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This work aims to provide a more complete understanding of the resonance mecha-
nisms that occur in turbulent jets at high subsonic Mach number, as shown by Towne
et al. (2017). Resonance was suggested by that study to exist between upstream- and
downstream-travelling guided waves. Five possible resonance mechanisms were postu-
lated, each involving different families of guided waves that reflect in the nozzle exit plane
and a number of downstream turning points. But the study did not show which of these
mechanisms are active in the flow. In this work, the waves underpinning resonance are
identified via a biorthogonal projection of the Large Eddy Simulation data on eigenbases
provided by locally parallel linear stability analysis. Two of the scenarios postulated by
Towne et al. (2017) are thus confirmed to exist in the turbulent jet data. The reflection-
coefficients in the nozzle exit and turning-point planes are, furthermore, identified.

1. Introduction

The mechanisms underpinning oscillator behaviour in fluid-mechanics problems can be
classified as short- or long-ranged. Short-ranged mechanisms are typically associated with
absolute instability (Huerre & Monkewitz 1985), observed for instance in wakes (Monke-
witz & Sohn 1988) and hot jets (Huerre & Monkewitz 1990). Long-ranged mechanisms
involve a pair of upstream- and downstream-travelling waves which interact at two end
locations, where they are reflected into one another. If the wave amplitude increases
over the cycle between two reflections, a long-range-resonant instability occurs. If the
amplitude is unchanged, a neutrally stable mode is created, which, in turbulent flows,
can be driven by the background turbulence. Such mechanisms have been observed in
many different flows, such as when jets interact with edges (Powell 1953; Jordan et al.
2018), in cavity flows (Rockwell & Naudascher 1979; Rowley et al. 2002), impinging jets
(Ho & Nosseir 1981; Tam & Ahuja 1990), shock-containing jets (Raman 1999; Edgington-
Mitchell 2019), and high subsonic jets (Towne et al. 2017; Schmidt et al. 2017). The
waves underpinning resonance can frequently be modelled using linear mean-flow analysis
(Michalke 1970; Crighton & Gaster 1976; Jordan & Colonius 2013; Cavalieri et al. 2019).

In this study, we revisit the tones found in Mach 0.9 turbulent jets, postulated by
Towne et al. (2017) to be driven by waves resonating between the nozzle exit and
downstream turning points. The waves in question are guided waves of positive and
negative generalised group velocities, denoted as k+ and k− respectively, as per Briggs
(1964) and Bers (1983). The waves are neutrally stable at the resonance frequencies and
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can be described using locally parallel linear stability analysis. Among the identified
waves are the Kelvin-Helmhotz (hereafter K-H) instability wave (Michalke 1970) and
neutrally stable guided waves (Towne et al. 2017; Martini et al. 2019). These guided waves
consist of one downstream-travelling wave: the k+ duct-like mode and two upstream-
travelling waves: the k− duct-like mode and k− discrete free-stream mode.

At resonant frequencies, the k+ and k− waves propagate between the nozzle exit and
turning point, exchanging energy through reflections at these end locations. The turning
point is a downstream location characterized by the presence of a saddle point where a
pair of k+ and k− waves share the same frequency and wavenumbers. Depending on the
frequency, the k+ wave can form a turning point with either of the k− waves, resulting
in two possible resonance mechanisms (Towne et al. 2017). The stability analysis (see
section 3.1) reveals that, in the Strouhal range (St = fD/Uj = {0.23 − 0.47}, where
f is the resonance frequency, Uj is the jet velocity, and D is the jet diameter), the k+

duct-like mode forms a turning point with the k− duct-like mode for lower frequencies,
but with the k− discrete free-stream mode for higher frequencies.

In the present work, we aim to conclusively establish if these frequency-dependent
resonance mechanisms are active in the jet. We revisit the turbulent jet data with the
goal of: (1) educing the waves present in the data; (2) establishing which of these underpin
resonance; (3) computing the reflection-coefficients associated with energy exchange at
the resonance end locations. This third objective is important for simplified resonance
models, such as proposed by Jordan et al. (2018); Mancinelli et al. (2019, 2021).

