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Modelling the noise emitted by turbulent jets is made difficult by their acoustic
inefficiency: only a tiny fraction of the near-field turbulent kinetic energy is propagated
to the far field as acoustic waves. As a result, jet-noise models must accurately capture
this small, acoustically efficient component hidden among comparatively inefficient
fluctuations. In this paper, we identify this acoustically efficient near-field source from
large-eddy simulation data and use it to inform a predictive model. Our approach uses
the resolvent framework, in which the source takes the form of nonlinear fluctuation
terms that act as a forcing on the linearised Navier–Stokes equations. First, we identify
the forcing that, when acted on by the resolvent operator, produces the leading spectral
proper orthogonal decomposition modes in the acoustic field for a Mach 0.4 jet. Second,
the radiating components of this forcing are isolated by retaining only portions with a
supersonic phase speed. This component makes up less than 0.05 % of the total forcing
energy but generates most of the acoustic response, especially at peak (downstream)
radiation angles. Finally, we propose an empirical model for the identified acoustically
efficient forcing components. The model is tested at other Mach numbers and flight-stream
conditions and predicts noise within 2 dB accuracy for a range of frequencies, downstream
angles and flight conditions.
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1. Introduction

Jet noise is one of the most studied problems in aeroacoustics, thanks largely to Lighthill’s
theoretical framework that allows a connection to be made between the stochastic,
nonlinear, vortical motions of a turbulent jet and the irrotational, linear fluctuations of
the resulting acoustic field (Lighthill 1952). Such a framework is of interest given that
there is no rigorous means by which to decompose a turbulent field into acoustic and
non-acoustic components, and, therefore, no rigorous means by which to uniquely define
the source of sound. Lighthill’s approach – an exact rearrangement of the nonlinear
Navier–Stokes system into an inhomogeneous equation comprising a linear wave operator
driven by a nonlinear source term – was the first of many such reorganisations of the
Navier–Stokes equations (Curle 1955; Phillips 1960; Ffowcs Williams 1963; Powell 1964;
Lilley 1974; Howe 1975; Doak 1995; Goldstein 2003). The earliest acoustic analogies do
not consider mean-flow refraction effects (Lighthill 1952; Curle 1955; Ffowcs Williams
1963; Powell 1964), while the succeeding analogies consider the effect of the mean flow
on sound propagation at different levels varying from a uniform mean-flow assumption
in locally parallel framework (Phillips 1960; Lilley 1974) to a non-uniform mean flow
(Howe 1975; Doak 1995) and finally to incorporating into the acoustic propagator the
linearised Navier–Stokes equations that are written for a specific set of variables (Goldstein
2003).

In parallel to these developments in aeroacoustics, similar concepts were being
investigated for the study of turbulence. Landahl (1967), for instance, proposed such
a framework for the description of wall pressure fluctuations beneath a wall-bounded
turbulent shear flow. More recently, the same underlying idea has been leveraged for the
study of coherent structures in incompressible turbulent channel flow (Hwang & Cossu
2010; McKeon & Sharma 2010). The novelty of these recent studies derives from: (1) a
discretisation of the inhomogeneous system; (2) a casting of the problem in frequency
space; and (3) a leveraging of the tools of linear algebra to explore the link, via the
linear resolvent operator, between nonlinear interactions and the state dynamics they drive.
With these three steps, the inhomogeneous system is cast in a matrix input-output form,
and the relationship between ‘forcing’ and ‘response’ – in the context of aeroacoustics,
‘source’ and ‘sound’ – can be explored by considering the properties of the matrix transfer
function by which they are connected: singular-value decomposition of the resolvent
matrix operator can reveal the physical mechanisms by which the nonlinear forcing drives
the response or by which the nonlinear source drives the acoustic field.

This framework has substantially enhanced our understanding of coherent structures
in turbulent shear flow. Indeed, it provides a long-sought theoretical grounding for their
definition (Towne, Schmidt & Colonius 2018). It has been used to study coherent structures
in jets (Garnaud et al. 2013; Schmidt et al. 2018; Lesshafft et al. 2019; Nogueira et al. 2019;
Pickering et al. 2021a) and many other flows (McKeon & Sharma 2010; Beneddine et al.
2016; Yeh & Taira 2019; Morra et al. 2021; Nogueira et al. 2021). In the context of jets,
these coherent structures are most-often referred to as wavepackets (Crighton 1975; Jordan
& Colonius 2013; Cavalieri, Jordan & Lesshafft 2019).

The study of coherent structures has also been aided by data-processing and
decomposition techniques, in particular by proper orthogonal decomposition (POD) in
its numerous forms (Lumley 1970; Picard & Delville 2000; Borée 2003; Jung, Gamard
& George 2004; Tinney, Glauser & Ukeiley 2008; Towne et al. 2018). A recent study by
Karban et al. (2022a) shows how resolvent analysis and extended spectral POD (Borée
2003) may be combined to probe turbulent shear flows in new and interesting ways. The
study we report here extends this work to the jet-noise problem.
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The extension is based on the fact that the resolvent framework can be tailored to choose
what is considered as input (forcing) and output (response). The choice may involve a
localisation in space and/or restriction to a limited number of dependent variables; for
example, one may inquire as to the nature of the nonlinear interactions in a turbulent
boundary layer that drive shear-stress fluctuations at the wall (Karban et al. 2022a). The
resolvent methodology may be similarly adapted to the jet-noise problem by restricting
the forcing term to the region of vortical motion, and the response to the irrotational
acoustic field (Jeun, Nichols & Jovanović 2016). The resolvent framework thus resembles
an acoustic analogy (see the discussion by Karban et al. 2020); the mean-flow-based
resolvent operator governs the acoustic propagation including refraction due to the mean
shear as well as any linear amplification mechanisms associated with the mean flow. The
matrix formulation of the resolvent framework allows the tools of linear algebra to be
used. For instance, singular value decomposition of the acoustically tailored resolvent
operator can give insight into the mechanisms by which the nonlinear flow interactions
drive acoustic waves. This formulation of the sound generation and radiation problem can
be considered a complementary approach to the classic acoustic-analogy implementations
(Chen & Towne 2021).

However, even with this rearrangement of the problem and a study of the properties
of the matrix transfer function, the problem of clearly identifying the acoustically
important piece of the turbulent flow remains a challenge. This is due, on one hand,
to the complex, high-rank structure of the nonlinear forcing term, and, on the other, to
the formidable acoustic inefficiency of unbounded turbulence: the ratio of acoustic to
turbulence fluctuation energy is of order O(10−3) as will be shown later. These problems
make it extremely difficult to craft a robust model for the acoustic source, and it is this
that motivates the work we undertake. Our goal is to identify, using extensive flow data
provided by large-eddy simulation, the piece of the flow that drives the acoustic field and
to then propose a model for this piece of the flow that is capable of capturing effects of
operating condition (jet Mach number) and forward flight.

There are many attempts in the literature to model the source of jet noise. A number of
them are based on Goldstein’s generalised acoustic analogy (Goldstein 2003). The source
terms in this configuration are defined as spatio-temporal correlations of nonlinear terms
in the perturbation equations. Some source models in this framework are presented for
various jet configurations by Goldstein & Leib (2008), Karabasov et al. (2010), Leib &
Goldstein (2011), Afsar, Sescu & Leib (2019a), Afsar, Sescu & Sassanis (2019b), Gryazev,
Markesteijn & Karabasov (2022) among others.

Another group of studies to predict jet noise is called the stochastic methods, where
some synthetic velocity fluctuations which satisfy two-point statistics of the flow are
specified and the acoustic field is then computed either using acoustic analogies or
linearised Euler equation (LEE). One branch of such stochastic approaches is called the
‘stochastic noise generation and radiation’ methods, first applied to the jet noise problem
by Bechara et al. (1994), and then modified by Billson et al. (2004) and Lafitte et al. (2011).
In this method, a synthetic velocity field is obtained via summation of randomly distributed
spatial Fourier modes. The energy content is defined using the von Kármán–Pao energy
spectrum. The resulting velocity field is convected using the mean flow and, finally, the
acoustic field is predicted by applying Lighthill’s analogy on this field. Another stochastic
approach used for jet-noise prediction is called the ‘random particle mesh’ (RPM) method
(Siefert & Ewert 2008), where a synthetic stream function is generated by applying
solenoidal filters on random signals, which then is used to compute the source terms
forcing the LEE to obtain pressure fluctuations.
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As an alternative to these works, a frequency-domain model based on resolvent analysis
was introduced by Towne, Brès & Lele (2017). They provided a model function tuned
using the two-point forcing correlations in the frequency domain obtained from large-eddy
simulation (LES) data. An empirical relation using turbulent kinetic energy and dissipation
rate is then provided to replace the tuning based on LES data. In another study, Pickering
et al. (2021b) predicted, using acoustic-field data from LES, how the forcing projects onto
the resolvent forcing modes. They adopted the resolvent-based estimation method given by
Towne, Lozano-Durán & Yang (2020), but instead of the forcing statistics, they predicted
the projection coefficients and then provided an empirical model for them. This way, they
leveraged the linear mechanisms embedded in the resolvent operator associated with noise
generation and modelled only the remaining nonlinearities coming from the forcing. Other
studies have used a wavepacket source model for the near-field velocity correlations paired
with Lighthill’s analogy to predict jet noise (Huerre & Crighton 1983; Cavalieri et al. 2011,
2012; Cavalieri & Agarwal 2014; Maia et al. 2019; da Silva, Jordan & Cavalieri 2019).

