f =
∑
ωj∈Ω

f̂je
iωjt (4.8)

must include all frequencies in Ω. The minimum number of snapshots within the Ts-period is
Nω = 2⌈ωmax

ωmin
⌉ according to Nyquist’s theorem (Nyquist, 1928). Performing time integration of (4.1)

results in computing Ns steady-state snapshots within the Ts-period, where typically Ns ≥ Nω, as
the time step (dt) is chosen to ensure sufficient integration accuracy. Ultimately, by choosing Nω

steady-state snapshots, we can determine the Fourier coefficients by taking a DFT.
To elaborate on the previous point, assume a set of snapshots QNs = {q1, q2, q3, ..., qNs} (anal-

ogous to the pink dots in figure 1), where qj represents the jth steady-state snapshot in the time

domain. The fast Fourier transform (FFT) can efficiently compute Q̂Ns = {q̂1, q̂2, q̂3, ..., q̂Ns}. How-
ever, the maximum resolved frequency within Q̂Ns surpasses ωmax since typically Nω ∼ O(102), and
Ns ∼ O(103 − 105). Therefore, an optimal size to resolve all ω ∈ Ω without aliasing is to consider
Nω equally spaced snapshots in QNω = {q1, q2, q3, ..., qNω} (analogous to the cyan dots in figure

1). Taking the FFT of QNω yields Q̂Nω = {q̂1, q̂2, q̂3, ..., q̂Nω}, where each member q̂j represents

the solution to (iωj I − A)q̂j = f̂j , with ωj ∈ Ω.
To avoid leakage, the equidistant snapshots within QNω need to span the entire Ts period, i.e.,

Ts = dt×Ns = ∆t×Nω. (4.9)

For a given pair (ωmin, ωmax),

∆t =
Ts

Nω
=

2π/ωmin

2⌈ωmax
ωmin
⌉

(4.10)

is predetermined, so dt must be selected such that Ns
Nω
∈ N.

Figure 2 demonstrates the equivalence between computing the action of R for a range of fre-
quencies in both the RSVD-LU and RSVD-∆t algorithms. Starting from the LNS equations, the
upper route involves applying a Fourier transform before solving Nω decoupled linear systems to
compute the action of the resolvent operator on Nω forcing inputs. The bottom route involves
integrating the LNS equations in the time domain, followed by a Fourier transform to generate the
same output as the upper route. All frequencies of interest, ω ∈ Ω, are included in the forcing
so that the time stepping is performed only once, and the response at each frequency is obtained
using a DFT or FFT.
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5 RSVD-∆t: RSVD with time stepping

Our algorithm, which we refer to as RSVD-∆t, uses time stepping to eliminate the computational
bottleneck within the RSVD algorithm for large systems. Specifically, solving the direct and adjoint
LNS equations to apply the action of R and R∗ circumvents the need for LU decomposition,
improving the scaling of the algorithm (see §6), enabling resolvent analysis for the large systems
typical of three-dimensional flows. RSVD-∆t is outlined in Algorithm 3 and described in what
follows.

Algorithm 3 RSVD-∆t

1: Input parameters: A, k, q,Ω, TSS, dt, Tt

2: Θ̂ ← randn(N, k,Nω) ▷ Create random test matrices
3: Ŷ ← DirectAction(A, Θ̂,TSS, dt, Tt) ▷ Sample the range of R
4: if q > 0 then ▷ Optional power iteration
5: Ŷ ← PI(A, Ŷ , q,TSS, dt, Tt) ▷ Algorithm 2 with time stepping

6: Q̂ ← qrΩ(Ŷ ) ▷ Build the orthonormal subspace Q̂
7: Ŝ ← AdjointAction(A∗, Q̂,TSS, dt, Tt) ▷ Sample the image of R
8: (Ũ,Σ,V )← svdΩ(Ŝ) ▷ Obtain Σ,V
9: U ← (Q̂Ũ)Ω ▷ Recover U

10: Output parameters: U,Σ,V for all ω ∈ Ω
Algorithm 3: k, q,Ω are common parameters with RSVD. (·)Ω means the function is separately applied to each

ω ∈ Ω, and TSS is an abbreviation for time-stepping schemes (e.g., backward Euler)

As in the standard RSVD algorithm, the first step is to create random forcing matrices to sketch
R. Since our time-stepping approach computes all frequencies of interest at once, a separate test
matrix Θ̂ ∈ CN×k is generated for each frequency ω ∈ Ω (line 2). Next (line 3), the DirectAction
function solves the LNS equations forced by the set of test matrices in the time domain to obtain
the sketch Ŷ of the resolvent operator R for all ω ∈ Ω. Line 4 checks whether or not power iteration
is desired, and if so (i.e., q > 0), line 5 jumps to algorithm 2 to increase the accuracy of resolvent
modes. All instances of applying the action of the resolvent operator or its adjoint in Algorithm 2
are performed via time stepping. In line 6, an orthonormal subspace Q̂ is constructed for the sketch
at each frequency via QR decomposition. Note that the Ω subscript indicates that the operation
is performed separately for each frequency ω ∈ Ω. Next, in line 7, the AdjointAction function
solves the adjoint LNS equations forced by the set of Q̂ matrices in the time domain to sample
the image of the resolvent operator R for all ω ∈ Ω. Finally, the estimates of the k leading right
singular vector V and gains Σ are obtained via an economy SVD of the N × k matrix Ŝ (line 8),
and left singular vectors U are recovered in line 9.

6 Computational complexity

The primary advantage of the RSVD-∆t algorithm is its reduced computational cost. In this section,
we discuss the CPU and memory cost scaling of applying the action of the resolvent operator via
time stepping and compare it to LU-based approaches, as summarized in table 1. We assume that
the LNS equations are discretized using a sparse scheme such as finite differences, finite volume, or
finite elements. Once the linearized operator A is constructed, the goal is to solve the linear system
given by

(iωI − A)x = b (6.1)
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Problem size Action of R CPU time Memory

Two-dimensional
time stepping O(N) O(N)

LU decomposition O(N1.5) O(N1.2)

Three-dimensional
time stepping O(N) O(N)

LU decomposition O(N2) O(N1.6)

Table 1: The scaling of CPU time and memory requirements with respect to N for computing the
action of R (or R∗) using time stepping and LU decomposition.

to compute the action of R on b.

6.1 CPU cost

Direct solvers find the solution of (6.1) to machine precision. A common approach is to find
the LU decomposition of (iωI − A) and solve the decomposed system via back substitution. The
process of computing lower and upper triangular matrices with full or partial pivoting can be
extremely expensive for large systems (Duff et al., 2017) and is often the dominant cost of solving
a linear system (Marquet & Larsson, 2015). Once the LU decomposition is obtained, solving
the LU-decomposed system is typically comparatively inexpensive. The theoretical cost scaling of
LU decomposition of the sparse matrices that arise from collocation-based discretization methods
(like finite differences) is O(N1.5) and O(N2) for two-dimensional and three-dimensional systems,
respectively (Amestoy et al., 2019). The larger scaling exponent and number of grid points present
in a three-dimensional problem make the LU decomposition of the corresponding linear operator
costly. Optimized algorithms for computing LU decomposition are available in open-source software
packages such as LAPACK (Anderson et al., 1999), MUMPS (Amestoy et al., 2001), PARDISO
(Schenk et al., 2001), and Hypre (Falgout & Yang, 2002), which are designed to leverage massive
parallelization. The LU decomposition becomes increasingly dominant (compared to solving the
LU-decomposed system or other algorithmic steps) as the size of the system increases for both
the standard Arnoldi-based method and the RSVD-LU algorithm, reducing the computational
advantage of the latter.

Iterative solvers contain convergence criteria that can be adjusted to reduce computational cost
at the expense of a less accurate solution. The performance of iterative solvers strongly depends
on the condition number κ, the ratio between the largest and smallest eigenvalues of a matrix.
Matrices with condition numbers of great than ∼ 104 are considered to be ill-conditioned (Saad,
2003b), which can cause slow convergence and numerical stability issues for iterative solvers (Skeel,
1979). The LNS operator A is typically a sparse but ill-conditioned matrix. When ω is small,
(iωI − A) inherits the ill-conditioning of A, making the use of an iterative solver challenging. The
conditioning improves as ω increases, so the lowest frequencies control the overall cost of using
an iterative method to compute resolvent modes. In addition to the condition number, other
properties such as the size, sparsity pattern, and density (or sparsity ratio) of a matrix can also
ease or aggravate the situation (Trefethen & Bau III, 1997).

In principle, iterative solvers are attractive when solving (6.1) up to machine precision is un-
necessary, as is the case when using the RSVD algorithm, which is already an approximation. The
main challenge remains the typically high condition number of (iωI −A), as explained above. One
potential solution is the common practice of using a preconditioner (Saad, 2003a). Preconditioners
are matrices that are multiplied on the left, right, or both sides of the target matrix to decrease its
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condition number and thus increase the convergence of iterative solvers. The methods of comput-
ing preconditioners and numerous related theories and practices are neatly summarized in a few
surveys (Axelsson, 1985; Benzi, 2002; Pearson & Pestana, 2020). Despite numerous developments
in this area, effective preconditioners do not exist for all matrices, including many LNS operators.
Accordingly, direct methods/LU decompositions are almost always used to solve (6.1) when com-
puting resolvent modes (Moarref et al., 2013; Jeun et al., 2016; Schmidt et al., 2018; Ribeiro et al.,
2020).

The cost of time-stepping methods rely on integrating the LNS equations in the time domain.
Time-stepping of ODEs (such as the one in (4.1)) has a long history and is a mature field (Hairer
et al., 1993; Wanner & Hairer, 1996; Trefethen & Bau III, 1997). Herein, two classes – implicit and
explicit integration schemes – are available and widely used in the scientific computing community.