The paper is organised as follows. Section 2 presents the Large Eddy Simulation (LES)
database which is used. Local linear stability analysis is performed on the jet mean flow
in section 3.1. The LES data is then decomposed using bi-orthogonal projections on the
stability eigenbasis in section 3.2. It is shown how, at resonant conditions, the LES data
can be represented by a rank-4 model. This is the basis for the calculation of reflection-
coefficients at the resonance end locations. Section 4 presents the reflection-coefficient
eduction methodology and section 5 presents the final results for a range of resonant
frequencies.

2. LES database

We analyze LES data for a Mach M = 0.9 jet from Brès et al. (2018), where the guided
waves have been observed in the potential-core region and associated discrete spectral
tones have been detected in the near-nozzle region (Towne et al. 2017; Schmidt et al.
2017; Bogey 2021).

The data, described in Brès et al. (2018), covers a cylindrical grid with length 30D and
radius 6D. It contains 10000 timesteps over 2000 acoustic time units (tc/D, where c is
sound speed), sampled every 0.2 acoustic time units. The cylindrical coordinate system
has its origin centered on the jet axis in the nozzle plane.

LES time-series data is decomposed into Fourier modes,

qLES(x, r, θ, t) =
∑
ω

∑
m

q̂LES(x, r,m, ω) eimθeiωt, (2.1)

where x is the axial coordinate, r is the radial coordinate, m is the azimuthal wavenumber
and ω is the angular frequency of fluctuation quantities. The time-series is split into 153
realisations, where each realisation contains 256 snapshots and an overlap of 75%. This
leads to the frequency resolution of ∆St = ∆fD/Uj = 0.0217. Only the m = 0 mode is
considered.
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(a) Eigenspectrum for St = 0.39: (?, blue) k−
d ;

(?, red) k−
p ; (?, yellow) k+

T ; (�, purple) k+
KH ;

( , light green) sonic line.

Cut-on

condition

Cut-off

condition

(b) Modes trajectories for St={0.23 →
0.47}: ( , blue) k−

d ; ( , red) k−
p ; ( ,

yellow) k+
T ; ( , purple) k+

KH .

Figure 1: Linear stability analysis at x/D = 0, m = 0 for M = 0.9 jet.

3. Decomposing turbulent jet data into the resonating modes

To identify the waves that dominate the jet dynamics at the resonant frequencies, the
LES data at a given streamwise station is projected onto eigenmodes obtained from a
locally parallel linear stability analysis that is described in the following section.

3.1. Local Stability Analysis

Stability analysis is performed around the LES turbulent mean flow. To obtain a
smooth flow, the radial profile of the LES mean flow is fitted with the analytical profile

Ux(r) =
Uj
2

[
1 + tanh

{
b

(
0.5

r/D
− r/D

0.5

)}]
, (3.1)

where b is the fitting parameter.

Fluctuating quantities are described by the vector q′ =
[
ρρρ′ u′x u′r u′θ T′

]>
,

where > represents the transpose, ρρρ′ the density, u′x the streamwise velocity, u′r the
radial velocity, u′θ the azimuthal velocity and T′ the temperature. Normal-mode ansatz,

q′ = q̂(r)eiαxeimθe−iωt, (3.2)

where q̂ gives the radial structure and α is the axial wavenumber, allows the linearised
N-S equations to be compactly written as,

Mq̂ = iαq̂. (3.3)

The eigenmodes are normalised such that each mode has: (1) 0o phase angle for the
streamwise velocity fluctuation at the jet axis (∠ûx = 0o at r = 0); and (2) unit Energy
norm, E (Chu 1965), defined as

E =

∫ ∞
0

[
T

γρM2
j

| ρ̂ |2 +ρ | ûx |2 +ρ | ûr |2 +ρ | ûθ |2 +
ρ

γ(γ − 1)TM2
j

| T̂ |2
]
r dr.

