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Screech tones in supersonic jets are underpinned by resonance between downstream-
travelling Kelvin–Helmholtz waves and upstream-travelling acoustic waves. Specifically,
recent works suggest that the relevant acoustic waves are guided within the jet and are
described by a discrete mode of the linearised Euler equations. However, the reflection
mechanism that converts downstream-travelling waves into upstream-travelling waves,
and vice versa, has not been thoroughly addressed, leading to missing physics within
most resonance models. In this work, we investigate the reflection and transmission of
waves generated by the interaction between a Kelvin–Helmholtz wave and a normal
shock in an under-expanded jet using a mode-matching approach. Both vortex-sheet and
finite-thickness shear-layer models are explored, quantifying the impact of the shear layer
in the reflection process. This approach could enable more quantitative predictions of
resonance phenomena in jets and other fluid systems.
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1. Introduction

Shock-containing shear flows involve a rich variety of phenomena including
shock–turbulence interaction (STI). In free shear layers, STI leads to an increase in
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turbulence levels and mixing downstream of the shock (Génin & Menon 2010). In
wall-bounded flows, in addition to the enhancement of turbulence, STI may also be
accompanied by boundary layer separation and the formation of a separation bubble
(Delery 1983; Dolling 2001; Clemens & Narayanaswamy 2014). The STI is also an
important feature of supersonic combustion in scramjets (Yang, Kubota & Zukoski 1993).
In imperfectly expanded propulsive jets, STI underpins the generation of broad-band shock
associated noise (Tanna 1977; Tam & Tanna 1982) and screech (Powell 1953; Tam, Seiner
& Yu 1986; Raman 1999; Edgington-Mitchell 2019).

Linear theory has been widely used to study the interaction between disturbance fields
and shocks. Ribner (1954) considered the interaction between a vorticity wave and a
normal shock. The analysis was later extended to consider STI, where a homogeneous
turbulence was modelled as a superposition of Fourier vorticity waves (Ribner 1955).
Moore (1954) considered the interaction between sound waves and an oblique shock, and
this work was extended by Mahesh et al. (1995) to study an isotropic field of acoustic
disturbances interacting with a shock. Later, Mahesh, Lele & Moin (1997) considered
the influence of entropy fluctuations on STI as well and Buttsworth (1996) derived
expressions for shock-induced vorticity, useful for the estimation of mixing enhancement.
The foregoing studies were all based on solution of the Rankine–Hugoniot relations.
The unsteady STI was converted into an equivalent steady-flow problem which did not
consider the reflection process associated with the incident turbulent disturbance but only
the transmission mechanism through the shock wave. A review of these studies and others
has been compiled by Andreopoulos, Agui & Briassulis (2000). More recently, Kitamura
et al. (2016) used rapid distortion theory to study the interaction between homogeneous
isotropic turbulence and a shock wave, and Chen & Donzis (2019) considered STI at
high turbulence intensities. Similarly to the works reported above, the authors mainly
focused on the turbulence amplification and modification of the turbulence length scales
downstream of the shock.

The reflection and transmission of acoustic, vorticity and entropy waves within a
convergent–divergent nozzle with and without a shock was studied by Marble & Candel
(1977). The study focused on compact disturbances, that is, with wavelengths larger than
the nozzle length, thus limiting the application to low frequencies. The inclusion of
non-compactness effects was considered by Stow, Dowling & Hynes (2002), who provided
a first-order correction for the phase of the reflection coefficient for higher frequencies.
The correction was extended to the transmission coefficient also by Goh & Morgans
(2011) and a further development was carried out by Duran & Moreau (2013) and Duran
& Morgans (2015), who extended the high-frequency correction to the amplitude of the
reflection and transmission coefficients in the case of planar and circumferential incident
waves, respectively. All of these works were motivated by the problem of combustion
noise and the role the reflected waves play on the onset of thermo-acoustic instability in
the combustion chamber of the burner–turbine–nozzle configuration of an aero-engine.