Implicit integrators possess better stability properties but require a system of the form

Ax = b (6.2)

be solved at every iteration. Here, b ∈ CN×k is a function of the solution at previous time and
the exogenous forcing (if present), and A ∈ CN×N is the temporal discretized operator, which is
a function of the linear operator A. For example, A can be written as a first-order polynomial
of the form A = c1I + c2A for multi-step methods, where constants are determined based on
integration scheme and time step, e.g., A = I − dtA for backward Euler. A superficial comparison
between (6.2) and (6.1) indicates that implicit time steppers suffer from the same issues elaborated
above. However, the key difference is that A is multiplied by the (small) time step dt, so the
ill-conditioning of A is largely overwhelmed by the ideal conditioning of the identity matrix I . This
improved conditioning makes possible the application of iterative solvers.

For explicit integrators, the solution at each time step is an explicit function of the solution (and
exogenous forcing) at previous time steps. Accordingly, a solution of a linear system is not required,
and each step contains only inexpensive sparse matrix-vector products for a linear ODE such as
(6.1), making each step rapidly computable. The downside of explicit methods is that they are less
numerically stable and often require many small steps to ensure stability for stiff systems (Süli &
Mayers, 2003). Nevertheless, the drastically smaller cost of each step for explicit integrators often
outweighs the disadvantage of requiring many small steps, and many computational fluid dynamics
codes are equipped with explicit integrators such as Runge–Kutta schemes.

Explicit integrators involve repeatedly multiplying the sparse matrix A with vectors during the
time-stepping process, which scales like O(N). Generating forcing input and transforming responses
to Fourier space are also O(N) operations (see §8.1.1). The time step is chosen to control the error
associated with the highest frequency of interest, rather than being determined by a CFL condition
as discussed in §7.2.1. By fixing the time step and time-stepping scheme while varying N , it is
evident that explicit integrators scale linearly with dimension. Implicit integrators, on the other
hand, require at least one LU decomposition of A for direct solvers or a preconditioner for indirect
solvers, which are not O(N) operations. However, this one-time cost is often small enough that
it is overwhelmed by other operations such that the observed computational complexity remains
O(N).

6.2 Memory requirements

Supercomputers and parallel solvers can keep the hope of computing the LU decomposition of mas-
sive and poorly conditioned systems alive; however, massive calculations require massive storage,
and memory becomes the top issue (Davis et al., 2016). Generally, direct solvers are more robust
than iterative solvers but can consume significant memory due to the fill-in process of factorization
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(Marquet & Larsson, 2015). The memory requirement associated with LU decomposition for resol-
vent analysis has been empirically observed to scale like O(N1.2) and O(N1.6) for two-dimensional
and three-dimensional systems, respectively (Towne et al., 2022). The exponents are not guaranteed
and can become better or worse depending on the system of interest.

Explicit integration schemes have certain advantages over implicit integration schemes. Explicit
schemes typically do not require much space for sparse matrix-vector products. The required
memory is mainly used to store the forcing and response modes in Fourier space which scales like
O(N), as will be discussed in §8.1.1. On the other hand, implicit integration schemes, in addition
to the Fourier space matrices, require memory for solving (6.2), which depends heavily on the
sparsity of the LU-decomposed matrices or the iterative methods employed. For some systems,
these methods may scale worse than O(N), resulting in increased memory requirements.

6.3 Matrix-free implementation

So far, we have assumed that the LNS matrix A is explicitly formed. In contrast to the standard
frequency-domain approaches including the RSVD-LU algorithm, our time-stepping approach can
be applied in a matrix-free manner using any code with linear direct and adjoint capabilities without
explicitly forming A (de Pando et al., 2012; Martini et al., 2021). In this case, the cost scaling of
our algorithm will follow that of the underlying Navier-Stokes code, which is again typically linear
with the problem dimension.

7 Sources of error in the RSVD-∆t algorithm

Next, we identify sources of error within the RSVD-∆t algorithm, which stem from the RSVD
approximation and the time-stepping approach used to compute the action of R. By effectively
addressing these sources of error, the RSVD-∆t method can be optimized for improved efficiency.

7.1 RSVD approximation

RSVD offers estimates of the resolvent modes rather than exact ground truth. The accuracy of
these estimates is extensively discussed in Halko et al. (2011), and it naturally depends on the gain
separation. As mentioned earlier, incorporating power iteration and employing a few extra test
vectors beyond the desired number of modes can improve the accuracy of the resolvent modes. In
many cases, the approximation error of RSVD is the primary source of error in RSVD-∆t, such
that it accurately reproduces the results of the RSVD-LU algorithm.

7.2 Time stepping sources of error

When computing the action of R and R∗ using time stepping, two types of errors are introduced
in addition to the RSVD approximation.

7.2.1 Truncation error

The first source of time-stepping error is the truncation error of the numerical integration schemes
used to solve the time-domain equations. Common approaches include classical numerical inte-
gration schemes such as Runge–Kutta, implicit/explicit Euler, Adams-Moulton family, and others
(Hairer et al., 1993; Wanner & Hairer, 1996). These methods introduce truncation errors result-
ing from the approximation of Taylor series expansions. Hence, a chosen time step introduces an
expected truncation error, with higher-order schemes providing greater precision.
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Local truncation error (LTE) is derived for ODEs as

LTE = C
dpf(t)

dtp
O(dtp), (7.1)

where C is a constant, and p is the order of the time-stepping scheme. In this study, our focus is
on ODEs with harmonic forcing f(t) = f̂ eiωt. Substituting the forcing term into (7.1), we observe
that

LTE ∝ O((ωdt)p). (7.2)

This equation indicates that for a fixed time step dt, the error in the computed resolvent modes
will be frequency dependent and vary as ωp. Therefore, in addition to satisfying any stability
constraints, the time step dt must be selected such that ωmaxdt is sufficiently small to obtain
accurate resolvent modes up to the maximum desired frequency ωmax.

7.2.2 Transient error

The second source of time-stepping error arises from the unwanted transient response. The solution
of (4.1) can be written as a sum of its transient and steady-state components,

q(t) = qt(t) + qs(t), (7.3)

where the transient part qt decays to zero as t → ∞ and the steady-state part qs is T -periodic,
i.e., qs(t+ T ) = qs(t). Taking the Fourier transform of each part leads to

q̂(ω) = q̂t(ω) + q̂s(ω). (7.4)

Only the steady-state solution is desired, so any non-zero transient part constitutes an error in our
representation of the action of the resolvent operator (or its adjoint) on the prescribed forcing. The
transient response can be understood as the response of the system to an initial condition that is
not synced with the forcing applied to the system. It may initially grow for non-normal systems like
the LNS equations (Schmid, 2007) but eventually decays at the rate of the least-damped eigenvalue
of A.

We define the transient error as the ratio between the norms of the transient and steady-state
responses,

ϵ =
||qt||
||qs||

, (7.5)

where the l2-norms can be replaced with || · ||q for non-identity weight matrices. In cases where we
solve (4.1) with a zero initial condition (which is often the case), i.e., q(0) = qt(0) + qs(0) = 0, the
transient error is initially one,

ϵ(0) =
||qt(0)||
||qs(0)||

= 1. (7.6)

In the long term, the transient error approaches zero,

lim
t→∞

ϵ(t) = lim
t→∞

||qt(t)||
||qs(t)||

= 0, (7.7)

since ||qs|| remains bounded.
The eigenspectrum of the linearized system A provides insights into the long-term response of

the homogeneous system. Any initial perturbation will eventually follow the least-damped mode.
However, in practice, computing the eigenspectrum of A is challenging, especially for large systems.
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Figure 3: Schematic of the action of R with (a) FFT/iFFT and (b) streaming DFT/iDFT methods
to transform between the Fourier and time domains.

Even obtaining a small number of eigenvalues using the Krylov-Schur method can be cumbersome.
Therefore, a practical approach to understanding the long-term behavior of a system is to simulate
the homogeneous ODE

dqh
dt
− Aqh = 0, (7.8)

initialized with a random state (Eriksson & Rizzi, 1985; Edwards et al., 1994). A random pertur-
bation represents a worst-case scenario, as it excites all the slow modes of A. By monitoring the
norm of qh over time, we can estimate the slowest decay rate, which corresponds to the real part of
the least-damped eigenvalue of A. This also gives us an indication of the expected magnitude of the
transient error. Performing a DFT on one cycle of the transient response allows us to determine
the anticipated level of transient error within the desired frequency range.

While it is possible to simply wait for the transient error to naturally decay over time, this
approach comes with increased CPU cost, as it requires longer simulation durations. In §8.2, we
will present an efficient method to achieve a smaller transient error within a shorter time frame.

8 Optimizing the RSVD-∆t algorithm

In this section, we present several approaches aimed at reducing the CPU cost and memory re-
quirements of the RSVD-∆t algorithm. These approaches, combined with the improved cost scaling
of RSVD-∆t compared to the RSVD-LU algorithm as discussed in §6, are crucial in facilitating
affordable resolvent analysis of complex three-dimensional flows.

8.1 Minimizing memory requirements

First, we describe several strategies to minimize the memory required to compute resolvent modes
for a given problem.
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8.1.1 Streaming Fourier sums

A straightforward implementation of computing the action of R (or R∗) via time stepping entails

(i) transferring the forcing from Fourier space to the time domain, F̂ iFFT−−−→ F , (ii) performing
integration to obtain the steady-state solutions saved with a specific time interval, as explained in

§4.2, and (iii) transferring the response back to frequency space, Q FFT−−−→ Q̂. A schematic of these
steps is displayed in figure 3(a).