In this study, we use a compressible LES database of turbulent jets at different Mach
numbers and operating conditions to develop a source model for jet noise. A numerical
high-fidelity database is required since the analysis involves using both the state and
forcing data, and the latter are not accessible with sufficient spatial and temporal resolution
via state-of-the-art measurement techniques. Forcing data within the resolvent framework
has been used to predict flow structures in previous studies where data were provided
by direct numerical simulation (DNS) for low-Reynolds-number incompressible turbulent
flows (Morra et al. 2021; Nogueira et al. 2021; Karban et al. 2022a). We extend its
application to acoustic prediction using LES in high-Reynolds-number jets. We follow
a strategy similar to Towne et al. (2017) to propose a data-driven source model that is
used to predict noise generation in subsonic jets, but instead of modelling the two-point
forcing correlations directly, we first isolate the acoustically efficient structures. We use the
resolvent-based extended spectral proper orthogonal decomposition (RESPOD) proposed
by Towne et al. (2015) and further developed by Karban et al. (2022a) to perform
a preliminary filtering of the resolvent forcing data. This filtering extracts the forcing
subspace correlated with the axisymmetric acoustic field radiated to low polar angles. The
subspace so obtained contains silent-but-correlated and sound-producing components,
and a second filtering is necessary to extract the latter. The one-to-one correspondence
between the spectral proper orthogonal decomposition (SPOD) modes of the acoustic
field and this forcing subspace is used to show that the dominant noise generating forcing
is the acoustically matched part (Ffowcs Williams 1963; Crighton 1975; Freund 2001;
Cabana, Fortuné & Jordan 2008; Sinayoko, Agarwal & Hu 2011; Cavalieri et al. 2019)
of the subspace. Different to the existing source models in the literature, we propose
an empirical model using the sound-generating part of the field on the basis of the
acoustically matched piece of the forcing, and adapt it to capture the effects of operating
condition and forward flight. The advantage of the proposed strategy is that it leverages the
versatility of the resolvent framework similar to Pickering et al. (2021b) to systematically
identify the dominant noise-generation mechanisms. Different from their study, here, we
start by analysing the forcing data to identify the noise-generating part and then drive
the resolvent operator with this refined forcing to predict the acoustic field. Given the
inefficiency of turbulence to generate noise, such an identification significantly contributes
to the robustness of the final empirical model, as it retains only the essential information
from the forcing data. In summary, the new achievements of the present work are: (i)
performing resolvent-based prediction using forcing obtained from an LES database for a
high-Reynolds-number turbulent jet; (ii) collective use of linear analysis tools as a novel
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strategy for noise-source identification; and (iii) developing an empirical source model,
which can account for flight-stream effects, based on the acoustically matched part of the
forcing.

The paper is organised as follows: the mathematical framework for resolvent analysis
and RESPOD is revisited in § 2. The details about the numerical database and the
resolvent-analysis tool are given in § 3. The process to identify forcing components that
generate downstream jet noise is explained in § 4. Based on these acoustically efficient
forcing components, an empirical forcing model is presented in § 5, which is then adapted
to include Mach-number and flight-stream effects. Concluding remarks are provided in
§ 6.

2. Modelling framework

The resolvent framework is obtained by linearising the Navier–Stokes (N-S) equations and
arranging them in input-output, or forcing-response, form in the frequency domain, where
the input is nonlinear fluctuations and the output is the state. In the present case, we limit
the response to be the acoustic pressure and aim to extract the forcing associated with this
target response. We achieve this using RESPOD (Karban et al. 2022a). In this section, we
briefly revisit the resolvent framework and the RESPOD approach.

2.1. Governing equations in resolvent form
The compressible N-S equations are given in compact form as

∂tq = N (q), (2.1)

where N is the N-S operator, q = [ν, ux, ur, uθ , p]� is the state vector, ν is specific volume
and p is pressure, u = [ux, ur, uθ ]� is the velocity vector in cylindrical coordinates, and x,
r and θ refer respectively to the streamwise, radial and azimuthal directions. All variables
are non-dimensionalised by the ambient speed of sound, c∞, the density, ρ∞, and the
nozzle diameter, D. We consider a discretised system in space, for which linearisation
around the mean, q̄, yields

∂tq′ − Aq′ = f , (2.2)

where A = ∂qN |q̄ is the linear operator obtained from the Jacobian ofN and f contains all
remaining nonlinear terms, which are referred to henceforth as the forcing terms. Equation
(2.2) is Fourier transformed and rearranged to obtain

q̂ = R f̂ , (2.3)

where the hat indicates Fourier-transformed quantities and

R = (iωI − A)−1 (2.4)

is the resolvent operator. The resolvent operator can be modified to limit the response to
prescribed measurements via a linear transformation of the state using a matrix, C,

ŷ = Cq̂, (2.5)

such that the input-output relation between forcing, f̂ , and measurement, ŷ, is given by

ŷ = CR f̂ . (2.6)

The measurement matrix C can be space-, variable- and even frequency-dependent,
although a frequency-dependent C would imply convoluting the state in the time domain to
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measure y. Throughout this paper, we will focus on the pressure in the acoustic field as our
measured quantity; therefore, C is an NA × (NV × N) matrix that is one in the elements
that correspond to pressure in the acoustic field and zero for the rest. Here, NA and N
denote the number of discrete points in the acoustic field and the full domain, respectively,
and NV denotes the number of variables, e.g. NV = 5 for the compressible N-S equations.
Note that spatial discretisation of a system with NV variables leads to a state vector with
NV × N elements.

It is also possible to impose restrictions on the forcing in (2.6) via a control matrix, B,
as

ŷB = R̃ f̂ , (2.7)

where R̃ � CRB denotes the modified resolvent operator. Note that ŷB /= ŷ in general.
Additionally, B will later be used to identify irrelevant forcing components for the jet-noise
problem, i.e. those terms which, when suppressed by B, do not lead to changes in the
acoustic field, such that ŷB ≈ ŷ.

2.2. Resolvent-based extended spectral proper orthogonal decomposition
One of the goals of this study, and indeed one of the broader goals of jet-noise modelling,
is to obtain simplified representations or models of the nonlinear interactions that underpin
jet noise. One such approach is to search for a useful rank reduction. A known trait
of turbulent jets and their sound is the marked difference in complexity between the
turbulence and acoustic fields. This difference implies that, given a discretised turbulent
jet database, it may be possible to represent the acoustic field using a compact basis
with a small number of vectors, yielding a low-rank system, while a substantially larger
basis will be required to define the turbulent fluctuations, and thus the forcing, in the
near field, yielding a high-rank system. The fact that one can accurately calculate the
acoustic field using (2.7) (or alternatively, using an acoustic analogy) assuming full access
to the source implies that the resolvent operator (or the Green’s function in an acoustic
analogy) filters the silent structures from the high-rank turbulent source region leading
to a low-rank acoustic field. A central idea underlying the approach we follow here is as
follows: given the linear relation between the forcing and the target response in (2.6), the
low-rank structure of the acoustic field suggests the existence of a low-rank, acoustically
active forcing subspace. It is necessary to identify this subspace, because it is there that
modelling work can be done.

There exist several ways to identify the forcing associated with a given response. A
detailed analysis was provided by Karban et al. (2022a), where a method referred to as
RESPOD was used to achieve the abovementioned identification. RESPOD is based on
the extended proper orthogonal decomposition presented by Borée (2003) and is related
to SPOD (Lumley 1970; Picard & Delville 2000; Towne et al. 2018). The aim in RESPOD
is to find a forcing mode, χ ( p), that is correlated with the pth SPOD mode, ψ ( p), of the
measured response, ŷ. It was first presented by Towne et al. (2015) and later discussed by
Karban et al. (2022a) to identify the forcing structures that generate wall-attached eddies.
Here, we briefly review the method highlighting how it can be adapted to find the low-rank
forcing subspace associated with sound generation.

For a given ensemble of realisations Ŷ = [ŷ1 · · · ŷP] of an N dimensional discretised
system, where P is the number of Fourier realisations, SPOD involves eigendecomposition
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of the CSD matrix Ŝ � Ŷ Ŷ H ,
Ŝ = Ψ̂ Λ̂Ψ̂ H, (2.8)

where the eigenvectors, Ψ̂ , and eigenvalues, Λ̂, of Ŝ are the SPOD modes and gains,
respectively. An alternative way to obtain the SPOD modes, as shown by Towne et al.
(2018), is to perform the eigendecomposition

Ŷ HW Ŷ = Θ̂Λ̂Θ̂H, (2.9)

where W is a positive-definite weight matrix and Θ̂ is a matrix containing the eigenmodes
of Ŷ HW Ŷ . The eigenmodes, Ψ̂ and Θ̂ , are related as

Ψ̂ = ŶΘ̂Λ̂−1/2, (2.10)

or alternatively as

Θ̂ = Ŷ HW Ψ̂ Λ̂−1/2. (2.11)

Equation (2.10) indicates that it is possible to obtain the SPOD modes as a linear
combination of the realisations. Writing (2.7) with B = I for the ensemble of realisations
as

Ŷ = R̃F̂ , (2.12)

where F̂ � [ f̂ 1 · · · f̂ P] is the matrix of the forcing realisations, and multiplying (2.12) by
Θ̂Λ̂−1/2 yields

Ψ̂ = R̃F̂Θ̂Λ̂−1/2. (2.13)

Equation (2.13) can be written for the pth SPOD mode by extracting the corresponding
columns in the matrices, Ψ̂ , Θ̂ and Λ̂,

ψ̂ ( p) = R̃F̂ θ̂ ( p)λ( p)−1/2
, (2.14)

where θ̂ ( p) denotes the pth column in Θ̂ and λ( p) denotes the pth diagonal element in Λ̂.
We then define the RESPOD mode of the forcing, χ̂ ( p), as