(3.4)
Stability analysis is performed for m = 0 and over the frequency range, 0.23 6 St 6

0.47. The eigenspectrum for one of the tonal frequencies, St = 0.39, is shown in figure
1(a).

Various families of modes can be seen in figure 1(a), where real and imaginary parts of
α are represented on the horizontal and vertical axes respectively. The k+KH (K-H mode
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marked with a square) is the only unstable mode of the system which leads to amplitude
growth of the coherent part of the fluctuation field which then stabilises and decays,
forming a wavepacket (Jordan & Colonius 2013).

The resonating modes leading to tones are marked with stars and are named as
per Jordan et al. (2018). They are guided propagative modes resonating between the
end locations and are the focus of the present work. The resonance loop consists of a
downstream travelling mode (k+T ) and an upstream travelling mode (k−d and/or k−p ).

Modes k+T and k−d correspond to the acoustic waves trapped within the potential core
and they belong to the families of the infinite number of such modes (marked by circles).
Further details about these modes can be found in Towne et al. (2017), Schmidt et al.
(2017) and Martini et al. (2019).

In figure 1(a), the modes in the first quadrant with subsonic phase speed (the sonic
line is at αr = ω/c) are stable and are distributed in two separate branches.: a near-
horizontal branch consisting of critical layer modes that have support in the shear layer,
and a near-vertical branch with eigenfunctions that have support in the core region of
the jet (Rodŕıguez et al. 2015).

Although all guided modes are propagative at St = 0.39, this is not the case for all St.
Figure 1(b) shows the trajectories of the four modes in the complex α plane as St varies
from 0.23 to 0.47. At St = 0.23, k+T and k−d are evanescent, and they move gradually
towards the αi = 0 axis and overlap at saddle-point 1, defining a cut-on condition at
St = 0.37 (Towne et al. 2017). The modes remain propagative until saddle-point 2, a
cut-off condition, which occurs at 0.428, where k+T and k−p modes meet. For St > 0.428,

the k+T and k−p modes become evanescent. At higher frequencies, other modes from the

families of k+T and k−d cut on leading to resonance, but these scenarios are not considered
in the present work since the most energetic resonance occurs for the considered scenario.

3.2. Educing mode amplitudes by bi-othogonal projections

We here aim to educe amplitudes of the K-H mode, which is the main instability of the
jet, and the three guided waves, which are postulated to be responsible for the observed
tones. Due to the non-orthogonality of the system, mode amplitudes are obtained by
bi-orthogonal projection as per Rodŕıguez et al. (2013, 2015).

A basis for bi-orthogonal projection is constructed from the adjoint system,

MH q̂+ = iα+q̂+, (3.5)

where H represents the Hermitian transpose, α+ are the complex conjugate of eigenvalues
of the direct system and q̂+ are the adjoint eigenfunctions that we seek.

The adjoint eigenfunctions are normalized such that,

(q̂+
i )H q̂i = 1, (3.6)

where i is the index of the mode being normalized.
Before projection, q̂LES (from (2.1)) is interpolated onto the Chebyshev nodes, on

which the eigenfunctions are defined, using Piecewise Cubic Hermite Interpolating Poly-
nomials. Due to the fast decay of disturbances away from the jet, the points outside the
available LES grid locations are assigned a value of 0 for the fluctuation quantities. This
is corroborated by verifying that | (q̂+

i )H q̂i | is almost the same with or without this
assumption ∀St,∀i, and hence the projection amplitudes would be negligibly affected.