The problem we consider is motivated by the sound generated by imperfectly
expanded, supersonic jets and, in particular, the phenomenon known as screech, a
mechanistic explanation for which was first provided by Powell (1953). The mechanism
involves turbulent structures that are convected through the shock-cell structure; this
STI results in the generation of upstream-travelling sound waves. According to Powell’s
phenomenological description, when the phases of the upstream-travelling sound waves
and downstream-travelling turbulent structures are suitably matched, at the jet exit plane
and at the STI locations, resonance may occur. The downstream-travelling turbulent
structures considered important for screech are what are often referred to as coherent
structures.
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A large body of recent work has shown how coherent structures in turbulent jets, and
the sound they produce, can be modelled using linear theory (Jordan & Colonius 2013;
Schmidt et al. 2017; Towne, Schmidt & Colonius 2018; Cavalieri, Jordan & Lesshafft 2019;
Lesshafft et al. 2019; Nogueira et al. 2019; Edgington-Mitchell et al. 2021a). As shown
in these studies, downstream-travelling coherent structures are largely underpinned by
Kelvin–Helmholtz (K–H) instability. Powell (1953) assumed that the upstream-travelling
waves responsible for the feedback mechanism in screech generation were free-stream
acoustic waves, but this has been recently questioned. Shen & Tam (2002) suggested
that the upstream-travelling disturbance might comprise a family of guided jet modes,
first discussed by Tam & Hu (1989). This hypothesis has been recently confirmed in
studies by Gojon, Bogey & Mihaescu (2018) and Edgington-Mitchell et al. (2018), and
a simplified screech-tone prediction model based on this idea has been developed and
validated by Mancinelli et al. (2019a). In the simplest formulation of the screech-tone
model, the spatial growth of the K–H mode is ignored, and a phase-matching criterion
is sufficient to provide a reasonable prediction of screech-tone frequencies. A similar
resonant mechanism was proposed for subsonic compressible jets (Towne et al. 2017),
cavity flows (Rossiter 1964; Rowley, Colonius & Basu 2002) and impinging jets (Tam &
Ahuja 1990; Bogey & Gojon 2017). The reflection of waves is implicitly considered in all
these mechanisms, but it is rarely studied in detail. In more complete screech-frequency
prediction models (Mancinelli et al. 2019b, 2021), where the spatial growth rates of the
upstream- and downstream-travelling waves are included, knowledge of the reflection
coefficients in the jet exit plane and at the location of STI is required.

In this paper, we investigate the interaction between a downstream-travelling K–H
wave and a normal shock and compute the amplitude and phase of the reflected
upstream-travelling guided wave active in the screech loop using a mode-matching
approach. We consider vortex-sheet (V-S) and finite-thickness (F-T) flow models, which
elucidate the role of shear in the reflection and transmission processes. The efficiency of
the mode-matching technique in the presence of a discontinuity, as is the shock in the flow
we consider herein, has been already shown by Gabard & Astley (2008) for the estimation
of the sound attenuation in a lined duct. More recently, a mode-matching approach has
been used by Dai (2020, 2021) to calculate the reflection and transmission coefficients in
a duct flow in the presence of a cavity. Consistent with these works, we use linear theory
to describe the flow dynamics upstream and downstream of the shock and then match the
solutions across the discontinuity.

The paper is organised as follows. The general modelling framework, including the jet
models adopted and the mode-matching approach used to calculate the reflection and
transmission coefficients, is presented in § 2. Results involving the reflection-coefficient
calculation, its dependence on the frequency and jet-flow conditions and the reflected
and transmitted pressure fields are presented and discussed in § 3. The paper closes with
concluding remarks in § 4.

2. Modelling framework

We here present the shock and jet-dynamics modelling and the procedure adopted to
calculate the reflection and transmission coefficients. We consider an axisymmetric,
shock-containing supersonic jet. It is known that the organised structure of the jet plume
of imperfectly expanded supersonic jets is shaped by oblique shocks and expansion waves
(see the many flow visualisations presented in Powell 1953; Powell, Umeda & Ishii 1992;
Panda 1999; Mercier, Castelain & Bailly 2017). Normal shocks are, however, found in the
form of Mach disks for highly imperfectly expanded jets and often encountered in the
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Figure 1. Schematic representation of the jet model: (a) sketch of the shock-containing jet, (b) control
volume representation with identification of the normal to the inlet and outlet surfaces.