χ̂ ( p) � F̂ θ̂ ( p)λ( p)−1/2
. (2.15)

Following Borée (2003), it can be shown that the RESPOD mode, χ ( p), contains all the
forcing components correlated with the SPOD mode, ψ ( p). Furthermore, (2.14) indicates
that the two modes are connected via the resolvent operator as

ψ̂ ( p) = R̃χ̂ ( p). (2.16)

We explain in § 3.2 how to calculate (2.16). The ability to identify a RESPOD mode
of forcing with each SPOD mode of the response implies, for the jet-noise problem, that
one can use this approach to identify the low-rank forcing subspace that is correlated with
the low-rank acoustic field, and which, furthermore, generates the low-rank acoustic field
when applied to the resolvent operator. Note that the above analysis could be applied when
using an acoustic analogy as well. A Green’s function that is used to solve the acoustic
propagation problem in an acoustic analogy establishes a linear relation between the source
and the acoustic field, and hence, can be described by a matrix left-multiplying the source
for the discretised system, which reduces it to an input-output form as shown above (Abreu
et al. 2019).
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Case Re Mj M∞ P0/P∞ T0/T∞ No. of c.v. dt Δt tsim

M04Mc00 0.45 × 106 0.4 0.0 1.12 1.03 16 × 106 1 × 10−3 0.1 3000
M09Mc00 1.01 × 106 0.9 0.0 1.69 1.16 16 × 106 1 × 10−3 0.1 2000
M09Mc15 1.01 × 106 0.9 0.15 1.69 1.16 22 × 106 1 × 10−3 0.1 2000
M09Mc30 1.01 × 106 0.9 0.3 1.69 1.16 22 × 106 1 × 10−3 0.1 2000

M07Mc00 0.79 × 106 0.7 0.0 1.39 1.10 22 × 106 1 × 10−3 0.1 2000
M07Mc15 0.79 × 106 0.7 0.0 1.39 1.10 22 × 106 1 × 10−3 0.1 2000
M08Mc00 0.90 × 106 0.8 0.15 1.52 1.13 22 × 106 1 × 10−3 0.1 2000

Table 1. Details of the LES database. The first four and the last three cases are used to tune and test the
empirical model, respectively.

We will use this approach to obtain a low-rank representation of the forcing that is
responsible for most of the acoustic energy radiated by a turbulent jet. The advantage of
identifying a low-rank forcing is twofold: (i) one needs to model only that piece in the
forcing; (ii) not dealing with the entire CSD matrix of the forcing is convenient in terms of
computing the response, which would otherwise require multiplication of the resolvent
operator by an N × N matrix, where N is generally very large. Given the number of
realisations, P, and the degree of freedom, N, which usually satisfy P � N, this approach
provides a computationally inexpensive means of obtaining a low-rank system.

3. Numerical databases and tools

The numerical analysis in this study is conducted in two stages: (i) identification
of low-rank forcing by post-processing a LES database; and (ii) performing acoustic
predictions by computing the response of the resolvent operator driven by the identified
forcing modes. In the following subsections, we provide details about the LES database
and the resolvent analysis.

3.1. Large-eddy simulation database
The numerical database used in this study to develop an empirical forcing model consists
of LES of four subsonic jets, one at jet Mach number, Mj � Uj/cj = 0.4, with no flight
effect and others at Mj = 0.9 with or without flight effect. We use three other LES
databases at Mj = 0.7 with or without flight effect and at Mj = 0.8 without flight effect
to test the model. The LES was conducted using the unstructured flow solver ‘Charles’
(Brès et al. 2017). In all cases, the jets are isothermal and ideally expanded. Two of the
cases at Mj = 0.9 contain a flight stream at M∞ = 0.15 and 0.3, respectively. All of the
jets are turbulent thanks to a synthetic forcing applied inside the nozzle, generating a
fully turbulent boundary layer at the jet exit (Brès et al. 2018; Maia et al. 2022). Other
parameters related to each simulation are tabulated in table 1, where Re = ρjUjD/μj
denotes the Reynolds number, μ denotes the dynamic viscosity, D is nozzle diameter,
U, P and T denote the mean streamwise velocity, pressure and temperature, respectively,
c.v. stands for control volume, dt = d̃tc∞/D and tsim = t̃simc∞/D are time step and total
time of the simulation in acoustic units, where t̃ is the physical time, and Δt is the time
step in acoustic units used for data storage. The subscripts, j, ∞ and 0 denote jet exit,
free stream and stagnation conditions, respectively. Throughout this paper, velocities are
non-dimensionalised with the ambient speed of sound, c∞, lengths with nozzle diameter,
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Figure 1. Snapshots of the first azimuthal Fourier mode of pressure (grey) and temperature (colour) for the
cases (a) M04Mc00, (b) M09Mc00, (c) M09Mc15, (d) M09Mc30. Colour-scale for pressure linearly varies in
the range of [−6 × 10−3, 6 × 10−3] for all cases. Colour-scale for temperature is given as [1, 1.01], [1, 1.03],
[1, 1.02], [1, 1.02] for the abovementioned four cases, respectively.

D, pressure with ρ∞c2∞/2 and time with c∞/D. Frequencies are reported in Strouhal
number, St = f̃D/Uj, where f is the dimensional frequency.

The axisymmetric nature of jets renders possible decomposing the flow into
azimuthal Fourier modes and analysing them separately. To facilitate azimuthal Fourier
decomposition, for each case, the LES data are interpolated onto a cylindrical grid with
mesh size (Nx, Nr, Nθ ) = (656, 138, 128), where Nx, Nr and Nθ are the number of grid
points in streamwise, radial and azimuthal directions. The cylindrical grid extends in
x, r, θ ∈ [0, 30] × [0, 6] × [0, 2π].

The linearised N-S equations in the time domain for the mth azimuthal Fourier mode
are given as

∂tq′(m) − A(m)q′(m) = f (m), (3.1)

where the superscript (m) denotes the azimuthal mode number. We limit our analysis to
the acoustic field in the first azimuthal mode, m = 0, only. In the interest of developing
modelling approaches, in a step-by-step methodology, it is common in the literature to
focus first on this component, as it is clear that it corresponds to coherent structures
(Sandham & Salgado 2008; Freund & Colonius 2009; Cavalieri et al. 2012, 2013; Jordan
& Colonius 2013). In addition to this strategical reason, the mode m = 0 is the dominant
mode for the downstream noise where jet noise has its peak as stated by Cavalieri et al.
(2012) and many other studies. These reasons makes the axisymmetric mode the natural
choice to start modelling jet noise.
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Algorithm 1 Computing the forcing

1: Calculate the state q through LES with dt = 0.001 and store it at every 200th time
step.

2: Calculate and save the mean flow q̄.
3: Calculate and save G(q̄), where G is the nonlinear LES operator. Note that G is

different from the N-S operator, N , as the sub-grid scales are filtered in G.
4: For each snapshot, calculate ∂q/∂t = G(q).
5: For each snapshot, calculate Aq′ ≈ G(q̄+εq′)−G(q̄)

ε
, where ε is a sufficiently small

number.
6: Interpolate q, ∂q/∂t and Aq′ data onto the cylindrical grid.
7: Compute the forcing in the time domain using (2.2).

In figure 1, snapshots of pressure and temperature for the first azimuthal Fourier mode,
m = 0, are shown for the four cases used for tuning of the empirical model. Temperature
is shown as an indicator of turbulent fluctuations in the shear layer. Pressure is saturated to
show the acoustic waves propagating from the jets. It is seen that the case M09Mc00 (see
table 1 for case abbreviations) has the strongest pressure gradients, and thus, highest noise
level. Existence of the flight stream suppresses both the turbulent fluctuations and the
noise generated by the jet, at a level increasing with the flight velocity. The flow fields
for the remaining three cases are not shown for brevity. All seven cases are validated
against experimental data. A detailed validation has been reported by Brès et al. (2018)
for the cases M04Mc00 and M09Mc00 and by Maia et al. (2022) for the remaining cases.
The M09Mc00 case is publicly available as part of a database for reduced-complexity
modelling of fluid flows (Towne et al. 2022).

The case M04Mc00 contains both the state and the forcing data while others contain
only the state data. The forcing data, once the state data are stored, are obtained via the
procedure devised by Towne (2016) and summarised in algorithm 1. The extraction of the
forcing data is restricted to the M04Mc00 case, as aliasing effect in the database (see the
Appendix and Karban et al. 2022b for a detailed discussion) increase with Mach number,
rendering resolvent-based prediction using forcing data unreliable for the remaining flow
cases. Both the state and forcing data are Fourier transformed using blocks containing 512
snapshots in time with an overlap ratio of 75 %. To minimise spectral leakage, we use an
exponential windowing function (Martini et al. 2019),

W(t) = exp
(

n
(

4 − T
t(T − t)

))
, (3.2)

with n = 1 and window size T = 512Δt. The correction discussed by Martini et al. (2019),
which is necessary to satisfy (2.3) when a windowing function is applied during the
temporal Fourier transform (FT), is implemented while computing the forcing terms in
the frequency domain. The correction is shown by Nogueira et al. (2021) to significantly
improve the convergence of resolvent-based prediction of the response via (2.3).