The first step requires zero-padding F̂ ∈ CN×k×Nω since F ∈ CN×k×Ns is required at all
Ns ≫ Nω points in the period associated with the time step dt ≪ ∆t required for accurate time
stepping. The iFFT is computationally efficient but storing its output requires a minimum memory
allocation of O(NkNs), excluding space for the iFFT calculations themselves. F̂ is automatically
discarded before proceeding to the second step. In step (ii), fj ∈ F is used to force the linear
system at each time step until the transient ends, and the steady-state responses are stored in Q.
After integration, F is no longer needed and is removed. Lastly, obtaining Q̂ from Q using an
FFT requires an O(NkNω) space to store the output. Overall, a minimum memory allocation of
O(NkNs) +O(NkNω) is necessary to store both F and Q simultaneously.

The memory requirements of this process can be significantly reduced by leveraging streaming
Fourier sums, as in the streaming SPOD algorithm proposed by Schmidt & Towne (2019). This
procedure is shown schematically in figure 3(b). In the streaming approach, a new forcing snapshot
is created before each time step and promptly removed afterward. Also, the contribution to the
Fourier modes of the response is computed only at specific time steps, after which the snapshot of
the solution can be discarded. This eliminates the need to permanently store any data in the time
domain, reducing the memory requirement to 2 × O(NkNω) for storing F̂ and Q̂. The streaming
implementation utilizes the DFT formulation to create forcing inputs and compute the effect of
steady-state response data on the ensemble of Fourier coefficients, as demonstrated in the following.

At each time step, the instantaneous forcing is created from its Fourier mode using the definition
of the inverse Fourier transform,

fp =

Nω∑
s=1

Z ′
psf̂s, (8.1)

where Z ′
ps = exp(−2πi/Ns)

(p−1)(s−1). The integer p (1 ≤ p ≤ Ns) specifies the phase of the periodic

forcing at the current time step. Here, f̂s ∈ CN×k×Nω denotes Fourier modes that are accessible
from memory. The sum is taken over every ω ∈ Ω, and it outputs the pth time domain snapshot
fp ∈ CN×k. This process continues in a loop of size Ns until the transient is passed and steady-state
data is computed.

The response Fourier modes can be computed from the time-domain steady-state solutions in a
similar streaming fashion. Following the definition of the DFT, each temporal snapshot ql within
the steady-state response contributes to each each Fourier mode according to the partial sum

[q̂s]r = [q̂s]r−1 + Zlsqr =
r∑

l=1

Zlsql, (8.2)

where Zls = exp(−2πi/Nω)
(l−1)(s−1), 1 ≤ (l, s) ≤ Nω. Here, [q̂s]r represents the sum of contributions

up to qr, which is the rth steady-state response and should be removed after adding its contribution
to the sum. The partial sum is complete once r = Nω, i.e., the effect of all Nω steady-state data is
included.

A subtle but important difference between the iDFT matrix Z ′ ∈ CNω×Ns and the DFT matrix
Z ∈ CNω×Nω is their sizes: Z is used to generate Ns temporal snapshots of the forcing from Nω
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F/F−1 CPU time Memory

iFFT Nk ×O(Nslog(Ns)) O(NkNs)
FFT Nk ×O(Nωlog(Nω)) O(NkNω)

Streaming iDFT Nk ×O(NtotalNω) O(NkNω)
Streaming DFT Nk ×O(N2

ω) O(NkNω)

Table 2: Comparison of CPU time and memory requirements using FFT/iFFT and streaming
DFT/iDFT methods transfer back and forth between Fourier space and time domain. Ntotal =
Nt +Ns is the total number of time steps including transient and steady-state parts.

Fourier modes, while Z ′ is used to convert Nω temporal snapshots of the steady-state solution into
Nω Fourier modes. The steaming process of the adjoint equations is identical, except the equations
are integrated backward in time and indices within the Fourier sums are adjusted accordingly.

The CPU time and memory requirement of the FFT/iFFT and streaming DFT/iDFT ap-
proaches are summarized in table 2. Although the streaming method incurs slightly higher CPU
cost due to the efficiency of the FFT algorithm, this CPU overhead is negligible compared to the
cost of taking a time step. Moreover, the memory savings of the streaming method can be substan-
tial; the ratio of the memory required by the iFFT and streaming iDFT methods used to create the
forcing snapshots scales like O(Ns/Nω), where Nω ∼ O(102), and Ns ∼ O(103 − 105) are typical
values. Overall, the substantial memory benefit of the streaming method outweighs the small CPU
penalty, especially for large systems.

8.1.2 Optimal cost for real-valued matrices

The linear operator A is often real-valued, in which case the memory requirements can be further
reduced. Assuming R = (iωI −A)−1 = UΣV ∗, the resolvent operator corresponding to −ω can be
written as

R−ω = (−iωI − A)−1 = (iωI − A)−1 = (iωI − A)−1 = Rω = UΣV ∗
, (8.3)

where (̄·) denotes the complex conjugate and A = A when A is real-valued. Equation (8.3) proves
that the gains of positive and negative frequencies are symmetric and the resolvent modes are
complex conjugates of one another. Therefore, computing the resolvent modes for positive ω ∈ Ω
naturally provides results for negative frequencies. This symmetry halves the CPU cost for the
RSVD-LU algorithm but does not reduce the memory requirement. On the other hand, in the
case of RSVD-∆t, the memory requirements are halved, but there is no significant reduction in the
CPU, as further elaborated.

Since the frequencies of interest become Ω+ = {0,+ωmin,+2ωmin, ...,+ωmax}, the total number
of frequencies becomes ⌊Nω

2 ⌋+1. In this scenario, only Fourier coefficients corresponding to ω ∈ Ω+

are saved and the memory storage required for both input and output matrices (F̂ and Q̂ discussed
in §8.1.1) is halved. In terms of CPU, generating the forcing and computing the response is twice as
fast but the speed-up is not significant as the time stepping remains identical to the complex-valued
case.

8.1.3 An additional option for reducing memory

If additional memory savings are required, the memory requirements of RSVD-∆t can be sharply
reduced by dividing the frequencies of interest into multiple sets at the expense of additional CPU
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cost. For instance, when the frequencies are divided into d equal groups, the memory requirement
is reduced by a factor of d. The penalty of doing so is that the CPU time scales proportionally with
d, since the entire algorithm needs to be repeated for each group of frequencies. The RSVD-LU
algorithm offers no such opportunity to reduce memory requirements, e.g., to make a particular
calculation possible on a given computer, at the expense of higher CPU cost.

8.2 Minimizing the CPU cost: efficient transient removal

Within the time-stepping process, the removal of the transient responses is crucial and is naturally
accomplished through the long-time integration of (4.1), as discussed in §7.2.2. Nonetheless, certain
LNS operators exhibit a painfully slow decay rate, resulting in lengthy transient durations and costly
time stepping. Therefore, we present an efficient transient removal strategy to minimize the CPU
cost.

Our strategy uses the differing evolution of the steady state and transient parts of the solution
to directly compute and remove the transient from the solution. Considering two solutions of (4.1),
q1 = q(t1) and q2 = q(t1 +∆t), we can express them in terms of their steady-state and transient
parts, as in (7.3), as

q1 = qs,1 + qt,1,

q2 = qs,2 + qt,2,
(8.4)

where qs,1, qs,2, qt,1, and qt,2 are four unknowns. Applying a prescribed forcing in (4.1) at a single
frequency ω yields

qs,2 = qs,1e
iω∆t. (8.5)

Also, the transient response follows the form of a homogenous response, resulting in

qt,2 = eA∆tqt,1. (8.6)

Simplifying (8.4), (8.5), and (8.6) for qt,1, we obtain

(I − e−iω∆teA∆t)qt,1 = b, (8.7)

where b = q1 − q2e−iω∆t is known from the time-stepping solution. Equation (8.7) holds for any
two points in time with arbitrary separation ∆t. The exact steady-state solution with no transient
error is obtained by solving (8.7) for qt,1 and using (8.4) to obtain qs,1 = q1 − qt,1.

The prescribed forcing in RSVD-∆t consists of a range of frequencies, hence, it requires a
pre-processing step to enable the transient removal strategy. We utilize Q = {q1, q2, q3, ..., qNω} to
construct Q̂ ∈ CN×Nω , where the snapshots are equidistant with a time interval of ∆t. Additionally,
we define Q∆t = {q2, q3, q4, ..., qNω+1} as a shifted matrix, resulting in Q̂∆t ∈ CN×Nω . Here, q̂j ∈ Q̂
represents q1 in the above equations, while q̂∆t

j ∈ Q̂∆t represents q2, both oscillating at the same
frequency. Therefore, a single time stepping is sufficient to obtain (8.7) for all ω ∈ Ω.

Solving (8.7) can be computationally expensive, particularly for large systems, even if we assume
that computing eA∆t is feasible. To address this issue, one possible approach is to choose a small ∆t

and expand the exponential term as eA∆t =
∑

j
(A∆t)j

j! . However, this leads to solving a similar linear
system to (6.1), which we wish to avoid. Another approach is to leverage iterative methods (e.g.,
GMRES) when ∆t is sufficiently large. Although the solution may converge within a reasonable
time frame, solving similar systems needs to be repeated for all test vectors and frequencies. To
overcome these challenges, we propose employing Petrov-Galerkin (or Galerkin) projection to obtain
an affordable, approximate solution of (8.7).
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Consider a low-dimensional representation of the transient response as

qt,1 = ϕβ1, (8.8)

where ϕ ∈ CN×r, with r ≪ N , is an orthonormal test basis spanning the transient response and
β1 ∈ Cr represents the coefficients describing the transient in this basis. By substituting (8.8) into
(8.7), the linear system

(I − e−iω∆teA∆t)ϕβ1 = b (8.9)

is overdetermined. Petrov-Galerkin projection with trial basis ψ ∈ CN×r is employed to close (8.9),
giving

ψ∗(I − e−iω∆teA∆t)ϕβ1 = ψ
∗b. (8.10)

Solving (8.10) for β and inserting the solution into (8.8) yields

qt,1 = ϕ(ψ
∗ϕ− e−iω∆tM̃)−1ψ∗b, (8.11)

where
M̃ = ψ∗eA∆tϕ ∈ Cr×r (8.12)

is a reduced matrix that maps the coefficients. The advantage of this strategy is that it allows
for the computation of the inverse of (ψ∗ϕ − e−iω∆tM̃) due to its reduced dimension. Obtaining
M̃ is also an efficient process, involving two steps: (i) integrating the columns of ϕ over ∆t, and
(ii) projecting eA∆tϕ onto the columns of ψ. The construction cost of M̃ for each ω ∈ Ω is
primarily determined by the first step. Specifically, when the number of columns in ϕ is r = Nω

and ∆t = Ts/Nω, the total cost of constructing M̃ for all ω ∈ Ω is equivalent to integrating the
LNS equations for an additional Ts duration.