jet plume of convergent–divergent nozzles and impinging jets (Edgington-Mitchell 2019).
Despite many years of research activity (see the many works by Powell 1953; Tam & Tanna
1982; Suzuki & Lele 2003; Lele 2005; Edgington-Mitchell et al. 2021b), a clear picture
of the way by which instability waves interact with shock cells to generate screech is still
far from being reached. With the aim of keeping the model as simple as possible and in
the absence of a clear and unambiguous description of the interaction between instability
and shock waves, the shock is herein assumed to be normal, thus allowing the use of
the locally parallel-flow assumption both upstream and downstream of the shock. This
assumption implies that the linear response to shock oscillations induced by the incoming
instability wave, which is a typical non-parallel feature, is not considered. A sketch of the
shock-containing jet and the cylindrical reference system used in this paper are depicted
in figure 1. We consider a K–H wave with unitary amplitude, I = 1, incident to a shock.
The interaction of the incoming wave with the shock generates a collection of reflected
and transmitted modes upstream and downstream of the shock, respectively. The sections
upstream and downstream of the shock are hereinafter denoted 1 and 2 and the reflection
and transmission coefficients of each wave moving away from the shock are indicated with
RnR and TnT , respectively. The state vector is q∗ = {ρ∗, u∗

x , u∗
r , u∗

θ , T∗, p∗}, where ρ is the
flow density, u the velocity, T the temperature and p the pressure. The flow variables are
normalised by the nozzle diameter D and the ambient density and speed of sound ρ∞ and
c∞, respectively, thus leading to a non-dimensional state vector q.

2.1. Shock model
The flow regions upstream and downstream of the shock are well described by a locally
parallel model. In order to connect these two regions, we impose the conservation laws of
mass, momentum and energy through the shock. This is done by dividing the shock into
infinitesimal control volumes dV of length Δx → 0 such that the flux terms through the
top and bottom surfaces are zero (see figure 1) and enforcing mass, momentum and energy
conservation for the control volume, leading to the system of equations∫

S1

ρ∗u∗ · n dS +
∫

S2

ρ∗u∗ · n dS = 0,∫
S1

ρ∗u∗ (u∗ · n
)

dS +
∫

S1

p∗n dS +
∫

S2

ρ∗u∗ (u∗ · n
)

dS −
∫

S2

p∗n dS = 0,∫
S1

ρ∗ e∗u∗ · n dS +
∫

S2

ρ∗ e∗u∗ · n dS = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1a–c)
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where e∗ = h∗ + 0.5(u∗2
x + u∗2

r + u∗2
θ ) is the total specific energy with the enthalpy

expressed as h∗ = cpT∗, cp is the specific heat capacity, S is the control volume surface
and n the normal to the surface. Normalising the flow variables, performing the Reynolds
decomposition,

q (x, r, θ, t) = q̄ (r) + q′ (x, r, θ, t) , (2.2)

and substituting into (2.1a), removing the mean and linearising, the linearised jump
equations for the shock become

ū1xρ1 + ρ̄1u1x = ū2xρ2 + ρ̄2u2x,

p1 + 2ρ̄1ū1xu1x + ū2
1xρ1 = p2 + 2ρ̄2ū2xu2x + ū2

2xρ2,

u1r = u2r,

u1θ = u2θ ,

T1 + ū1xu1x = T2 + ū2xu2x,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.3a–e)

where we removed the primes from the fluctuating variables for notational simplicity. We
note that the adiabatic relation between the thermodynamic variables is implicit in the
linearised operator. The perturbations upstream and downstream of the shock are modelled
using the normal mode ansatz

q′ (x, r, θ, t) = q̂ (r) exp(i (kx + mθ − ωt)), (2.4)

where k is the wavenumber along the axial direction, m is the azimuthal order and
ω = 2πStMa is a non-dimensional frequency, with St = fD/Uj the nozzle-diameter-based
Strouhal number, Ma = Uj/c∞ the acoustic Mach number, f the frequency, D the nozzle
diameter and Uj the fully expanded jet velocity. Considering that the only incident wave is
the K–H wave, the system of (2.3a) can be written in a compact form as follows:

A1

⎛⎝Iq̂1I +
∞∑

nR=1

RnR q̂1R,nR

⎞⎠ = A2

∞∑
nT=1

TnT q̂2T,nT
, (2.5)

where q̂1I , q̂1R,nR
and q̂2T,nT

are the incident, reflected and transmitted waves moving
upstream and downstream of the shock, respectively, and

A1 =

⎡⎢⎢⎢⎣
ū1x ρ̄1 0 0 0 0
ū2

1x 2ρ̄1ū1x 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 ū1x 0 0 1 0

⎤⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎣
ū2x ρ̄2 0 0 0 0
ū2

2x 2ρ̄2ū2x 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 ū2x 0 0 1 0

⎤⎥⎥⎥⎦ (2.6a,b)

are matrices containing information about the mean flow upstream and downstream of the
shock. The vector of eigenfunctions q̂1I , q̂1R,nR

and q̂2T,nT
are computed using either a V-S

or F-T model (see § 2.3). The procedure used to ascertain whether a wave is reflected or
transmitted is described in § 2.3.3.

2.2. Reflection- and transmission-coefficient calculation
Equation (2.5) is exact if a complete basis of jet modes is considered. In order to estimate
the reflection- and transmission-coefficient values, we truncate the sum to a finite number
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of modes NR and NT and we introduce an error density ε(r) for each conservation equation.
Equation (2.5) can then be written as

A1

⎛⎝Iq̂1I +
NR∑

nR=1

RnR q̂1R,nR

⎞⎠ − A2

NT∑
nT=1

TnT q̂2T,nT
= ε, (2.7)

where ε(r) is the error density vector and ε → 0 if the number of modes NR and NT → ∞.
The reflection and transmission coefficients RnR and TnT associated with each mode are
estimated by a least-mean-square minimisation of the error densities, formalised as

[
Ropt,nR, Topt,nT

] = min
RnR ,TnT ∈C

∫ ∞

0
|ε2 (r) | dr︸ ︷︷ ︸

F

. (2.8)

The objective function F corresponds to the sum of the absolute value of the squared
error densities associated with each conservation equation integrated along the radial
direction. To solve the minimisation problem in (2.8), we write (2.7) in a matrix form

[
A1Q̂1R − A2Q̂2T

] {R
T

}
= −IA1q̂1I + ε, (2.9)

where Q̂1R = [q̂1R,1, . . . , q̂1R,NR
] and Q̂2T = [q̂2T,1, . . . , q̂2T,NT

] are the matrices of the
eigenfunctions and R and T are the vectors of the reflection and transmission coefficients,
respectively. We then define{

R
T

}
= X ,

[
A1Q̂1R − A2Q̂2T

] = B, y = A1q̂1II, (2.10)

so that (2.9) can be written in the compact form ε = BX + y. The solution of (2.8) is
obtained by finding the stationary point of F by setting its gradient to zero

dF
dX

= d
(
εT W ε

)
dX

= BTW BX + BTW y = 0, (2.11)

which leads to

X = − (
BTW B

)−1
BTW y, (2.12)

where B|+W = (BTW B)−1BTW is the weighted pseudo-inverse matrix and W is a
diagonal matrix of elements dr.

2.3. Jet models
We here present a local description of the jet dynamics using the parallel-flow linear
stability theory. This theory is applied to two different models: a F-T flow model and a
simplified cylindrical vortex sheet. Both are governed by the linearised Euler equations
(LEE) (see Appendix A).
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2.3.1. Finite-thickness model
Writing the LEE exclusively in terms of pressure, the compressible Rayleigh equation
(Schmid & Henningson 2001)

∂2p̂
∂r2 +

(
1
r

− 2k
ūxk − ω

∂ ūx

∂r
− γ − 1

γ ρ̄

∂ρ̄

∂r
+ 1

γ T̄
∂T̄
∂r

)
∂ p̂
∂r

−
(

k2 + m2

r2 − (ūxk − ω)2

(γ − 1) T̄

)
p̂ = 0, (2.13)