3.2. Resolvent analysis
Resolvent-based prediction of the response using the forcing data is achieved via a custom
resolvent analysis code (Bugeat et al. 2019). The code uses the finite-volume method
to solve the linearised N-S equations decomposed into azimuthal Fourier modes. The
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input-output relation in (2.3) is written for a given azimuthal mode, m, as

q̂(m) = R(m)f̂ (m), (3.3)

where R(m) � (iωI − A(m))−1. In practice, the response, q̂(m), to a given forcing, f̂ (m), is
computed by solving the linear system

L(m)q̂(m) = f̂ (m), (3.4)

where L(m) = R(m)−1 = (iωI − A(m)) is a sparse linear operator. The resolvent code solves
(3.4) via lower–upper (LU) decomposition using the PETSc library (Balay et al. 1997).
Once the LU decomposition is performed, (3.4) can be solved efficiently for numerous
forcing vectors. This allowed us to calculate at once the responses to different Fourier
realisations of the forcing, which then are used to compute the power spectral density
(PSD) of the resulting acoustic field via Welch averaging. When calculating the response
of the modified resolvent operator to a RESPOD forcing mode as in (2.16), we simply
replaced the vector on the right-hand side of (3.4) with Bχ̂ ( p).

In all computations, a sponge zone is placed within x/D = [20, 30] and r/D = [6, 12] at
the downstream and outer ends of the domain, respectively, to avoid spurious reflections.
The domain is extruded to 12D in the radial direction to accommodate the top sponge
region. A single damping function of the form

1 −
1 − exp

(
κ

(η − ηs)
2

(ηs − ηmax)2

)
1 − exp(κ)

(3.5)

is used to damp fluctuations in both x and r directions, where κ = 4, η denotes either the x
or r coordinate, ηs denotes the beginning of the sponge zone and ηmax denotes the domain
end position. Further details can be found from Bugeat et al. (2019).

The original code was written based on conservative variables, while the LES forcing
database was generated using the primitive-like variable set, q = [ν, u, p], as discussed
in § 2.1, yielding a compatibility issue. To overcome this issue, a correction derived by
Karban et al. (2020) is implemented.

4. Identification of the acoustically efficient forcing components

The goal of this study is to extract acoustically relevant forcing components that underpin
the noise-generation mechanisms in subsonic jets and to propose an empirical model
for these components. Identification of the noise-generating part of the forcing prior
to empirical modelling is crucial for the model to yield robust acoustic predictions. To
achieve this, we proceed as follows. Using the database M04Mc00, which contains both
the state, q, and the forcing, f , we first conduct the analysis outlined in § 2 based on
RESPOD to identify the acoustically active forcing components. We limit the study to
mechanisms associated with noise generation at low polar angles, which we refer to
as downstream noise. We then discuss how to further decompose the low-rank forcing
associated with the acoustic field to extract the part which satisfies the acoustic matching
criterion (Ffowcs Williams 1963; Crighton 1975).

4.1. Masking the forcing vector
Before performing a dedicated analysis to obtain a low-rank forcing model, we first
reduce the number of the forcing terms to model. This is achieved by applying spatial
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Figure 2. PSD of pressure predicted using resolvent analysis with masking applied (a) in space and (b) in
variables in comparison to the LES data at r = 5D for the case M04Mc00 at St = 0.6.

and component-wise masking in the forcing data to observe the effect of the masked
regions/components on noise generation. This masking involves zeroing certain parts of
the forcing vector using the matrix B. Figure 2 shows the result of different masks in terms
of the PSD of the acoustic pressure at St = 0.6. Masking the forcing beyond r > 2D or
r > 4D yields nearly identical results in the entire flow domain. Masking beyond r > 1.5D
also yields nearly identical noise fields in the downstream region, x > 6D, while a slight
discrepancy is observed in the region x/D ∈ [3, 6]. The turbulent regions of different jet
configurations shown in figure 1 suggest that the jet spreading rate, which determines the
forcing region, is similar in the cases M04Mc00 and M09Mc00 while it is reduced for the
coflow cases. Given these observations, the r < 2D limit defined for the M04Mc00 case
is considered applicable for the remaining cases as well. We therefore limit the forcing to
the region r < 2D for the rest of the analysis.

Component-wise masking of the forcing shows that the components fν and fp, which
correspond to the mass and energy equations, respectively, have negligible contribution
to the acoustic field. Masking the component fur , which is the forcing associated with the
radial momentum equation, causes significant reduction in the sideline noise while not
affecting the acoustic field in the downstream region. However, masking the component
fux , which is the forcing associated with the streamwise momentum, causes significant
reduction in the downstream noise while having limited effect on the sideline noise. These
results indicate that the forcing term fux in the region r < 2D is solely responsible for
downstream noise generation, consistent with the observation of Freund (2001) using
Lighthill’s analogy. In what follows, focusing on the downstream noise generation only,
we aim to identify the acoustically active subspace associated with this single forcing
component.
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Figure 3. (a) SPOD eigenvalues of the pressure in the acoustic field and (b) streamwise forcing, fux , in the
near field for the case M04Mc00 at St = 0.6.

4.2. Applying RESPOD to obtain low-rank forcing
We now aim to obtain a low-rank representation of the subspace of the forcing associated
with the most-energetic components of the acoustic field. To achieve this, we first compute
the SPOD modes of the acoustic field, and we then use RESPOD to extract the associated
forcing modes, as described in § 2.2. In figure 3, the SPOD eigenvalues of the pressure
in the downstream acoustic field, defined as x/D, r/D ∈ [6, 30] × [4, 6], and those of the
forcing term fux in the turbulent region, defined as x/D, r/D ∈ [0, 30] × [0, 2], are shown
for St = 0.6. For the acoustic field, the leading SPOD eigenvalue corresponds to more than
75 % of the total acoustic energy. The sum of the first five SPOD eigenvalues corresponds
to 99 % of the total acoustic energy, indicating a low-rank organisation in the acoustic
field. For the forcing in the near field, however, the leading SPOD mode contains less than
6 % of the total energy in fux . Approximately one hundred modes are required to capture
90 % of the total forcing energy, indicating an extremely high-rank structure. As discussed
earlier, this difference between the near-field turbulence forcing and the acoustic field is
the crux of the jet-noise problem, which we aim to overcome by educing the small portion
of the forcing responsible for the acoustic field.

Using RESPOD, we extract from this high-rank forcing data a low-rank subspace that is
correlated with the low-rank pressure structures observed in the acoustic field. In figure 4,
we show the leading SPOD mode of pressure in the acoustic field and the associated
RESPOD mode of the forcing in the near field, together with the energy distribution of
the first twenty RESPOD forcing modes. The leading SPOD mode takes the form of an
acoustic wave propagating at some angle, while the associated RESPOD forcing mode
contains a disorganised structure, which may imply underconvergence in the forcing mode,
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Figure 4. (a) Optimal SPOD mode of acoustic pressure and the associated RESPOD mode of the forcing
together with (b) the energy distribution in the first twenty RESPOD modes of the forcing for the case
M04Mc00 at St = 0.6. The acoustic and forcing fields in the top plot are denoted by the black and green
dashed boxes, respectively.

despite the very long time-series used for the analysis. The first RESPOD mode contains
less than 0.8 % of the total forcing energy, but it is associated with the leading SPOD
mode of the acoustic field, corresponding to 75 % of the total noise in the downstream
region. This result shows the importance of applying such an identification prior to
any modelling effort. Without this extraction of the low-rank forcing structure, a fitting
function optimised using the forcing data will be affected by the existence of energetic
structures that do not significantly contribute to sound generation.

No smooth trend is observed in the energy of the first twenty RESPOD forcing modes,
in contrast to the SPOD modes in the acoustic field. As discussed by Karban et al.
(2022a), RESPOD does not impose a strict filtering on the forcing to extract the active
structures that actually drive the acoustic field, but finds the correlated part which includes
silent-but-correlated structures. Lack of a smooth trend in the energy of the RESPOD
forcing modes implies underconvergence of these modes. Given that the active part in
the RESPOD forcing modes are linearly related to the SPOD modes of the acoustic field,
they should experience the same convergence rate. The underconvergence in the RESPOD
forcing modes can then be attributed to the contribution of the silent-but-correlated
structures, causing also the mode shape to be significantly less organised compared with
the associated SPOD mode. This underconvergence observed in the forcing modes does
not pose a problem in the following analysis. The SPOD modes of the response and the
RESPOD modes of the forcing are computed using Fourier realisations of response and
forcing that exactly correspond to the same time window. In the ideal case of an error-free
database, (2.3) is therefore satisfied for each pair of response-forcing realisations. So, no
matter how underconverged the forcing data are, the structures generating the converged
acoustic field are, by construction, ensured to be contained in the forcing mode seen in
figure 4.
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Figure 5. PSD of acoustic pressure generated using rank-5 and rank-1 forcing obtained by RESPOD, in
comparison to the acoustic field obtained from LES data (corresponding to full-rank forcing in the ideal case)
at different frequencies ranging from St = 0.4 to 1 (from a–d).

As discussed in § 2.2, the first RESPOD forcing mode contains all structures correlated
with the leading SPOD mode. This indicates that the remaining forcing that amounts to
99 % of the total forcing energy can generate only 25 % of the total acoustic energy. In
figure 5, we show a comparison of the true acoustic field and the acoustic fields obtained
using rank-5 and rank-1 forcing truncations obtained using RESPOD for a number of
frequencies, St ∈ [0.4, 1]. The rank-5 forcing, which contains the RESPOD forcing modes
corresponding to the first five SPOD modes of the acoustic field, recovers nearly the entire
acoustic field in the downstream region. The rank-1 forcing, i.e. the RESPOD forcing
mode corresponding to the optimal SPOD mode of the acoustic field, also recovers a
significant portion of the downstream acoustic field. Although the acoustic field predicted
by the rank-1 forcing should correspond to 75 % of the total acoustic energy at St = 0.6,
as the response should be identical to the optimal SPOD mode of the acoustic field, the
actual prediction amounts to approximately 60 %. A similar discrepancy is observed for
the rank-5 prediction, which recovers 80 % of the acoustic energy while it should generate
99 %. This is due to the errors contained in the LES database, causing a loss in the
correlation information between the response and the forcing. Despite all the limitations
of the existing database as discussed in the Appendix, we see that it is still possible to
define a rank-1 forcing that can generate most of the downstream noise.