The mode amplitudes are then obtained by biorthogonal projection,

ani = (q̂+
i )H q̂nLES , (3.7)
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Figure 2: Projections for St = 0.39, m = 0 at x/D = 0: ( , dashed black) LES; ( , blue)
k−
d ; ( , red) k−

p ; ( , yellow) k+
T ; ( , purple) k+

KH ; ( , black) reconstruction from 4 modes.

where q̂nLES is the LES fluctuation data from the nth realisation; and ani is the expansion
coefficient that defines the contribution of the ith mode to the flow state in the nth

realisation, giving the amplitude and the phase of mode.
In figure 2(a), radial profiles of the streamwise velocity for a selection of modes at

the nozzle exit plane and for St = 0.39 are compared with the power spectral density
(PSD) computed from the LES data. The guided modes have substantial magnitudes,
consistent with the resonance phenomenon observed at this tonal frequency. It is also
clear that within the jet core, the k−d and k+T dominate the fluctuation field. In the shear
region, k−d , k−p and k+T have comparable levels. On the low-speed side of the shear layer,

fluctuations are dominated by k−p and k+T . At the nozzle exit plane, negligible KH mode
magnitude suggests a rank-3 system locally, but as the KH mode grows exponentially
while travelling downstream, the system should be considered rank-4 globally.

A rank-4 reconstruction of the LES data, using these modes, is shown in figure 2(b)
along with the LES fluctuation profile. At this resonance frequency, the rank-4 model
provides a good overall description of the flow dynamics. We see that in the jet core, the
reconstruction amplitude is lesser than the amplitude for the most dominant mode (see
k−d in figure 2(a)). This is due to the destructive interference between the modes k−d and
k+T as we found them to be antiphase to each other. The mismatch for reconstruction in
the mixing layer is likely due to disturbances originating in the nozzle boundary layer,
leading to energetic but stable mixing layer modes (Towne & Colonius 2015).

4. Reflection-coefficient eduction

We now present a method used to compute reflection-coefficients between pairs of k−

and k+ waves at the resonance end locations. Figure 3 shows a schematic of reflections
at the nozzle exit plane and the turning point plane. At the turning point, the incident
propagative k+T wave can be reflected as a propagative wave (k−d or k−p ) and transmitted
as an evanescent wave. The reflected wave then propagates until it reaches the nozzle exit
plane where it is reflected as a k+T wave that travels downstream until the turning point,
hence completing the resonance loop. The relation of magnitude and phases of these
waves among each other are described by reflection and transmission coefficients at the
corresponding end locations. Note that at the nozzle plane, apart from the contribution
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Figure 3: Sketch of waves interacting at the resonance end locations. At the nozzle exit plane:
(←−, blue) incident k−

d wave; (←−, red) incident k−
p wave; (←−, grey) transmitted waves; (−→,

dashed yellow) reflected k+
T wave; (−→, purple) k+

KH wave. At the turning point plane: (−→,

yellow) incident k+
T wave; (−→, grey) transmitted wave; (←−, dashed blue) reflected k−

d wave;
(←−, dashed red) reflected k−

p wave.
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Figure 4: At the nozzle exit, x/D = 0. (a) Coherence function: ( , blue) k−
d /k+

T ; ( , red)

k−
p /k+

T ; ( , yellow) k−
d /k−

p ; ( , purple) k−
d /k+

KH ; ( , dashed purple) k−
p /k+

KH . (b) Mode

amplitudes: ( , blue) k−
d ; ( , red) k−

p ; ( , yellow) k+
T ; ( , purple) k+

KH .

from k−d or k−p waves, k+T wave may also be driven by nozzle fluctuations, or by the
reflection of other k− waves.

4.1. Coherence analysis

Before evaluating the reflection-coefficients, we examine the relation between expansion
coefficient signals from the modes through the coherence function,

γ2ij =
〈aiaHj 〉2

〈aiaHi 〉 〈ajaHj 〉
, (4.1)

where ai and aj are the expansion coefficients (see (3.7)) for the two modes, and 〈·〉
represents the expected value, which is an estimate from the available samples.