Galerkin projection is a special case of the above procedure in which the test and trial functions
are the same, i.e., ϕ is also the trial function. Using this strategy with either Galerkin or Petrov-
Galerkin projections, the accuracy of the solution relies on the ability of the column space of ϕ
to adequately span the transient response. Thus, the challenge lies in constructing an appropriate
basis to accurately capture the transient behavior. Before the introduction of appropriate test
bases, we note that one can construct a new ϕ for each ω ∈ Ω, however, the bases that we define
later are universal for all frequencies. Hence, the reduced matrix M̃ is constructed once for all
frequencies. Subsequently, (8.11) obtains transient responses at each frequency and updates the
steady-state responses.

Given the rapid decay of most terms in the transient response, it is advantageous to utilize the
least-damped eigenvectors of A as the chosen test basis. By excluding the least-damped eigenvec-
tors, we effectively increase the decay rate of the transient response. Let λ1 denote the least-damped
eigenvalue of A, with V1 representing the corresponding eigenvector. We define ϕ = V1, thereby
removing the transient component projected onto V1. As a result, the norm of the updated tran-
sient, obtained by subtracting this projection, follows the decay rate associated with the second
least-damped eigenvalue of A. Similarly, the test basis ϕ can encompass the first r−1 least-damped
eigenvectors, ϕ = orth{V1,V2, ...,Vr−1}, leading to a decay rate governed by the rth least-damped
eigenvalue of A. For this particular test basis, Petrov-Galerkin projection can be utilized, where ψ
incorporates the adjoint eigenvectors. This approach ensures the complete elimination of transient
projection onto the least-damped modes. To be clear, this procedure does not eliminate the impact
of these modes on the steady-state response, but only on the transient response.

The main challenge associated with this test basis is the computational cost of computing
the least-damped eigenvectors (and adjoint eigenvectors in the case of Petrov-Galekin projection),
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especially for large systems, even when using algorithms designed for this purpose, e.g., Krylov-
based methods (Eriksson & Rizzi, 1985; Edwards et al., 1994). Overall, the least-damped modes
of A are most helpful for systems that suffer from only a few slowly decaying modes.

Another powerful test basis is formed by stacking the snapshots into a matrix during the inte-
gration of the LNS equations, resulting in ϕ = orth{q1, q2, q3, ..., qr} (an orthogonalization of the

matrix of snapshots). Specifically, ϕ can be constructed as the union of Q̂ and Q̂∆t as a reliable
test basis. Performing QR decomposition on this matrix is essential to ensure orthogonality. As
the LNS equations are allowed to run for a longer duration, ϕ becomes an increasingly effective
test basis, providing improved estimates of the transient responses across all frequencies ω ∈ Ω.
We have observed that this basis is particularly accurate for higher frequencies compared to lower
ones.

A feature of our transient-removal approach is its flexibility in incorporating multiple test bases.
For instance, by considering the matrix of least-damped eigenvectors of A in ϕ1 and the on-the-fly
snapshots in ϕ2, a combined test basis ϕ = ϕ1 ∪ ϕ2 can be constructed and orthogonalized. The
combination of test bases, with ϕ2 being highly effective at higher frequencies, offers benefits at
lower frequencies.

The expected transient error remaining before and after applying our transient removal approach
can be estimated using a preprocessing step. We begin by integrating the homogeneous system
(7.8) using a random initial condition with unit norm. By employing (8.4), (8.5), and (8.6),
and assuming qs = 0, we can apply either Petrov-Galerkin or Galerkin projection to calculate
the updated transient norms. This approach is feasible when ϕ does not depend on real-time
simulation, such as when it represents the matrix of least-damped eigenvectors. However, if ϕ
consists of snapshots, we must generate synthetic snapshots. To accomplish this, we set qs,0 = −qt,0
to ensure the initial snapshot q0 = qs,0 + qt,0 equals zero. Subsequent snapshots are obtained
by superimposing the transient responses (from the homogeneous simulation) onto steady-state
responses generated as qs,j = eiωj∆tqs,1, where ∆t is the time-distance between snapshots. Using
this technique, we can construct ϕ for varying periods and assess the efficacy of the transient
removal strategy. The updated transient error, similar to (7.5), is computed as the ratio of norms
between the updated transient and steady-state responses, which monotonically decreases after
the transient growth phase. This iterative process is performed for all ω ∈ Ω, necessitating the
generation of fresh snapshots for the steady-state responses while keeping the transient response
fixed. The computational expense associated with obtaining this a priori error estimate is primarily
determined by the integration of the homogeneous system and typically constitutes less than 5%
of the overall cost of executing the complete algorithm for computing the resolvent modes. We
illustrate the application of this strategy using various test bases in §9.

9 Test cases

In this section, the RSVD-∆t algorithm is tested using two problems. First, the accuracy of the
algorithm and the effectiveness of the transient removal strategy are verified using the complex
Ginzburg-Landau equation. Second, the computational efficiency and scalability of the algorithm
are demonstrated and compared to that of the RSVD-LU algorithm using a three-dimensional
discretization of a round jet.

9.1 Complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation was initially derived for analytical studies of Poiseuille
flow (Stewartson & Stuart, 1971) and has subsequently been used more generally as a convenient
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Figure 4: Relative error between gains computed using the RSVD-LU and RSVD-∆t algorithms
for the Ginzburg-Landau problem: (a) Tt = 5000 and {TSS, dt} = {BDF4, 0.1} (purple), {BDF4,
0.01} (red), (BDF6, 0.01) (green), and {BDF6, 0.001} (blue) varies; (b) {BDF6, 0.001} is fixed
and Tt varies as 500 (purple), 1000 (red), 2500 (green), and 5000 (blue). In (a), the exponents m
are shown for the best-fit exponential within ω ∈ [0.6, 4].

model of a flow susceptible to non-modal amplification (Hunt & Crighton, 1991; Bagheri et al.,
2009; Chen & Rowley, 2011; Cavalieri et al., 2019). Here, we use it as an inexpensive test case to
validate our algorithm. The complex Ginzburg-Landau system follows the form of (2.3) with

A = −ν ∂

∂x
+ γ

∂2

∂x2
+ µ(x),

µ(x) = (µ0 − c2µ) +
µ2

2
x2,

B = C = I .

(9.1)

Following Bagheri et al. (2009), we set γ = 1− i, ν = 2+ 0.2i, µ0 = 0.38, cµ = 0.2, and µ2 = −0.01.
These parameters ensure global stability and provide a large gain separation between the leading
mode and the rest of the modes at the peak frequency (Bagheri et al., 2009). To explicitly build the
A operator, a central finite difference method is used to discretize x ∈ [−100, 100] using N = 500
grid points. The domain is sufficiently extended in both ±x directions such that it resembles infinite
boundaries (Bagheri et al., 2009), and the weight matrix W is set to the identity on account of the
uniform grid.

9.1.1 RSVD-∆t validation: assessing the transient and truncation errors

The RSVD-∆t outcome must replicate the RSVD-LU outcome up to machine precision when cutting
both sources of errors described in §7.2. Truncation error depends on the integration scheme and
the time step, while the transient error depends on the length of the simulation. Therefore, using
a tiny time step with a high-order integration scheme and a lengthy transient duration should
eliminate the errors due to time integration.

Time-stepping errors are investigated by setting the number of test vectors to k = 1 and power
iterations to q = 0. These minimal values are used since including additional test vectors or power
iterations have no effect on the time-stepping error. The desired set of frequencies isΩ ∈ [−4, 4] with
∆ω = 0.05. The gains of the Ginzburg-Landau system are computed using RSVD and RSVD-∆t
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Figure 5: Transient-removal for the Ginzburg-Landau test problem: (a) Spectrum of Ginzburg-
Landau operator with a zoomed-in view of the three least-damped eigenvalues. (b) Transient error
measurement: blue curve represents original decay, while green, red, and purple curves depict
decay using Galerkin projection with ϕ of V1, {V1,V2}, and a matrix of snapshots, respectively.
(c) Relative error comparison between the RSVD-∆t and RSVD-LU algorithms. Solid horizontal
lines in (c) represent the expected transient error arising from the transient norm at the end of the
Tt (the black vertical line in (b)).

and the relative errors for various cases are shown in figure 4. The minimum error is near machine
precision when BDF6, dt = 10−3, and Tt = 5000 is used, validating the RSVD-∆t algorithm.

By decreasing the order of the integration scheme or increasing the time step, the truncation
error becomes larger, and hence, the error in the computed gains becomes larger. In figure 4(a),
the transient length is held fixed at Tt = 5000 and the gains are obtained using {BDF6, dt =
10−2}, {BDF4, dt = 10−2}, and {BDF4, dt = 10−1}. For all four cases, the relative error is
around O(10−13) at ω = 0, confirming that the transient effect is negligible. Moving away from
zero frequency, the errors increase like O(ω∼4) and O(ω∼6) for the BDF4 and BDF6 schemes,
respectively, consistent with the theoretical asymptotic estimates in §7.2.