In what follows, we further decompose the rank-1 forcing obtained by RESPOD to
extract the acoustically active forcing components which drive the leading SPOD mode
of the acoustic pressure seen in figure 4.
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Figure 6. Real part of the pressure generated using (a,c,e,g) first and (b,d, f,h) second RESPOD mode of the
forcing at different frequencies ranging from St = 0.4 to 1 (from top to bottom). Colour scale is in the range of
[−1 × 10−6, 1 × 10−6].

4.3. Isolating the radiating component of the low-rank forcing
In figure 6, the acoustic fields generated by the first two RESPOD modes are shown
for the case M04Mc00 at a number of frequencies, St ∈ [0.4, 1.0]. The first modes at
all frequencies contain a single wave propagating at some angle with no jump in the
phase. However, there exists a phase shift in the second modes that moves upstream
with increasing frequency. The phase shift appears to satisfy orthogonality between the
first and the second modes, which is expected as RESPOD finds the forcing modes that
generate the SPOD modes, which comprise an orthogonal basis. Note however that no
such orthogonality is ensured for the forcing modes.

Looking at the acoustic field of the first RESPOD mode, it is apparent that the
propagation angle is nearly constant, around 30◦ when measured from the downstream
end, for all frequencies, reminiscent of a Mach-wave-like mechanism (cf. Tam et al.
2008). To explore this trend, we consider a wave in the streamwise direction defined by
exp(−ikxx), where kx is the streamwise wavenumber associated with a phase speed

cx = ω/kx, (4.1)

where ω = 2πSt is the angular frequency. For a Mach-wave-like mechanism, the phase
speed is greater than the speed of sound, c∞, and the propagation angle is given by
cos−1(c∞/cx) (Ffowcs Williams 1963; Crighton 1975). We project the first and the second
RESPOD forcing modes onto this wave, varying in the phase speed over the range
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Figure 7. Projection of first and second RESPOD modes of the forcing onto streamwise harmonic waves with
supersonic phase speeds. Different frequencies ranging from St = 0.4 to 1 are shown in panels (a–d).

[c∞, 2c∞], yielding

a( p)(kx, St) = 〈χ ( p)(x, r, St), exp(−ikxx)〉 �
∫

S
χ ( p)(x, r, St) exp(−ikxx) dS, (4.2)

where p is the RESPOD mode number and S is the two-dimensional (2-D) domain
spanning the x and r directions. The results are shown in figure 7. It is seen that at all
frequencies, the projection coefficient, a(1), peaks around 1.1–1.2c∞, which corresponds
to an angle of ∼30◦, consistent with the propagation angle observed in the acoustic
response field. The coefficient, a(2), however, has a dip around the same value at
all frequencies, reminiscent of the orthogonality observed in the response modes of
figure 6.

These results suggest that projection of the forcing onto supersonic waves is the relevant
mechanism for generation of downstream noise, consistent with previous hypotheses
and models (Freund 2001; Cavalieri et al. 2012; Jordan & Colonius 2013; Cavalieri
et al. 2019). To test this hypothesis, we define the following FT in the streamwise
direction,

Fx(a) =
∫ L

0
a exp(−ikxx) dx, (4.3)
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Figure 8. (a) Real part of the first RESPOD mode of the forcing compared with its (b) subsonic and
(c) supersonic parts. Different frequencies ranging from St = 0.4 to 1 are shown from top to bottom.

where L = 30D is the domain length. Using this FT, we decompose the first RESPOD
mode of the forcing, χ (1), into two parts, χ (1−) and χ (1+), containing subsonic and
supersonic components, respectively (Sinayoko et al. 2011). The resulting forcing fields
are depicted in comparison to the original forcing mode in figure 8. It is seen that most
of the forcing energy is contained in the subsonic part of the mode, χ (1−), making
it indistinguishable from χ (1). The supersonic component, χ (1+), takes the form of a
compilation of radially thin wavepackets with a disorganised radial phase structure.

The acoustic response generated by these subsonic and supersonic modes, χ (1−) and
χ (1+), respectively, are compared with the response of the entire first RESPOD mode of
the forcing, χ (1), in figure 9 for a range of frequencies. It is clear that the supersonic modes
underpin noise generation at all frequencies. Removing the supersonic components leads
to more than an order-of-magnitude reduction in sound generation. The energy contained
in the supersonic part of the RESPOD modes of the forcing is shown in figure 10 for
different mode numbers and frequencies. The following definition is used to calculate the
energy of a given mode, ϕ, defined in a domain Ω ,∫

Ω

ϕ�ϕ dΩ. (4.4)

Note that an energy norm is not required in the above definition since all the modes we
investigate contain a single variable. For all the modes and frequencies, the supersonic
components contain less than 5 % of the mode energy. The first RESPOD mode of the
forcing already contains less than 1 % of the total forcing energy, which means that the
energy fraction of the supersonic part of the first RESPOD mode of the forcing, χ (1+), with
respect to the total forcing energy at the same frequency, is ∼0.04 %, while it generates
∼ 75 % of the total acoustic energy in the downstream region for a frequency range St =
[0.4, 1.0] at Mj = 0.4.

The analysis above identifies the forcing subspace that actively contributes to noise
generation in the M04Mc00 case. As discussed earlier, this data-driven approach is only
applicable for this case, since the errors contained in the LES database prevent us from
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Figure 9. PSD of the acoustic pressure generated by the first RESPOD mode of the forcing (solid) compared
with its subsonic (dashed) and supersonic (dash–dotted) parts. Different frequencies ranging from St = 0.4 to
1 are shown in panels (a–d).
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Figure 10. Energy ratio of the supersonic part of the RESPOD mode of the forcing.

extracting reliable forcing data at higher Mach numbers. In the following section, we will
discuss how to develop an empirical model for these forcing structures and extend it to
other flow cases.
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5. Empirical modelling of the acoustically efficient forcing component

The noise-generating forcing structures shown in figure 8 do not immediately reveal a
spatial form that is easy to model, and careful characterisation is required to represent it
using empirical formulation. In what follows, we first present a modelling strategy based
on the supersonic part of the first RESPOD mode of the forcing for the case M04Mc00,
which yields a fundamental form of the model equation. The model parameters are chosen
such that they can be easily adapted to account for frequency, jet Mach number and flight
effect. The model parameters are tuned first regarding the forcing modes extracted from
the LES. We then apply a second tuning for some of the parameters using the acoustic
fields obtained from the LES. Given the high energy contained in the optimal SPOD mode
of the acoustic pressure in the downstream region, we focus on modelling the supersonic
part of the first RESPOD mode of the forcing only; i.e. we construct a rank-1 model.

5.1. Empirical source modelling for Mj = 0.4

As shown in figure 8, the supersonic mode, χ (1+), roughly follows the jet spreading and
has the form of thin wavepackets elongated in the streamwise direction spanning most of
the flow domain. Given the radial randomness of these thin wavepackets, a model for the
x–r structure is not feasible. We therefore make use of the characteristics of the modified
resolvent operator, R̃, which yields the acoustic pressure as the response thanks to the
measurement matrix C.

In resolvent analysis, a singular value decomposition (SVD) of the resolvent operator is
used to identify mechanisms by which the output (acoustic pressure in our case) is driven
by the input (forcing). The SVD is given as

R̃ = UΣV H, (5.1)

where U and V are the response and forcing modes, respectively, and Σ denotes the
resolvent gain. The RESPOD forcing mode is projected onto the forcing modes of
the modified resolvent operator and then amplified by the resolvent gains to generate
the acoustic response whose spatial organisation is defined by the response modes.
The projection between the forcing and RESPOD modes can be considered as a
two-dimensional discrete integration in the streamwise and radial directions. It was
reported by Jeun et al. (2016) and later by Bugeat et al. (2022) that the forcing modes
of the acoustic resolvent operator, R̃, take the shape of streamwise supersonic waves with
almost constant radial support within the region where forcing is active. When projecting
the RESPOD modes onto the forcing modes, the radially thin supersonic wavepackets
observed in figure 8 are integrated in the radial direction without any modulation by the
optimal forcing mode. This implies that the forcing modes of figure 8 can be replaced by
a line source obtained by radial integration, justifying the use of line-source models in the
literature (Michalke 1970; Michel 2009; Lesshafft, Huerre & Sagaut 2010; Cavalieri et al.
2011; Cavalieri & Agarwal 2014; Maia et al. 2019; da Silva et al. 2019). The resulting line
sources at different frequencies are shown in figure 11 for the case M04Mc00. We observe
wavepackets spanning x/D = [0, 20] with a dominant wavenumber at all frequencies.
Note that the forcing data do not decay to zero at the end of the domain, which is a
side effect of using a streamwise Fourier transform, which assumes periodicity in the
streamwise direction. These spurious oscillations are filtered when applying these modes
to the resolvent operator thanks to the sponge zone beyond x/D = 20.