is obtained, where γ is the specific heat ratio for a perfect gas. The solution of the linear
stability problem is obtained by specifying a real or complex frequency ω and solving
the resulting augmented eigenvalue problem k = k(ω), with p̂(r) the associated pressure
eigenfunction. The eigenvalue problem is solved numerically by discretising (2.13) in the
radial direction using the Chebyshev polynomials and by imposing Dirichlet boundary
conditions at the domain boundaries. A mapping function proposed by Lesshafft &
Huerre (2007) is used to non-uniformly distribute the 500 grid points to efficiently resolve
the shear layer of the jet and to ensure convergence of the computed eigenmodes. The
eigenfunctions ûi, ρ̂ and T̂ are calculated from the knowledge of p̂ (see Appendix A). The
eigenfunctions are normalised such that ∠p̂(r) = 0 for r = 0 and to have unitary energy
norm, which, following Chu (1965) and Hanifi, Schmid & Henningson (1996), is defined
as

E = 1
2

∫ 2π

0

∫ ∞

0

(
ρ̄
(
|ûx|2 + |ûr|2 + |ûθ |2

)
+ γ − 1

γ

T̄
ρ̄

|ρ̂|2 + ρ̄

γ T̄
|T̂|2

)
rdr dθ. (2.14)

The derivation of the energy norm is provided in Appendix B.

2.3.2. Vortex-sheet model
The V-S model is an inviscid idealisation of the jet where the infinitely thin V-S separates
the interior flow and the outer quiescent fluid, resulting in a jet with a mean top-hat profile.
The V-S was used by Lessen, Fox & Zien (1965) and Michalke (1970) to study the stability
properties of a compressible jet. We recently showed that the standard V-S model for
free jets, which was used in the previous studies, does not support free-stream acoustic
waves as discrete modes, as required for the mode-matching procedure. To obtain a discrete
representation of free-stream acoustic modes, we use the dispersion relation of a confined
jet with the radial distance of the boundary (rMAX) sufficiently distant from the jet in
order to recover the same dynamical properties of a free jet. The analysis of this surrogate
problem allowed us to include the free-stream acoustic modes in the description of the jet
dynamics (for more details the reader can refer to Mancinelli et al. 2022). We herein use
this confined version of the V-S, whose dispersion relation D(k, ω; Ma, T, m, rMAX) = 0
is,

1(
1 − kMa

ω

)2 + 1
T

Im

(γi

2

)
Km

(γo

2

)
− zIm

(γo

2

)
γo

2
Km−1

(γo

2

)
+ mKm

(γo

2

)
+ z

(γo

2
Im−1

(γo

2

)
− mIm

(γo

2

))
γi

2
Im−1

(γi

2

)
− mIm

(γi

2

) = 0,

(2.15)
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with

γi =
√

k2 − 1
T

(ω − Mak)2,

γo =
√

k2 − ω2,

⎫⎪⎬⎪⎭ (2.16a)

where I and K are modified Bessel functions of the first and second kinds, respectively,
T = Tj/T∞ is the jet-to-ambient temperature ratio such that the relation between the jet
and the acoustic Mach numbers is Ma = Mj

√
T and z = Km(γorMAX)/Im(γorMAX). The

branch cut in the square root of (2.16) is chosen such that −π/2 ≤ arg(γi,o) < p/2. The
dispersion relation in (2.15) for a confined jet differs from the unconfined one for a free
jet in the additional terms containing z(rMAX). Following Mancinelli et al. (2022), we
herein use rMAX = 100 in order to avoid any effect of the boundary on the eigenmodes.
Frequency/wavenumber pairs (ω, k) that satisfy (2.15) define eigenmodes of the vortex
sheet for given values of m, Ma, T and rMAX . To find these pairs, similarly to the F-T model,
we specify a frequency ω (real or complex) and compute the associated eigenvalues k.
Eigenvalues are computed using a root finder based on the Levenberg–Marquardt method
(Levenberg 1944; Marquardt 1963).

After imposing bounded solution for r = 0 and a soft-wall boundary condition at r =
rMAX , the solution for the pressure in the inner and outer flows is

p̂i (r) = BiIm (γir) r ≤ 0.5

p̂o (r) = Co (−zIm (γor) + Km (γor)) r > 0.5,

}
(2.17a–b)

where Bi and Co are constants fixed in order to ensure pressure continuity at the V-S
location r = 0.5. The eigenfunctions of the other flow variables are calculated from
the knowledge of p̂i,o(r) by exploiting the Fourier-transformed LEE (A4f ). The same
eigenfunction normalisation procedure described for the F-T model is used for the V-S
model as well.