Figure 4(b) displays how the length of time that the transient is allowed to decay can affect
the accuracy of the gains as a function of frequency. This time, the time-stepping scheme of
{BDF6, dt = 10−3} is held fixed, ensuring negligible truncation error, and the transient lengths
are varied as Tt = {500, 1000, 2500, 5000}. Smaller values of Tt leave more transient residual in the
steady-state response. The resulting relative gain errors show that the whole frequency spectrum
is affected quite similarly. Longer transient lengths lead to smaller gain errors with a similar trend.
The frequency distribution of the transient error depends on the eigenspectrum of the system. For
example, a cluster of weakly damped modes around a specific frequency can lead to a peak transient
error localized at the same frequency. In §9.2, the peak transient for the jet flows occurs near zero
frequency.

9.1.2 Efficient transient removal

In this section, we demonstrate the transient removal strategy proposed in §8.2. We apply this
strategy to the same Ginzburg-Landau system for the same Ω range described above and compare
the results to the RSVD-LU results as a reference.

The eigenspectrum of the Ginzburg-Landau operator is shown in figure 5(a), and the three
least-damped (and thus slowest decaying) modes have decays rates of λ1,r = −0.008, λ2,r = −0.163,
and λ3,r = −0.318, respectively, where the subscript r indicates the real part of the eigenvalue λ.
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Figure 6: Impact of power iteration on the Ginzburg-Landau gains: (a-c) the gains of the first
three optimal modes using SVD (line) and RSVD-∆t (circle); and (d-e) the relative error between
them. (a,d), (b,e), and (c,f) correspond to q of 0, 1, and 2, respectively. Black lines in (d-f) show
the relative error between the RSVD-LU algorithm and SVD for reference.

Figure 5(b) depicts the transient norm as a function of time, where ϵ is measured as follows: we
initially obtain the true steady-state solution by integrating (4.1) for a very long time at ω = 0.5
(similar results for other frequencies), ensuring that the natural decay has eliminated the transient
response to machine precision and use the steady-state response to measure the transient errors.

The natural decay in this system occurs slowly, as illustrated in figure 5(b). By defining ϕ1

as V1 and utilizing Galerkin projection, we remove the fraction of the transient decaying at the
rate of eλ1t, resulting in a noticeable change in the decay slope. Including the two least-damped
modes with ϕ2 = {V1,V2} further steepens the decay rate, aligning closely with the corresponding
least-damped eigenvalues shown in figure 5(a). However, it is the matrix of snapshots that proves
to be the most effective, completely eliminating the transient within a short period of time.

We employ {BDF6, dt = 10−2} to compute gains using RSVD-∆t, considering three cases of
transient removal that are halted at Tt = 75: (i) natural decay, (ii) Galerkin projection with ϕ1,
and (iii) Galerkin projection with ϕ2. The error is measured as the relative difference in gain
between the RSVD-LU and RSVD-∆t algorithms, as depicted in figure 5(c). The plot clearly
illustrates that smaller transient errors lead to reduced gain errors. In the first two cases, the
transient error dominates, while in the third case, the transient error balances with the truncation
error at lower frequencies, with truncation dominating at higher frequencies. Our findings indicate
that the matrix of snapshots is an effective basis for representing and removing the transient.

9.1.3 Impact of power iteration

Finally, we explore the impact of the number of power iterations q on the accuracy of the solution.
For both the RSVD-LU and RSVD-∆t algorithms, we set k = 6 and vary q from 0 to 2. Additionally,
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Axisymmetric jet

Round jet Streaks Jet with streaks

Figure 7: The mean streamwise velocity of the axisymmetric jet, three-dimensional round jet,
and jet with streaks. The jet with streaks is obtained by adding the streaks with an azimuthal
wavenumber of 6 to the mean flow of the round jet.

RSVD-∆t uses a BDF4 integrator with dt = 0.001 and Tt = 100, and transients are reduced by
removing the least-damped eigenvalue, leading to an expected overall time-stepping error ofO(10−8)
according to Figure 5(c). A standard Arnoldi-based approach is used to provide a ground-truth
reference for defining the error.

The leading three singular values and corresponding relative errors are shown in figure 6. One
power iteration leads to a noticeable accuracy improvement. As expected, using one or more power
iterations substantially improves the accuracy of both the RSVD-LU and RSVD-∆t algorithms.
The optimal singular value in particular improves dramatically for frequencies with a large gap
between the optimal and suboptimal modes. The RSVD-LU errors approach machine precision near
the peak frequency, while the RSVD-∆t errors saturate at the floor set by the choice of integration
parameters. For the rest of the modes and frequencies, the relative error between the RSVD-LU
and RSVD-∆t algorithms is smaller than the relative error between the RSVD-LU algorithm and
the ground truth, so the relative errors are identical. We have found using one power iteration to
be sufficient for most problems, and we recommend this as a default value for our algorithm.

9.2 Round turbulent jet

Second, a round jet is used to demonstrate the reduced cost and improved scaling of our algorithm.
The mean flow is obtained from a large eddy simulation (LES) using the “Charles” compressible flow

solver developed by Cascade Technologies (Brès et al., 2017, 2018), for Mach number M =
Uj

a = 0.4

and Reynolds number Re =
UjDj

νj
= 0.45 × 106. Here, Uj is the mean centerline velocity at the

nozzle exit, a is the ambient speed of sound, νj is the kinematic viscosity at the nozzle exit, and Dj

is the diameter of the nozzle. Validation of the LES simulation against experimental results and
more details on the numerical setup are available in Brès et al. (2018).

The computation of the three-dimensional resolvent modes is performed within a region of
interest defined by x ∈ [0, 20] and y× z ∈ [−4, 4]× [−4, 4]. The spatial discretization of this region
is accomplished using a grid with dimensions of 400 × 140 × 140, respectively. The mean flow is
obtained by revolving the axisymmetric mean flow around the streamwise axis, as depicted in figure
7. The domain is large enough to accommodate sizable low-frequency structures, and the mesh is
resolved to capture structures that emerge in the response modes up to Strouhal (St) number of 1,
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Figure 8: Three leading gains of the axisymmetric jet for four azimuthal wavenumbers.

where St =
ωDj

2πUj
is the non-dimensional form of frequency. The range of St ∈ [0, 1] is wide enough

to include the most important physical phenomena captured by resolvent analysis (Schmidt et al.,
2018). The effective Re is reduced to 1000 to account for un-modeled Reynolds stresses (Pickering
et al., 2021) and the effect of Re is thoroughly investigated and reported in Schmidt et al. (2017).

The LNS equations are expressed in terms of specific volume, the three velocity components,
and pressure, which can be compactly represented as q(x, t) = (ξ,ux,ur,uθ,p)

T (x, r,θ, t). The
three-dimensional state in the frequency domain is

q′(x,y, z, t) =
∑
ω

q̂ω(x,y, z)e
iωt (9.2)

and each mode is characterized by its frequency ω.
To validate our three-dimensional results, we also perform a axisymmetric resolvent analysis of

the same jet for a set of azimuthal wavenumbers in which the symmetry in the azimuthal direction
is exploited. The mean flow is obtained on the symmetry plane with cylindrical coordinates (x, r).
The axisymmetric state

q′(x, r,θ, t) =
∑
m,ω

q̂m,ω(x, r)e
imθeiωt (9.3)

is characterized by the pair (m,ω), wherem denotes azimuthal wavenumber. The domain of interest
for resolvent analysis is x × r ∈ [0, 20] × [0, 4] surrounded by a sponge region which is spatially
discretized using fourth-order summation by parts finite differences (Mattsson & Nordström, 2004)
with 400×100 grid points in the streamwise and radial directions, respectively. A grid-convergence
study verifies the relative error between gains with this mesh and twice the number of grid points
is less than 1-10% for 0 ≤ St ≤ 1. The remaining parameters are kept the same as in the three-
dimensional discretization of the jet.

Figure 8 shows the gains (squared singular values) for m = 0, 1, 2, 3. The dominant mechanisms
for each wavenumber are analyzed in detail in Schmidt et al. (2017) and Pickering et al. (2021).
The optimal mode when m = 0, St ≥ 0.2 corresponds to Kelvin-Helmholtz (KH) instability. At
m = 0, the KH modes are overtaken by Orr-type modes for St < 0.2. At m > 0, streaks become
the dominant response and continue to prevail as the primary instability at low frequencies St→ 0.
The KH modes remain the most amplified response for the higher St-range when m > 0, causing
the large separation between the leading mode and suboptimal modes.

Similar gain trends are found in Schmidt et al. (2018) and Pickering et al. (2020) for the
same wavenumbers demonstrating the robustness of the outcome even though the computational
domains, Re, state vector, sponge regions, and boundary conditions are slightly different. The
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Figure 9: Transient error estimates for the jet in (a) the time domain and (b) the frequency domain.
Each colored period represents the duration utilized for obtaining norms in the frequency domain as
shown in (b). Solid lines represent the natural decay, while dashed lines correspond to the transient
removal strategy using Galerkin projection with the matrix of snapshots.

gains and corresponding modes of the axisymmetric jet are used as a baseline for comparison to
the three-dimensional jet.