To characterise these wavepackets, we perform an FT in the streamwise direction.
The amplitude and phase of the Fourier coefficients are shown in figure 12 for a range
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Figure 11. Real (blue) and imaginary (orange) parts of the supersonic part of the first RESPOD mode of the
forcing integrated in the radial direction. Different frequencies ranging from St = 0.4 to 1 are shown in panels
(a–d).

of frequencies. The wavenumber has been scaled by c∞/ω so that the abscissa in the
figure is the inverse phase speed, with the range [−1, 1] corresponding to the supersonic
phase speeds. We see the same peak corresponding to a phase speed, cx = 1.1722c∞ at all
frequencies, with energy contained in the immediate neighbouring wavenumbers as well.
The ordinate of the figure is scaled with St, and the peak has a nearly constant amplitude
under this scaling. We ignore the rest of the spectrum and investigate the phase relation
between this peak and the neighbouring wavenumbers only, as shown in figure 12. The
exact value of the phase affects only the global phase of the response, and thus is random.
The shape of the forcing modes is determined by the change in phase with respect to
wavenumber. There exists a phase difference of ∼0.5π between the central and leftmost
wavenumbers. The phase difference between the central and rightmost wavenumbers is
either approximately −1.7π or approximately 0.3π, which correspond to the same phase
shift as 0.3π = mod(−1.7π, 2π).

Given these observations, we need to find a model consisting of three wavenumbers, the
wavenumber corresponding to the constant phase speed observed and the neighbouring
ones, with some empirical phase and amplitude relations in between and a global
amplitude which scales with St. We propose the following empirical model,

Fx(ξ) = A
St

(
exp(iπkp

x) + B
(
exp(φ1iπkp−

x ) + exp(φ2iπkp+
x )

))
, (5.2)
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Figure 12. (a,c,e,g) Amplitude and (b,d, f,h) phase of the streamwise FT of the integrated line source.
Red dashed line shows the isolated spectrum used for modelling. Vertical dashed black lines indicate the
phase speed, cx = 1.1722c∞, and dashed blue lines mark the neighbouring wavenumbers to that. Different
frequencies ranging from St = 0.4 to 1 are shown from top to bottom.

where A = 4.6 × 10−7, B = 0.8, φ1 = 0.5, φ2 = −0.7, kp
x = St/(βc∞) is the wavenumber

corresponding to the peak observed in figure 12 with β = 1.1722 and kp±
x denotes

the neighbouring wavenumbers with Δkx = 1/30 where 30 is the domain length. The
corresponding forcing model, ξ , can then be obtained by taking the inverse FT of (5.2)
in x. Note that the neighbouring wavenumbers provide the wavepacket amplitude envelope
without having to define a Gaussian-like form. Choosing a different domain length would
change Δkx and therefore the resulting forcing model. However, we anticipate that the
results are not sensitive to this parameter, which will be justified later when showing the
results for models at higher Mach numbers using the same value for L. Figure 13 shows
a comparison of the forcing model obtained from (5.2) and the line source obtained from
the LES data. The model has a similar spatial support and the same dominant wavelength
corresponding to the line source. Similar to the line source data, the empirical model is
also assumed to be periodic in the streamwise direction, causing the spurious oscillations
at the end of the domain, as mentioned above, to appear in the model as well. Once again,
these artefacts are damped by the sponge zone within the resolvent operator.
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Figure 13. Real (blue) and imaginary (orange) parts of (a,c,e,g) the line source compared with (b,d, f,h) the
line-source model given by (5.2). Different frequencies ranging from St = 0.4 to 1 are shown from top to
bottom.

We now compare the acoustic response generated by this model to the response of the
first RESPOD mode of the forcing, χ (1), in figure 14 for a range of frequencies. The model
accurately predicts downstream noise generation for high frequencies while it yields an
underprediction at lower frequencies. The sound directivity is seen to be well captured at
all frequencies, which implies that the underprediction at low frequencies can be fixed by
adding a tuning parameter to the model. In the following section, we apply corrections
to the model using acoustic data to improve predictions and to include Mach-number and
flight effects.

5.2. Tuning the model using acoustic data from the LES
We discussed earlier that the errors in the LES database cause the correlation between the
forcing and the acoustic field to be partially contaminated, yielding the response generated
by the first RESPOD forcing mode, χ (1), to globally underpredict the optimal SPOD mode
of the acoustic field. As the forcing model in (5.2) is constructed based on the supersonic
part of this forcing mode, the effect of the errors in the database is inherited in the model,
ξ . To minimise this effect, we tune the model using the acoustic data obtained directly
from the LES. The tuning process is summarised as follows: we first correct the mode
amplitude using the acoustic field from the M04Mc00 case to better capture the overall
sound level and its change with respect to frequency. The same frequency scaling will
then be used for all other flow cases. To tune the model for Mach-number effects, we will
use the acoustic field from the M09Mc00 case. Finally, to tune the model for flight-stream
effects, we will use the acoustic fields from the M09Mc15 and M09Mc30 cases.
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Figure 14. PSD of the acoustic pressure generated by the first RESPOD mode of the forcing (solid) compared
with that of the line-source model (dashed) for the case M04Mc00. Different frequencies ranging from St = 0.4
to 1 are shown in panels (a–d).

We start tuning the model, ξ , by adding a scalar correction to better match the optimal
SPOD mode of the acoustic field. In figure 15, the energy ratio of the response generated
by the model, ξ , is compared with that of the optimal SPOD mode of the acoustic pressure
as a function of frequency. Normalisation is done using the total acoustic energy in the
downstream region. It is seen that the underprediction of the model increases as the
frequency decreases. A correction in the amplitude and changing the St−1 scaling to St−3/2

yields the corrected trend seen in figure 15.
We now test the ansatz (5.2) to see if it can capture the Mach-number effect. The

phase difference between kp
x and kp−

x mainly determines the shape of the envelope of
the wavepacket while the phase difference between kp

x and kp+
x determines its streamwise

position. It was also found that the resulting acoustic field does not strongly depend on the
value of B. Given these observations, we set β, A, φ2 as free parameters to tune, and we
keep φ1 fixed to keep the wavepacket shape unchanged.

Assuming that the parameter β varies linearly with the jet Mach number Mj, and
matching the observed value at Mj = 0.4 and the observed phase velocity at Mj = 0.9
yields the expression

β = 0.7722 + Mj. (5.3)

For Mj = 0.9, this results in a propagation angle of 53.3◦, very close to the value observed
by Bugeat et al. (2022).
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Figure 15. Energy ratio of the response generated by the line-source model (dashed) compared with that in
the optimal SPOD mode of the acoustic pressure (solid). The energy ratio obtained using the corrected model
is also shown (dash–dotted). Normalisations are done using the acoustic energy in the downstream region at
each frequency.

To set the amplitude, A, and the phase constant, φ2, we performed tests to find the
parameters that best match the acoustic field in the case M09Mc00. We finally obtained
the empirical relations

A = 3.22 × 10−6M7/2
j , (5.4)

φ2 = 0.1 − St. (5.5)

The resulting model equation with these corrections reads

Fx(ξ) = 3.15 × 10−6

√
M7

j

St3
(exp(iπkp

x) + B(exp(0.5iπkp−
x ) + exp((0.1 − St)iπkp+

x ))),

(5.6)

where

kp
x = St

(0.7722 + Mj)c∞
, (5.7)

and kp±
x denotes once again the neighbouring wavenumbers with Δkx = 1/30. The

resulting acoustic field is shown in figure 16 for M04Mc00 and M09Mc00, and compared
with the corresponding LES data. It is seen that the model given in (5.6) yields a prediction
that well matches the LES data in the downstream region at all frequencies. The acoustic
response does not noticeably differ for the case M04Mc00 whether one uses a constant or
linearly varying value for the phase, φ2.

Finally, we extend the empirical model given in (5.6) to take into account the flight
effect. It is known that the effect of flight is to suppress noise, largely due to the suppression
of turbulence in the shear layer (Maia et al. 2022). We compare the noise generated in
the cases M09Mc00, M09Mc15 and M09Mc30, respectively, in figure 17 with two
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Figure 16. PSD of the acoustic pressure obtained using line-source model (5.6) to that extracted from the LES
for the cases (a,c,e,g) M04Mc00 and (b,d, f,h) M09Mc00. Different frequencies ranging from St = 0.4 to 1 are
shown from top to bottom.

different scalings. Defining

kI(Mj, M∞) =
∫

S
K(Mj, M∞) dS, (5.8)

where K(Mj, M∞) denotes the turbulent kinetic energy as a function of the jet Mach
number, Mj, and the flight Mach number, M∞, and using the scaling k2

I causes the
sidestream noise in the three cases to collapse on top of each other. The dominant terms
in the forcing have the form u · ∇u, which has the same dimension with turbulent kinetic
energy differentiated in space. Inspired by this, we defined a scaling factor using ∂xK as

kI,x(Mj, M∞) =
∫

S
∂xK(Mj, M∞) dS. (5.9)

The scaling k2
I,x yields a slightly improved match in the peak noise level of the three

cases. To determine if this scaling should be directly adopted in the forcing model, one
needs to understand the effect of the free stream on the efficiency of the noise generation
mechanisms embedded in the resolvent operator. For this, we performed a resolvent-based
noise prediction using the same forcing in the three cases at Mj = 0.9. The resulting
acoustic fields are shown in figure 18, where it is seen that the change in the mean flow
does not strongly affect the noise level, but causes a change in the directivity in a similar
fashion as observed in the LES data shown in figure 17. This suggests that one may use
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Figure 17. PSD of the acoustic pressure for the cases M09Mc00 (solid), M09Mc15 (dashed) and M09Mc30
(dash–dotted) with (a) no scaling, (b) k2