For the present system of modes, coherence-function dependence on St at x/D = 0
can be seen in figure 4(a). For low St, a strong coherence is observed between k−d and
k+T which signifies that the k−d /k

+
T resonance pair is active at these frequencies.
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As St increases, the coherence function decays for k−d /k
+
T while rising sharply for

k−p /k
+
T . This suggests a change in the resonance mechanism, as frequency increases,

towards a scenario where the k−p /k
+
T pair is dominant. The small coherence of the k+KH

mode (γ2 < 0.3) with the k− waves signifies its absence in the resonance mechanisms,
and for this reason, it is excluded from the forthcoming discussion.

The variation of mode amplitudes with St at x/D = 0, as shown in figure 4(b), tells
a similar story. At low St, the k+T amplitude decays with increasing St following the
trend of k−d ; but at high St, it grows with increasing St, following the trend of k−p , again
reflecting a change of the dominant resonant mechanisms with increasing frequency.

4.2. Reflection equations for nozzle exit plane

At the nozzle exit plane, the expansion coefficients of the k+T wave are related to
expansion coefficients of k− waves through complex reflection-coefficients as

a+T = Rd− a−d +Rp− a−p + ao. (4.2)

Here, Rd− a−d is the contribution to a+T that arises from reflection of a−d ; Rp− a−p is the
contribution from reflection of a−p ; ao groups all other contributions, e.g., reflections of
other waves or disturbances coming from within the nozzle.

To evaluate the reflection-coefficients Rd− and Rp−, following the procedure of Bendat

& Piersol (2011), we multiply (4.2) with both a−d
H

and a−p
H

and take the expected value,
giving

〈a+T a
−
d

H〉 = Rd−〈a−d a
−
d

H〉+Rp−〈a−p a−d
H〉+ 〈aoa−d

H〉, (4.3)

〈a+T a
−
p
H〉 = Rd−〈a−d a

−
p
H〉+Rp−〈a−p a−p

H〉+ 〈aoa−p
H〉. (4.4)

Contributions from the nozzle boundary layer disturbances and other wave reflections

are uncorrelated with the resonance dynamics, and thus we may assume 〈aoa−d
H〉 =

〈aoa−p
H〉 = 0. With this assumption, (4.3) and (4.4) can be solved, expressing the

reflection-coefficients, Rd− and Rp−, in terms of expansion coefficient correlations.

4.3. Reflection equations for turning point plane

We now present the system of equations used to calculate the reflection-coefficients at
the turning point location where the k+T reflects as k−d and k−p (figure 3). Following a
similar procedure to that of section 4.2, we can say that, at the turning point,

a−d = Rd− a
+
T + ao & a−p = Rp− a

+
T + ao, (4.5)

where Rd− and Rp− are the turning point reflection-coefficients.

Multiplying (4.5) with a+T
H

and taking the expected value gives,

〈a−d a
+
T

H〉 = Rd−〈a+T a
+
T

H〉+ 〈aoa+T
H〉 & 〈a−p a+T

H〉 = Rp−〈a+T a
+
T

H〉+ 〈aoa+T
H〉. (4.6)

With the assumption of 〈aoa+T
H〉 = 0, (4.6) can be solved for Rd− and Rp−.

5. Results and discussions

5.1. Reflection-coefficients at the resonance end locations

In the nozzle exit plane, the magnitudes and phases of the reflection-coefficients, Rd−

and Rp−, are presented as a function of St in figures 5(a) and 5(b). High magnitudes
for both the reflection-coefficients indicate strong reflections. We also observe that as St
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Figure 5: Reflection-coefficients. At the nozzle exit: Rd− and Rp− correspond to the reflection
of k−

d wave and k−
p wave respectively into the k+

T wave. At the turning point: Rd− and Rp−

correspond to the reflection of k+
T wave into the k−

d wave and k−
p wave respectively.

increases, | Rd− | decreases while | Rp− | decreases and then increases. The phase angles
for both reflection-coefficients are close to 180o indicating out-of-phase reflection.