9.2.1 Resolvent modes for the jet

Resolvent modes for the three-dimensional round jet are computed for the same range of St ∈ [0, 1]
with ∆St = 0.05. The six leading modes are of interest, so we set k = 10 and q = 1. For the RSVD-
∆t algorithm, we use the classical 4th order Runge–Kutta (RK4) integrator with dt = 0.00625. The
steady-state interval is Ts = 20. Figure 9 shows the expected transient error in the time and
frequency domains. The transient initially grows in time before slowly decaying in figure 9(a). The
resulting error in the frequency domain obtained from selecting each colored segment for computing
resolvent modes is shown in figure 9(b). Our transient removal strategy, using Galerkin projection
with the matrix of snapshots, drastically reduces these errors for St > 0, as indicated by the dashed
lines. We select a transient duration of Tt ≈ 2Ts (green segment), for which the transient removal
strategy brings the transient error below 1% for St > 0.

Figure 10 compares the gains of two-dimensional and three-dimensional discretizations of the
jet. Due to the azimuthal symmetry of the problem, the gains of the three-dimensional problem
are expected to be the union of the gains from the axisymmetric problem (Sirovich, 1987b). Since
higher wavenumbers (m > 3) have lower gains (Pickering et al., 2021), the union of the first four
azimuthal wavenumbers is enough to match the leading modes of the three-dimensional system.
The azimuthal symmetry makes modes corresponding to m ̸= 0 appear in pairs for the three-
dimensional problem. The six computed modes appear in pairs for St ≤ 0.3, after which the gain
of the m = 0 mode becomes large enough to appear for the three-dimensional problem. Up to
St = 0.8, the largest gains are associated with m = ±1. All of the modes that appear for the
three-dimensional problem are KH modes; many more resolvent modes would need to be computed
to capture Orr modes that are buried beneath a slew of KH modes for each azimuthal wavenumber.
The close match between the computed three-dimensional modes and the set of two-dimensional
modes verifies that the three-dimensional calculations are properly capturing the known physics for
this problem. The small mismatch at frequencies close to St = 1 is due to mild under-resolution of
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Figure 10: Resolvent gains for the jet: (a) the union of the axisymmetric jet gains; (b) the optimal
gains of the axisymmetric jet corresponding to various values of m (dashed lines) overlaid on top
of the six leading gains for the three-dimensional discretization (solid lines).

the grid for the compact structures that appear at these frequencies.
Figure 11 shows the pressure response modes at four (St,m) pairs (other components such

as velocity yield similar observations). Each panel shows, for one (St,m) pair, contours of the
two-dimensional mode computed leveraging symmetry, isocontours of the corresponding three-
dimensional mode, and contours for cross sections of the three-dimensional mode in the x− y and
y − z planes. These images show the wavepacket form of the modes, confirm the classification of
each three-dimensional mode with a particular azimuthal wavenumber, and illustrate the match
between the symmetric and three-dimensional results. As noted by Martini et al. (2021), symmetries
such as the azimuthal homogeneity of the jet produce pairs of modes with equal gain that can be
arbitrarily combined (under the constraint of orthogonality) to produce equally valid mode pairs.
For visualization purposes, we have adjusted the phase and summed the mode pairs to best match
those of the modes from the axisymmetric calculations.

9.2.2 Computational complexity comparison

We showcase the superior computational efficiency and scalability of the RSVD-∆t algorithm com-
pared to the RSVD-LU algorithm using the three-dimensional jet. We set k = 10, Nω = 21, and
q = 0 for both algorithms and dt = 0.00625, Tt = 2Ts, and Ts = 20 in the RSVD-∆t algorithm as
in §9.2.1. The reported costs for the RSVD-LU algorithm includes only a single LU decomposition
and the two solutions of the LU decomposed system (once for the direct system and once for the
adjoint system) at each frequency of interest, highlighting the LU decomposition as the primary
bottleneck in the RSVD-LU algorithm and similar methods utilizing LU decomposition to solve
(6.1). The reported costs encompasses the entire RSVD-∆t algorithm, including one extra period
of time-stepping duration to account for the transient removal strategy, as explained in §8.2. The
RSVD-∆t algorithm is implemented using PETSc (Balay et al., 2019), while the LU decomposition
in the RSVD-LU algorithm utilizes PETSc in conjunction with the MUMPS (Amestoy et al., 2001)
external package. All calculations are performed on one processor such that wall-time functions as
a proxy for CPU time.

The measured CPU time for both algorithms are shown in figure 12(a) as a function of the state
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Axisymmetric jet, optimal mode, m = 0, St = 0.6 Axisymmetric jet, optimal mode, m = 1, St = 0.7

Round jet, optimal mode, St = 0.7Round jet, second suboptimal mode, St = 0.6

Round jet, second suboptimal mode, St = 0.35

Axisymmetric jet, optimal mode, m = 2, St = 0.35 Axisymmetric jet, optimal mode, m = 3, St = 0.25

Round jet, fourth suboptimal mode, St = 0.25

Figure 11: Four groups of axisymmetric and three-dimensional pressure modes are shown, including
axisymmetric views, three-dimensional iso-volume representations, and x − y plane snapshots of
the round jet. Cross-sections at x = 5 confirm the azimuthal wavenumber of the three-dimensional
results. Color bar ranges are adjusted for visualization.
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Figure 12: Computational cost as a function of the state dimension N for the three-dimensional jet:
(a) CPU-hours and (b) memory usage for the RSVD-LU (red) and RSVD-∆t (blue) algorithms.

dimension N . The RSVD-LU algorithm scales poorly, in fact exceeding the theoretical scaling of
O(N2) for three-dimensional flows (refer to §6) due to poor performance at low frequencies that
has also been noted in other studies (Pickering et al., 2020). In contrast, the RSVD-∆t algorithm
achieves (near) linear scaling, O(N1.1), confirming its scalability to large problems.

Similar observations can be made about the memory requirements of the two algorithms, shown
in figure 12(b). The observed O(N1.5) memory scaling for the RSVD-LU algorithm is better than
the CPU counterpart, but it is still the main barrier to applying the RSVD-LU algorithm when
the state dimension is of the order of 10 million or higher. The RAM peak usage is determined
entirely by LU decomposition and drops after the decomposed matrices are obtained. On the other
hand, the memory scaling for the RSVD-∆t algorithm is exactly linear with the state dimension
N , consistent with the theoretic scaling determined in §6.

The range of N in figure 12 was selected to make the scaling study tractable for the RSVD-LU
algorithm, but the corresponding grids are under-resolved. Table 3 compares the costs of RSVD-LU
and RSVD-∆t for a more realistic state dimension N ≈ 39 million (5 state variables × a [400×1402]
grid), which was used for the three-dimensional calculations in §9.2.2, and Nω = 21, k = 10, and
q = 1. The CPU and memory requirements of the RSVD-LU algorithm are intractable for this
problem, so we estimate these costs by extrapolating the best-fit lines in figure 12. On the other
hand, for RSVD-∆t, the CPU time and memory usage are directly taken from our simulation,
which employed 300 parallel cores. Computing the action of the resolvent operator in the RSVD-
LU algorithm involves both LU decomposition and solving the decomposed system, with both being
extrapolated but the latter not depicted in figure 12. This implies that for q = 1, the CPU time
includes a single LU decomposition and three times solving the LU-decomposed system.

The RSVD-LU algorithm exhibits a CPU time that is more than three orders of magnitude
higher than that of the RSVD-∆t algorithm. Specifically, using 300 cores, the wall-time for RSVD-
∆t is approximately 61 hours (< 3 days), while the RSVD-LU algorithm requires over 75 300
000 CPU-hours, which translates to around 251 000 hours (∼ 28 years) wall-time. This disparity
becomes even more pronounced as N increases due to the linear CPU scaling of RSVD-∆t and
the quadratic scaling of the RSVD-LU algorithm for three-dimensional problems. Table 3 confirms
that the time-stepping process accounts for nearly all of the CPU time in RSVD-∆t.

The memory improvements of the RSVD-∆t algorithm are arguably even more important. The
memory usage in the RSVD-LU algorithm exceeds that of RSVD-∆t by more than two orders
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Algorithm CPU time (hours) Memory (GB)

Total Action of R and R∗ SVD/QR

RSVD-LU 7.53× 107 7.53× 107 0.762 1.33× 105

RSVD-∆t 1.83× 104 1.83× 104 0.762 7.36× 102

Table 3: Comparison of the RSVD-LU and RSVD-∆t algorithms in terms of CPU time and memory
usage for the three-dimensional jet with N ≈ 39M,Nω = 21, k = 10, and q = 1. The action of R
and R∗ use time stepping for RSVD-∆t and a direct solver for the RSVD-LU algorithm.

of magnitude. The minimum memory requirement for LU calculations surpasses 130 TB for the
three-dimensional jet flow. This amount of memory is more than can be accessed even on most
high-performance-computing clusters. In contrast, the memory usage in RSVD-∆t is optimized
to store only three matrices of size N × k × Nω, which can be accurately estimated based on the
size of each float number in C/C++. For instance, with N ≈ 39 million, k = 10, and Nω = 21,
the RAM consumption for these matrices amounts to ∼ 0.75 TB (using double precision with
64-bit indices). Moreover, the RAM requirements of our algorithm can be further reduced at the
expense of higher CPU cost if necessary as proposed in §8.1.3, while no such trade-off exists for the
RSVD-LU algorithm.

10 Application: jet with streaks

Finally, we apply the RSVD-∆t algorithm to study the impact of streaks on other coherent struc-
tures within a turbulent jet. This is a fully three-dimensional problem for which results obtained
using other algorithms are not available.