I scaling and (c) k2
I,x scaling at St = 0.6.
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Figure 18. PSD of the acoustic pressure obtained using the line-source model given in (5.6) for the cases
M09Mc00 (solid), M09Mc15 (dashed) and M09Mc30 (dash–dotted) at St = 0.6.

the same mathematical form for the source model for jets with or without flight effect,
applying an amplitude correction. We adopt k2

I,x scaling for the empirical model as the
peak noise, which occurs in the downstream region, is more relevant for the present study.
In addition to the amplitude correction, comparison of the model prediction with the LES
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Figure 19. PSD of the acoustic pressure obtained using the line-source model given in (5.11) (dashed)
compared with the LES data (solid) for the cases (a,c,e,g) M09Mc15 and (b,d, f,h) M09Mc30. Different
frequencies ranging from St = 0.4 to 1 are shown in panels (a–h).

data with flight-stream effect yielded that the phase constant, φ2, is to be updated as

φ2 = 0.1 − St
Mj − M∞

Mj
, (5.10)

resulting in the final equation for the jet-noise source model,

Fx(ξ) = 3.15 × 10−6Γ

√
M7

j

St3
(exp(iπkp

x) + B(exp(0.5iπkp−
x )

+ exp((0.1 − St(Mj − M∞)/Mj)iπkp+
x ))), (5.11)

where

Γ � kI,x(Mj, M∞)

kI,x(Mj, 0)
. (5.12)

The resulting acoustic response of the model forcing obtained by taking the inverse FT
of (5.11) is compared with the acoustic fields coming from the LES data in the cases
M09Mc15 and M09Mc30, respectively, in figure 19. The error at all the frequencies
remains within 2 dB for the downstream region.
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Figure 20. PSD of the acoustic pressure obtained using the line-source model given in (5.11) (dashed)
compared with the LES data (solid) for the cases (a,d,g,j) M07Mc00, (b,e,h,k) M07Mc15 and (c, f,i,l)
M08Mc00. Different frequencies ranging from St = 0.4 to 1 are shown from top to bottom.

5.3. Blind testing the model under different operating conditions
To test the validity of the model given in (5.11), we use three LES cases that were not
used in its development: M07Mc00, M07Mc015 and M08Mc00 (see table 1 for details).
The predictions are compared against the LES data in figure 20. The acoustic response
generated by the forcing model predicts the downstream acoustic field with a 1 dB accuracy
within the region x/D = [10, 20] for the static jets at Mj = 0.7 and 0.8, except for a sharper
decay observed at St = 1 beyond x = 19D for both cases. For the case with flight effect,
the peak noise level is predicted accurately at all the frequencies. The accuracy of the
prediction is within 2 dB for the region x/D = [10, 20] at St = 0.4 and 0.6 and for the
region x/D = [12, 20] at St = 0.8. A sharper decay is observed for St = 1 at x = 14D.
These results show that the proposed forcing model is capable of predicting jet noise
within the Mach number and Strouhal number ranges of Mj = [0.4, 0.9] and St = [0.4, 1],
respectively. The suppression of jet noise due to flight effect is also well captured for the
regime M∞/Mj < 0.33. Beyond these limits, the validity of the model remains to be tested.

We also present a comparison of the model prediction and the LES data as a
function of frequency in figure 21 for all the cases investigated in this study at two
different propagation angles, θ = 15◦ and 25◦ measured from the downstream end, which
correspond to x/D = 18.7 and 10.7, respectively, in previous figures showing PSD data.
The region θ < 25◦ roughly determines the acoustic field dominated by the first RESPOD
forcing mode and thus, the region of validity of the model. Additionally, θ = 15◦ is

965 A18-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

37
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.376


U. Karban and others

–80

M04Mc00

M07Mc15 M09Mc30 M09Mc15

Static, θ = 15°

Coflow, θ = 15° Coflow, θ = 25°

Static, θ = 25°

M07Mc00 M08Mc00 M09Mc00

–100

–120

–140

0.5 1.0 1.5 0.5 1.0 1.5

–80

–100

–120

–140

|p̂
2
| (

d
B

)

–80

–100

–120

–140

–80

–100

–120

–140

0.5 1.0

St
1.5 0.5 1.0

St
1.5

|p̂
2
| (

d
B

)

(c) (d)

(b)(a)

Figure 21. PSD of the acoustic pressure obtained from LES (solid) and predicted by the line-source model
(dashed) for (a,b) static jet cases and (c,d) cases with flight stream at two different propagation angles,
(a,c) θ = 15◦ and (b,d) 25◦.

near the sponge zone limit used in the resolvent computations. The frequency range in
this comparison is extended to St = [0.1, 1.5] to show the model performance beyond
the range for which it has been tuned. We limit the analysis to this range since, below
St = 0.1, the hydrodynamic fluctuations reach the acoustic field as reported by Nekkanti
& Schmidt (2021), who used the same database for the cases M09Mc00 and M07Mc00;
and at St = 1.5, the acoustic level is already 20 dB less than the peak in all the cases.

For the range St = [0.4, 1], the model accurately predicts the acoustic field for all the
cases, despite some underestimation for the cases M04Mc00, M07Mc15 and M09Mc30
at θ = 25◦. However, at slightly lower propagation angles, the model starts to yield
better predictions for these three cases as well, as can be seen in figures 16, 19 and 20.
At St = 1.5, the model yields accurate predictions in all the cases except for the cases
M07Mc00 and M08Mc00 at θ = 15◦. At frequencies below St = 0.4, the model starts
to overpredict the acoustic level which becomes evident at St = 0.1 in all the cases. We
expect the model to be valid only above a certain frequency. The forcing amplitude is
scaled by 1/St3/2 in (5.11), which tends to infinity as St → 0. The overprediction remains
within 3 dB at St = 0.2 for all the cases except M07Mc00, M07Mc15 and M09Mc30,
where it reaches up to 5 dB. Another reason that may explain the poor performance
at low frequencies is that the identity of the leading resolvent mode switches from
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Figure 22. PSD of the acoustic pressure at m = 0 predicted by the line-source model (orange) for the
NASA-SHJAR-SP7 jet compared against the experimental data for the total acoustic field at θ = 30◦.

Kelvin–Helmholtz to Orr mechanism at approximately St = 0.3 (Pickering et al. 2020),
and the very different physics of Orr modes would require a different forcing model.

Finally, we test our model against experimental data available in the literature. We
choose the cold jet experiments conducted in NASA SHJAR (Khavaran & Bridges 2009)
denoted with set point 7, for which an LES database was generated by Markesteijn
& Karabasov (2017) and the mean flow and acoustic field data were provided by
Gryazev, Markesteijn & Karabasov (2023). The jet has a Mach number M = 0.9 with a
static-to-total temperature ratio Tj/T0 = 0.835 and nozzle pressure ratio NPR = 2.861.
The acoustic data are provided at three angles by Gryazev et al. (2023): θ = 30◦, 60◦
and 90◦, out of which, only θ = 30◦ is relevant for our model considering that our study
is limited to the axisymmetric mode and low-propagation angles. Figure 22 shows the
comparison of the resolvent-based prediction against the experimental data. We see the
model slightly underpredicts the acoustic field at low St while the discrepancy increases
up to 5 dB at St = 1.5. The reason for this discrepancy is that the model predicts only
the acoustic field of the axisymmetric mode while the experimental data are obtained for
the total acoustic field. It is known that the axisymmetric mode dominates the acoustic
field at low angles and low St while the contribution of the higher-order azimuthal modes
increases with frequency (Brès et al. 2016; Faranosov et al. 2017). The trend observed here
is consistent with the literature (see figure 9 of Brès et al. 2016).

5.4. Discussion on the empirical modelling
We have presented a rank-1 model for acoustic sources in subsonic jets, defined within
the resolvent framework. The overall prediction involves mean flow and turbulent kinetic
energy data, which can be obtained from a RANS solution. It is known that there is a
strong connection between the wavepackets found in the jet near field and the noise in
the acoustic field (Cavalieri et al. 2012). It is therefore reasonable to assume that the
forcing responsible for noise generation emerges from the nonlinear interaction of different
wavepackets in the jet. The accuracy of the predictions implies that our model successfully
incorporates the essential information from these wavepacket interactions to generate the
downstream noise. The model consists of forcing structures with supersonic phase speeds
determined by shifting the jet Mach number by a constant value. Such structures with
supersonic phase speeds in subsonic jets are potentially a product of: (i) spatial modulation
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of the convected waves due to the shape of the wavepacket, yielding a supersonic tail in
the wavenumber domain (Crighton 1975; Tam et al. 2008; Jordan & Colonius 2013); or
(ii) jittering in the wavepackets, which manifests in the frequency domain as coherence
decay, causing a shift in the energy of the wavepacket towards supersonic wavenumbers
(Cavalieri et al. 2011; Cavalieri & Agarwal 2014). Both model problems (Cavalieri &
Agarwal 2014; Cavalieri et al. 2019) and real jet data (Maia et al. 2019; da Silva et al.
2019) have shown that the noise generated by a wavepacket in a subsonic jet is highly
sensitive to the coherence decay rate embedded in the source model. Indeed, a source
model based on a wavepacket with unit coherence, although matching the near-field
wavepacket obtained experimentally, generates an acoustic field that is off by up to 40 dB
when compared with the experimental data (Baqui et al. 2013; Jordan et al. 2014). This
implies that the supersonic structures we observe in the forcing data are more likely to be
associated with the coherence decay in the jet near field, and thus the jitter mechanism.
Given this perspective, the model presented here can be considered to provide an indirect
representation of the coherence decay occurring due to jittering in subsonic turbulent jets.