At the turning point, the magnitudes and phases of the reflection-coefficients are
shown in figures 5(a) and 5(b) as well. From the local stability analysis, the k+T mode
is evanescent downstream of the turning point (see figure 1(b)). This implies perfect
reflection in the turning-point plane, as beyond here, the k+T mode cannot propagate
energy downstream. This is exactly what is found for the reflection-coefficients in the
turning-point plane i.e. | Rd− |∼ 1 & ∠Rd− ∼ 180o for the lower St (0.37 < St < 0.41);
and | Rp− |∼ 1 & 90 < ∠Rp− < 180o for the higher St (0.41 < St < 0.43).

5.2. Resonance-mechanism dependence on St

The results from sections 4 and 5.1 conclude that for the frequency range 0.37 < St <
0.41, it is the k−d /k

+
T pair of modes that resonate while for 0.41 < St < 0.43, it is the

k−p /k
+
T pair that resonate. The resonance mechanism switches near St = 0.415.

These two resonance mechanisms were proposed by Towne et al. (2017). For the lower
frequencies, St = 0.39 for instance, the saddle point at the turning point exists between
k−d and k+T modes, which means that the acoustic resonance at St = 0.39 is being led by
the k+T /k

−
d pair. This is exactly what we see in figures 4 and 5(a), where the k−d /k

+
T pair

of modes has strong coherence and large reflection-coefficient magnitudes.
For the reflections at the nozzle-exit plane at St = 0.39, the individual contributions of

k−d and k−p to k+T are better seen in figure 6(a) (see (4.2) for reference). The plot displays

the square magnitude of mode amplitudes for k+T (in yellow), as well as the contributions
of k−d and k−p (in blue and red, respectively) across consecutive LES realizations. Figure

6(a) demonstrates that k+T is primarily underpinned by reflection of k−d . Despite the high
magnitude of Rp− at the nozzle-exit plane (figure 5(a)), the contribution of the k−p is

much smaller than that of k−d , due its smaller amplitude (figure 4(b)).
For the higher frequencies, St = 0.42 for instance, the saddle point at the turning point

exists between k−p and k+T modes, hence the acoustic resonance is governed by the k+T /k
−
p

pair. This is also what we observe in figures 4 and 5(a). The individual contributions of
k−d and k−p to k+T in the figure 6(b) shows that k+T follows k−p much more closely than k−d
at this St. Hence, k+T is the direct reflection result of k−p at St = 0.42.
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(b) For St = 0.42

Figure 6: Contribution of k−
d and k−

p to k+
T at x/D = 0.

6. Conclusion

Resonating guided waves in the potential core of a M = 0.9 turbulent jet which lead
to tones previously observed in experiments and numerical simulations (Towne et al.
2017; Brès et al. 2018) have been studied. The resonating guided waves consisted of a
downstream-travelling duct-like wave (k+T ), an upstream-travelling duct-like wave (k−d ),
and an upstream-travelling discrete free-stream wave (k−d ).

Bi-orthogonal projection of LES data onto eigenmodes obtained from a linear stability
analysis based on the turbulent was used to provide amplitudes of the resonating waves
at the resonance end locations: the nozzle exit plane and downstream turning points.
The dynamics of the flow at resonance frequencies are well described by a rank-4 model,
comprising these neutrally stable guided waves and K-H instability waves. The reflection-
coefficients at the resonance end locations were computed under the assumption that
contributions from non-resonant modes are uncorrelated with the resonant modes. For
the range of tonal frequencies, 0.37 < St < 0.43, the mode amplitudes, coherence among
them, and reflection-coefficients were presented.

Depending on the frequency, either of the k− waves was found to be taking part in
the resonance loop i.e. for 0.37 < St < 0.41 (F1), the pair k−d /k

+
T was active while

for 0.41 < St < 0.43 (F2), the pair k−p /k
+
T was active. This frequency-dependence of

resonance mechanism had exactly been postulated by Towne et al. (2017) where it was
shown that the k+T mode forms a turning point, the saddle point where upstream- and
downstream-travelling waves exchange energy, with k−d mode in the F1 frequency range
and with k−p mode in the F2 frequency range.
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