Streaks – elongated regions of low-velocity fluid – have historically been observed and studied
in turbulent channel flows (see McKeon (2017) and Jiménez (2018) and the references therein).
More recently, in unbounded shear flows such as round jet flows, streaks have been shown to
be generated via the evolution of optimal initial conditions that maximize the transient energy
growth (Jimenez-Gonzalez & Brancher, 2017). Nogueira et al. (2019) and Pickering et al. (2020)
showed that streaks emerge as the dominant structures in the SPOD and resolvent spectra of jets
at very low frequencies when m ≥ 1. Streaks are produced via a lift-up mechanism applied to
the rolls or streamwise vortices that are usually excited near the nozzle exit. The presence of
streaks within turbulence modifies the flow quite significantly. In particular, optimal streaks are
shown to stabilize the KH wavepackets in a parallel plane shear layer (Marant & Cossu, 2018)
and Tollmien–Schlichting waves in the Blasius boundary layer (Cossu & Brandt, 2002). Similar
findings on a high-speed turbulent jet by Wang et al. (2021) demonstrate the stabilizing effects of
finite-amplitude streaks on KH wavepackets. In this study, we investigate the impact of streaks
on the linear amplification and spatial structure of the Kelvin-Helmholtz wavepackets described by
the leading resolvent modes via a secondary stability analysis.

The streaks that will be added to the mean flow are obtained from an initial resolvent analysis
of the mean flow; specifically, streaks are the optimal resolvent response at very low frequencies
(Pickering et al., 2020). Due to the symmetry of the mean jet, streaks obtained from data via
SPOD or computed using resolvent analysis are associated with a particular azimuthal wavenumber.
Accordingly, we compute the streaks using our axisymmetric code, which produces the same results
as the three-dimensional code but at a lower cost. We compute them for (St, l) = (0, 6), where l
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denotes the azimuthal periodicity of the streaks. This choice of l = 6 corresponds to one of the
main cases studied in Wang et al. (2021).

The updated mean flow with the streaks added has 6-fold rotational symmetry and, following
Sinha et al. (2016), can be written as

q̄(x, r, θ) =
∞∑

j=−∞

ˆ̄qlj(x, r)e
iljθ. (10.1)

They proved that after plugging the Fourier ansatz of the resulting mean flow into the LNS equa-
tions, given an azimuthal wavenumber m, the associated axisymmetric mode q̂m,ω can only couple
with q̂m−lj,ω for j ∈ Z. In our problem, l = 6 and sorting the modes with the lowest azimuthal
modes, we expect coupling of modes in sets of qLω = {q̂L−lj,ω}l=∞

l=−∞, where L = {−2,−1, 0, 1, 2, 3}
includes all possibilities. Indexing in this manner implies that the modes with L = 0, 3 are unpaired
while L = ±1,±2 will show up in pairs in the three-dimensional setup due to symmetry.

The streaks’ shape and amplitude are sensitive to a few parameters including the viscosity (or
equivalently turbulent Reynolds number or eddy-viscosity model if desired) and forcing region. In
lieu of a more complex eddy-viscosity model, we use a constant turbulent Reynolds number of
Re = 1000. This value is close to the optimal frequency-dependent value determined by Pickering
et al. (2021) for St = 0 as well as most of our frequency range of interest St ∈ [0, 1] for the secondary
stability problem. Additionally, the forcing region of the resolvent analysis used to compute the
streaks must be limited to obtain streaks of finite streamwise length. If the domain is not limited,
the forcing rolls that generate these streaks sustain them throughout the domain. After some trial
and error, we limited the forcing region to x, r ∈ [0, 1] × [0, 1], which produced streaks with a
location of peak amplitude (x ∈ [5, 6]) and overall shape consistent with the streak SPOD modes
obtained by Nogueira et al. (2019).

Once the axisymmetric streaks are computed, the three-dimensional streaks are obtained by
revolving them around the x−axis with phase eilθ (see figure 7). A tuning variable is the amplitude
(or strength) of the streaks. The amplitude is defined as the ratio of the peak streamwise velocity
of streaks over M . According to Wang et al. (2021), the amplitude of these structures grows
linearly over time. Therefore, no correct constant amplitude exists for our secondary analysis. The
amplitude of streaks in our paper is set to 40%, which is large enough to affect the modes compared
to the round jet. The region of interest and grid points along with all the other parameters are the
same as for the round jet.

RSVD-∆t is used to compute the resolvent modes for the modified mean flow. The number
of test vectors is k = 10 and the gains are reported after q = 2 power iterations. The first few
leading modes converged after the first power iteration, but an extra power iteration is performed
to ensure convergence since no ground truth results are available for comparison. The frequency
range St ∈ [0, 1] and discretization ∆St = 0.05 are the same as used for the round jet in §9.2. The
time-stepping scheme is RK4 with dt = 0.00625. Transient errors are held below 1% for St > 0 via
transient removal strategy using Galerkin projection with the matrix of snapshots with a duration
Tt = 3Ts.

The gains for the round jet and jet with streaks are compared in figure 13(a). The streaks
have increased the gains by orders of magnitude for St < 0.5. Some of the gains appear in pairs,
indicating mode pairs analogous to those described for the round jet, which arise due to the six-fold
symmetry of the mean jet with streaks. The match occurs between the first and second suboptimal
in addition to the third and fourth suboptimal modes. All modes almost coincide at St = 0.35 and
continue decaying as St increases.

The optimal, first, third, and fifth suboptimal pressure response modes at St = 0.2, where

32



(a) (b)

(c)

(d)

(e)

(i)

(h)(f) (g)

cross-section plane

(j)

Figure 13: Results for the jet with streaks: (a) resolvent gains for the round jet (solid line) and jet
with streaks (dashed line); (b-e) the optimal, first, third, and fifth suboptimal pressure responses
at St = 0.2; (g-j) contours of the pressure responses on cross-section at x = 8.5 corresponding
to (b-e), respectively. Fourier transforms are taken along the black circles shown to obtain the
corresponding azimuthal wavenumber spectra for each mode shown in (f).
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the leading gain is maximum, are shown in figure 13. The second and fourth suboptimal modes
are not shown since they are pairs with the first and third suboptimal modes, respectively. The
three-dimensional iso-surfaces show KH wavepackets that are significantly altered by the streaks;
characterizing the modes with the indexes defined earlier requires deeper investigation. To this end,
cross-section contours at x = 8.5 are plotted. These plots are more complicated than the round jet
due to the coupling between multiple azimuthal wavenumbers. We interpolate the pressure field on
the circles shown on each contour plot to demonstrate the coupling azimuthal wavenumbers. Taking
an FFT of the extracted data, the normalized coefficients are plotted against m in 13(f). This plot
shows that the optimal mode is comprised of L = 3 with a larger weight and L + l = 3 + 6 = 9
with a smaller weight, which is consistent with our axisymmetric analysis. The first suboptimal
mode includes (L,L− l) = (2,−4), and its pair contains (L,L+ l) = (−2, 4), so both couplings and
pairings are as expected. Similarly, the third mode is a coupling between (L,L− l) = (1,−5), and
the fourth mode is with (L,L + l) = (−1, 5). Lastly, the fifth mode is unpaired and captures the
(L,L+ l) = (0, 6) azimuthal wavenumbers with a small signature of L+ 2l = 12.

From the perspective of computational cost, the jet with streaks is similar to the three-dimensional
discretization of the round jet. Utilizing the RSVD-LU algorithm for the same grid with state di-
mension N ≈ 39 million, the anticipated CPU time surpasses 75 million hours, as discussed in
§9.2.2. Nevertheless, leveraging RSVD-∆t with q = 2 enabled us to complete the analysis within
37 thousand CPU-hours. Our computations used 300 cores, which results in a wall time of 28 years
for the RSVD-LU algorithm and 123 hours for our algorithm. Additionally, memory requirements
amount to more than 130 TB for the RSVD-LU algorithm and 0.75 TB for ours. It is safe to
say that this analysis would have been intractable using previous algorithms, demonstrating the
promise of the RSVD-∆t algorithm for extending the applicability of resolvent analysis to new
problems in fluid mechanics.

11 Conclusions

This paper introduces RSVD-∆t, a novel algorithm designed for efficient computation of global
resolvent modes in high-dimensional systems, particularly in the context of three-dimensional flows.
By leveraging a time-stepping approach, RSVD-∆t eliminates the reliance on LU decomposition
that often hampers the scalability of current state-of-the-art algorithms. As a result, RSVD-∆t not
only enhances scalability but also extends the applicability of resolvent analysis to three-dimensional
systems, overcoming previous computational limitations.

Scalability is of utmost importance for algorithms dealing with high-dimensional flows, and
RSVD-∆t excels in this regard. In contrast, the decomposition of (iωI − A) into lower and upper
matrices poses a significant computational challenge for the RSVD-LU algorithm, limiting its scal-
ability with O(N2) scaling for 3D problems. The CPU demand of RSVD-∆t, on the other hand,
exhibits linear proportionality to the state dimension.

In addition to CPU considerations, memory requirements play a crucial role in computing
resolvent modes for large systems. The LU decomposition of (iωI − A) is the primary contributor
to peak memory usage in the RSVD-LU and other common algorithms. In contrast, the RSVD-∆t
algorithm primarily utilizes RAM to store input and output matrices in Fourier space, resulting in
linear growth of memory consumption with dimension. To minimize the required memory, we utilize
streaming calculations, which maintains low memory requirements with minimal computational
impact. If memory limitations persist, the set of desired frequencies can be split into d groups to
further reduce the required memory by a factor of d.