6. Conclusions

We outlined a methodology to identify the source of subsonic jet noise at low
(downstream) propagation angles. Since noise generation by turbulent flows is nonlinear,
it is not possible to uniquely define the source terms. Acoustic analogies (Lighthill 1952;
Lilley 1974; Howe 1975; Doak 1995; Goldstein 2003; etc.) recast the Navier–Stokes (N-S)
equations as an acoustic wave equation, with all other terms considered as the source. In
this study, we instead adopt the resolvent framework, in which the linearised N-S equations
serve as the operator and all nonlinear terms remaining after linearisation about the mean
flow are viewed as the source terms, or forcing, in resolvent terminology.

We extended the concept of using forcing data within the resolvent framework, which
was applied earlier to predict flow structures in low-Re turbulent flows, to acoustic
prediction in high-Re turbulent jets. We showed that downstream noise is generated mainly
by the streamwise momentum forcing term. We then obtained a low-rank reconstruction of
this forcing term using the RESPOD method (Towne et al. 2015; Karban et al. 2022a). The
RESPOD method yields forcing modes that generate the SPOD modes of the measured
response, which is selected to be the acoustic pressure in this study. The response modes
are orthogonal to each other by construction. Searching for a similar orthogonality on the
forcing side, we projected the RESPOD modes of the forcing onto streamwise harmonic
waves with different phase velocities varying in the supersonic range, which yielded two
critical outcomes: (i) projection coefficients corresponding to the first RESPOD mode
of the forcing peaked around the same phase velocity at all the frequencies investigated;
(ii) projection coefficients corresponding to the second RESPOD mode of the forcing
showed a dip around the same phase velocity as a trace of the orthogonality in the
response. Decomposing the first RESPOD mode of the forcing into supersonic and
subsonic components, we demonstrated that it is the supersonic part of the forcing which
generates the majority of the acoustic field in the downstream region.

The resolvent framework requires the mean flow data and the forcing model requires the
turbulent kinetic energy, in the case of a non-zero flight stream. In this study, we obtained
these data using the LES, which was shown to match the experimental data (Brès et al.
2018; Maia et al. 2022). One can alternatively obtain these performing a RANS simulation,
which are then expected to be less accurate. The dependency of the model results on the
turbulence models used in the case of a RANS simulation and on the accuracy of the
first-order statistics in general is yet to be determined in a future study.
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Given that the forcing modes of the acoustic resolvent operator, i.e. the resolvent
operator that includes the measurement matrix that extracts the acoustic pressure as the
response, supports a radially compact line source as the optimal forcing, we integrated the
identified forcing in the radial direction, which yielded a wave packet with a dominant
wavenumber corresponding to a constant phase velocity for all frequencies in the range
St = [0.4, 1]. Using this information, we introduced a model equation for the line source.
We tested the line source for different flow cases with or without flight-stream effects.
Tuning the model by comparing the acoustic response it generated against the noise field
extracted from the LES data resulted in a model in which the amplitude is scaled with M7/2

j
and St−3/2 and a linear phase relation is obtained changing with St and M∞. The model
generates a noise field with an error of less than 2 dB in the downstream region in subsonic
jets over a range of frequencies. The Mach scaling in the empirical model leads to a M7

power law for the forcing, reminiscent of the M8 power law of Lighthill’s. The power factor
is known to increase at lower directivity, with a peak of ∼9.5 around θ = 30◦ (Tam et al.
2008; Khavaran & Bridges 2009). The difference between the power factors of the forcing
and the acoustic field suggests that the efficiency of linear amplification mechanisms in
a jet in terms of noise generation at low propagation angles significantly increases with
Mach number. This result can be expected given the fact that noise generation efficiency
of supersonic jets are higher than that of subsonic jets by orders of magnitude (Jordan
& Colonius 2013; Cavalieri et al. 2019). The dependency of the forcing on St, however,
remains for the time being an empirical constant, which requires further investigation to
establish a physical relevance.

It should be mentioned here that each step of the proposed methodology provided an
essential piece of information leading to the final empirical model. For instance, although
RESPOD yielded rank-1 forcing modes capable of accurately predicting the downstream
acoustic field, our efforts on source modelling based on these modes did not yield robust
empirical models, which was not reported in this study. Identifying the sound-generating
part in these modes by investigating the resulting acoustic field and the optimal forcing
modes of the modified resolvent operator was necessary to be able to devise a robust
source model. Using RESPOD prior to filtering the sound-generating part of the forcing
modes, however, allowed us to identify a constant effective phase velocity, which greatly
simplified the resulting source model. Our analysis shows the importance of using the right
combination of available linear algebra tools to predict flow-related phenomena.

Identifying a dominant phase speed in the acoustically efficient forcing can be of
practical importance beyond yielding a source model for noise generation in subsonic
jets. One can investigate the interaction mechanisms that generate forcing components
at this phase speed. Given the elongated wavepacket structure observed in the source, it
is reasonable to assume that these structures are associated with interaction of certain
wavepackets and may potentially be traced back in the nozzle, which may help to design
strategies to control the jet noise. It was already shown by Maia et al. (2021) that real-time
control in forced jets is possible by measuring the stochastic disturbances in the upstream
region near the nozzle exit. The control practice becomes much harder in unforced jets
due to loss of coherence between the actuators and the measurements. However, this
loss of coherence might be due to very poor signal-to-noise ratio in unforced jets. Our
observation that the acoustically efficient forcing amounts to less than 0.04 % of the total
forcing energy for the Mj = 0.4 case supports this hypothesis. Extracting the structures at
the dominant phase speed observed in the forcing in real-time by two-point measurements
can significantly enhance the signal-to-noise ratio that is necessary for a successful control
application.
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The present approach is based on the Mach-wave mechanism. Such a model is bound to
be limited to low propagation angles, as the phase speed corresponding to 90◦ should
tend to infinity for the same mechanism to be responsible for sidestream propagation
as well. However, we believe that a similar analysis based on resolvent framework can
still be helpful in understanding the underlying mechanism for sidestream propagation
in subsonic jets. Prediction of the sideline noise requires extending the present analysis to
higher azimuthal modes and to consider the forcing terms of the radial momentum together
with the streamwise momentum terms, which are left as future tasks.
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Appendix. Errors in the numerical database

To achieve accurate resolvent-based predictions of the response, the forcing and the
response data should satisfy (2.3). Similarly, the RESPOD method assumes that the forcing
and the response are connected to each other in the frequency domain via the resolvent
operator as in (2.14). The LES database contains errors from several sources that cause the
above conditions to be violated. Here, we briefly discuss here these error sources and their
potential effect on the results.

The LES data are generated by solving the spatially filtered N-S equations. The forcing
data, as discussed in § 3.1, are obtained by computing the numerical Jacobian of this
nonlinear LES operator to create a consistent forcing. The resolvent code, however, uses
the linearised N-S equations without taking into account the filtering of the sub-grid
scales implemented in the LES solver. This creates a compatibility issue when driving
the resolvent operator with the forcing data obtained from the LES. Considering that the
LES is sufficiently refined to capture the acoustic signature of the jet in an accurate way,
we may assume that the differences between the LES and the N-S operators are small, at
least for the scales in which we are interested, and the sub-grid-scale filtering do not pose
significant error in the database.

The LES data were first generated on an unstructured grid and then interpolated onto a
cylindrical grid to facilitate azimuthal decomposition. Although the cylindrical grid has a
distribution similar to that of the LES grid in streamwise and radial directions (Brès et al.
2017), interpolating the data stored in control volumes onto grid points causes interpolation
errors in the data. In addition, the mesh used for the resolvent operator is not identical to
the cylindrical grid used to store the LES data. The difference in the mesh requirement
for the LES and the resolvent operator may vary, particularly at high frequencies, as the
resolvent operator does not benefit from any sub-grid-scale filtering. Using a separate mesh
for the resolvent operator requires an additional interpolation, introducing additional errors
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Figure 23. Comparison of the PSD of pressure extracted from LES and predicted via resolvent analysis at
r = 5D for the case M04Mc00 at St = 0.6.

(although we expect that the errors due to this second interpolation are smaller compared
with the first interpolation).

The LES data were stored with a temporal downsampling ratio of 200, yielding a
sampling frequency, Sts = 12.5, for which the Nyquist limit to avoid aliasing is given as
6.25 (Nyquist 1928; Shannon 1948). A detailed analysis of aliasing the LES database was
given by Karban et al. (2022b), where it was shown that significant aliasing was observed
in the forcing data even though it is negligible in the response. As resolvent analysis is
performed in the frequency domain, aliasing appears as an error source for both forcing
identification based on RESPOD and the resolvent-based prediction of the response.

These errors accumulate in the LES database. It is not possible to accurately quantify
contributions from each error source, but one may use the difference between the state
obtained directly from the LES and its prediction obtained using the resolvent tool as
a global measure of the total error included in the database. In figure 23, we show a
comparison of the PSD of the pressure in the acoustic field, i.e. at r = 5D, directly
extracted from the LES data, and its resolvent-based prediction for the case M04Mc00
at St = 0.6. The acoustic field is predicted with reasonable accuracy, except the most
upstream part, x < 1D, where the resolvent-based prediction suffers from a boundary
condition effect. These error levels are similar to those observed by Towne et al. (2021)
when comparing the PSD extracted from an LES database and obtained from a forced
resolvent model for a supersonic jet. These results show that, although being contaminated
by errors to a certain extent, the current database can be used to investigate noise
generation mechanism in jets at this Mach number. At higher Mach numbers, aliasing is
seen to affect the spectral estimates at such a level that the resolvent-based analysis using
forcing data becomes unreliable.
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