The RSVD-∆t algorithm contains three sources of errors, each of which can be controlled by
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carefully selecting method parameters. The first arises from the RSVD approximation inherited
from the RSVD algorithm. This error can be significantly reduced by employing power iteration
and utilizing more test vectors than the desired number. The second source of error stems from
the time integration method employed to compute the action of R and R∗. Time-stepping errors
encompass the transient response and truncation error. Truncation error arises from the numerical
integration of the LNS equations and can be managed through careful selection of the time-stepping
scheme and time step. The transient response emerges when the initial condition is not synchro-
nized with the applied forcing, decaying over time but potentially requiring many periods to become
sufficiently small. To expedite the removal of transients, a novel strategy is introduced involving the
decomposition of snapshots into transient and steady-state components, with subsequent solving of
equations for the transient. This computation is facilitated through Petrov-Galerkin and Galerkin
projections. To ensure optimal performance, it is important to maintain a balance between trunca-
tion and transient errors. Focusing too much on reducing one source significantly while neglecting
the other can lead to a waste of CPU time without an impact on the outcome. Also, keeping both
errors smaller than the RSVD approximation error will not improve the accuracy of RSVD-∆t with
respect to SVD-based (true) results. By effectively eliminating both truncation and transient errors
up to machine precision, RSVD-∆t has been validated against the RSVD-LU algorithm using the
complex Ginzburg-Landau equation.

The RSVD-∆t algorithm is particularly valuable for analyzing three-dimensional flows, where
other algorithms become impractical. The superior scalability of the RSVD-∆t algorithm leads
to an increasingly pronounced disparity in computational complexity compared to the RSVD-LU
algorithm as the value of N grows larger. As an example, we consider a moderately large state
dimension of N ≈ 39 million. Using the RSVD-LU algorithm for this problem would require an
estimated 75 million CPU-hours and 130 TB of RAM. In contrast, the RSVD-∆t algorithm required
just 18,000 CPU-hours and 0.75 TB of RAM, a reduction of three and two orders of magnitude,
respectively. In general, the benefits of the RSVD-∆t algorithm are most pronounced for three
dimensional flows and other large systems, while little advantage is gained for simple one- and
two-dimensional flows.

Lastly, we leveraged the novel capabilities of the RSVD-∆t algorithm to investigate the influence
of streaks within the turbulent jet on the KH wavepackets. Through a secondary stability analysis
in which the steady streaks are added to the axisymmetric mean flow, we showed the significant
impact of the streaks on the KH wavepackets. This included a substantial increase in gains within
the range St ∈ [0, 0.5], a change in the most amplified azimuthal wavenumber, and coupling of
multiple azimuthal wavenumbers is some of the modes. Given the recently demonstrated presence
of streaks in real jets, these finds warrant further investigation in the future.

Our algorithm also has several implementation advantages. Our time-stepping approach enables
matrix-free implementation, eliminating the explicit formation of the LNS matrix A, instead directly
utilizing built-in linear direct and adjoint capabilities available within many existing codes. All
operations within our the RSVD-∆t algorithm are amenable to efficient parallelization; we have
optimized out implementation of the algorithm for parallel computing using the PETSc (Balay
et al., 2019) and SLEPc (Hernandez et al., 2005) environments, facilitating full utilization of the
computational power offered by modern high-performance clusters. Moreover, our code is designed
to leverage GPUs, enabling the delegation of compute-intensive tasks to the GPU architecture
for quicker and more efficient calculations. Finally, the efficiency and accuracy of the RSVD-
∆t algorithm could be further enhanced by incorporating strategies developed for the RSVD-LU
algorithm. Notably, techniques proposed by Ribeiro et al. (2020) and House et al. (2022) can be
integrated into our approach to use physical insight to select the initial test vectors instead of
relying on entirely random ones.
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Appendix A RSVD-∆t for the weighted resolvent operator

For the sake of notational brevity, we have described resolvent analysis and the RSVD-∆t algorithm
in the absence of non-identity input, output, and weight matrices in the main text (see §2). In
this appendix, we briefly explain the modifications required to include these additional matrices.
In this case, solving the generalized Rayleigh quotient (2.7) is equivalent to computing the SVD of
the weighted resolvent operator (Towne et al., 2018)

R̃ = W 1/2
q C(iωI − A)−1BW−1/2

f , (A.1a)

R̃ = ŨΣṼ ∗, (A.1b)

and further
U = W−1/2

q Ũ,

V = W−1/2
f Ṽ ,

(A.2)

where Σ contains the gains, and V and U are forcing and response modes, respectively. The
resolvent operator is recovered as

R = UΣV ∗Wf . (A.3)

Time-stepping can effectively act as a surrogate for the action of the weighted resolvent operator
R̃ (or equivalently R̃∗). In other words, our objective is to compute

ŷ = R̃f̂ = W 1/2
q C(iωI − A)−1BW−1/2

f f̂ (A.4)

for all ω ∈ Ω using time stepping. The process begins by computing the product between

f̂W = W−1/2
f f̂ in Fourier space, followed by f̂W,B = Bf̂W . The products involving weight and

input/output matrices are efficiently executed due to their sparsity. These operations are con-
ducted for all ω ∈ Ω to obtain F̂W,B. Subsequently, the action of (iωI −A)−1 is computed on F̂W,B

using time stepping to yield Ŷ . The resulting output undergoes ŷC = Cŷ and ŷC,W = W 1/2
q ŷC ,

which are repeated for all frequencies to obtain ŶC,W . Figure 14 visually illustrates the order of

calculations for R in the top row and R̃ in the bottom row. An analogous process is utilized to
compute the action of R̃∗.

Appendix B Removing the least-damped modes using eigenvalues
only

The transient removal strategies described in §8.2 require a basis for the transient, either in the
form of eigenvectors for the least-damped eigenvalues or data. In this appendix, we outline an
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Figure 14: The schematic of computing the action of R on top and the action of R̃ on the bottom
row.

alternative procedure to expedite the decay of transients that that uses knowledge of the least-
damped eigenvalues themselves. Considering two solutions of (4.1), q1 = q(t1) and q2 = q(t1+∆t),
we can express them in terms of their steady-state and transient parts as

q1 = qs,1 + qt,1,

q2 = qs,2 + qt,2,
(B.1)

where qs,1, qs,2, qt,1, and qt,2 are four unknowns. The transient parts can be written as

qt,1 = qλ1,1 + qrest,1,

qt,2 = qλ1,2 + qrest,2,
(B.2)

where we assume the unknowns qλ1,j evolve as ∼ eλ1t, where λ1 is the least-damped eigenvalue.
Hence,

qλ1,2 = qλ1,1e
λ1∆t, (B.3)

where qλ1,j is essentially the projection of the transient response onto the least-damped eigenmode
of A at t = tj . The steady-state evolution at a prescribed forcing at a single frequency ω follows
(8.5). Therefore, in case of ||qrest,j || = 0, the system of equations is deterministic and qt,1 can be
found as

qt,1 =
b

c
, (B.4)

where b = q1 − q2e−iω∆t is known from the time stepping and c = 1− e(λ1−iω)∆t is constant.
Otherwise, i.e., ||qrest,j || ≠ 0, by simplifying terms, the transient part can be written as

qt,1 =
b

c
− (1− c)qrest,1 − qrest,2e−iω∆t

c
. (B.5)

Based on the fundamental assumption, the second term, which is unknown, decays faster than
eλ1,rt. Therefore, by removing the first term b

c , which is known, the residual eventually follows the
second least-damped eigenvalue. If the forcing term encompasses a range of frequencies, the same
relationships remain valid for each frequency after undergoing a DFT, and b

c can be separately
eliminated for each ω ∈ Ω. Note that the eigenvector associated with λ1 was never used.

This procedure can be generalized to target the d least-damped eigenmodes of A. The solution
at each time with arbitrary distances can be expanded as

ql = qs,l +

d∑
j=1

qλj ,l + qrest,l, (B.6)

for 1 ≤ l ≤ d + 1. Utilizing the same relationships, we can eliminate the slowest components,
ensuring that the residual term decays faster than all d modes. This procedure is developed
to steepen the decay rate and shorten the transient length to meet the desired accuracy. The
outcomes of this procedure closely resemble the output of the efficient transient strategy using
Galerkin projection with the least-damped eigenmodes as the basis. The transient error can be
estimated in a similar manner as described for the projection-based approach.
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Jovanović, M. R. 2021 From bypass transition to flow control and data-driven turbulence mod-
eling: An input–output viewpoint. Annual Review of Fluid Mechanics 53 (1), 010719–060244.

Kamal, O., Lakebrink, M. T. & Colonius, T. 2023 Global receptivity analysis: physically
realizable input–output analysis. Journal of Fluid Mechanics 956, R5.

39



Karban, U., Bugeat, B., Martini, E., Towne, A., Cavalieri, A. V. G., Lesshafft,
L., Agarwal, A., Jordan, P. & Colonius, T. 2020 Ambiguity in mean-flow-based linear
analysis. Journal of Fluid Mechanics 900, R5.

Kato, T. 2013 Perturbation theory for linear operators. Springer Science & Business Media.

Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A. V. G. & Jordan, P. 2019
Resolvent-based modeling of coherent wave packets in a turbulent jet. Physical Review Fluids
4 (6), 063901.

Li, F. & Malik, M. R. 1996 On the nature of PSE approximation. Theoretical and Computational
Fluid Dynamics 8 (4), 253–273.

Lumley, J. L. 1967 The structure of inhomogeneous turbulent flows. Atmospheric Turbulence and
Radio Wave Propagation pp. 166–178.

Marant, M. & Cossu, C. 2018 Influence of optimally amplified streamwise streaks on the Kelvin–
Helmholtz instability. Journal of Fluid Mechanics 838, 478–500.

Marquet, O. & Larsson, M. 2015 Global wake instabilities of low aspect-ratio flat-plates.
European Journal of Mechanics-B/Fluids 49, 400–412.

Martini, E., Cavalieri, A. V. G., Jordan, P., Towne, A. & Lesshafft, L. 2020 Resolvent-
based optimal estimation of transitional and turbulent flows. Journal of Fluid Mechanics 900,
A2.

Martini, E., Jung, J., Cavalieri, A. V. G., Jordan, P. & Towne, A. 2022 Resolvent-
based tools for optimal estimation and control via the Wiener–Hopf formalism. Journal of Fluid
Mechanics 938, E2.
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