2.3.3. Identification of reflected and transmitted waves
There are two types of waves which appear due to the scattering of the K–H wave at
the shock: upstream-travelling reflected waves in region 1, and downstream-travelling
transmitted waves in region 2 (see figure 1). Following Towne et al. (2017), we use
the terms downstream and upstream travelling to designate the direction of the energy
transfer. This property can be characterised using the Briggs–Bers criterion by looking
at the asymptotic behaviour of k(ω) at large ωi (Briggs 1964; Bers 1983). The wave is
downstream travelling if

lim
ωi→+∞ ki = +∞, (2.18a)

and upstream travelling if

lim
ωi→+∞ ki = −∞, (2.18b)

where the subscript i stands for the imaginary part of the variable. The downstream-
and upstream-travelling waves are denoted hereinafter with the superscript + and −,
respectively.
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2.3.4. Mean flow
The conditions upstream of the shock in the case of the V-S are provided by

r ≤ 0.5

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ū1x = Ma1

p̄1 = ρT
γ

ρ̄1 = ρ

T̄1 = T
γ − 1

(2.19a) r > 0.5

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ū1x = 0

p̄1 = 1
γ

ρ̄1 = 1

T̄1 = 1
γ − 1

,

(2.19b)

where ρ = ρj/ρ∞ is the jet-to-ambient density ratio.
In the case of finite thickness, we use the hyperbolic tangent function reported in

Lesshafft & Huerre (2007) for the velocity profile upstream of the shock,

ū1x = 1
2

Ma1

(
1 + tanh

(
R
4δ

(
R
r

− r
R

)))
, (2.20)

where δ is the shear-layer momentum thickness and R = 0.5 is the nozzle radius.
Consistent with particle image velocimetry results presented in Mancinelli et al. (2021) for
an under-expanded supersonic jet with jet Mach number Mj1 = 1.1 and temperature ratio
T ≈ 0.81, we choose a shear-layer thickness R/δ = 10. Denoting the dimensional variables
with the superscript ∗ and the fully expanded variables with the subscript j, the mean
density profile is calculated as the inverse of the mean temperature profile, ρ∗(r)/ρj =
(T∗(r)/Tj)

−1, where the mean temperature is calculated using the Crocco–Busemann
relation (Michalke 1984)

T∗ (r)
Tj

= T∞
Tj

+
(

1 − T∞
Tj

)
u∗

x (r)
Uj

+ (γ − 1) M2
j

u∗
x (r)
Uj

1
2

(
1 − u∗

x (r)
Uj

)
. (2.21)

The mean flow downstream of the shock can then be determined from the upstream
conditions using the jump equations of normal shocks

Mj2 =
√√√√ M2

j1 (γ − 1) + 2

2γ M2
j1 − (γ − 1)

,

p̄2

p̄1
=

2γ M2
j1 − (γ − 1)

γ + 1
,

ρ̄2

ρ̄1
=

(γ + 1) M2
j1

(γ − 1) M2
j1 + 2

,

T̄2

T̄1
=

(
1 + γ − 1

2
M2

j1

)(
2γ

γ − 1
M2

j1 − 1
)

M2
j1

(
2γ

γ − 1
+ γ − 1

2

) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.22a–d)

The mean-flow profiles upstream and downstream of the shock in the case of V-S and
F-T models for the flow conditions listed above are represented in figure 2. The presence of
the shock wave generates a mean pressure gradient along the radial direction downstream
of the shock. This ∂ p̄/∂r induces a mean radial velocity ūr, thus making the flow slowly
diverging. The evaluation of this induced radial velocity in the case of a F-T model is
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Figure 2. Mean flow upstream and downstream of the shock for the V-S and F-T models for Mj1 = 1.1: solid
blue lines refer to upstream conditions, dashed red lines to downstream ones. (a) The V-S model, (b) F-T model:
(i) axial velocity, (ii) temperature, (iii) density, (iv) pressure.

reported in Appendix C, where we show that the induced mean radial velocity is small
compared with the axial velocity component. We also point out that the transmission and
reflection mechanisms occur locally and hence they are not affected by the flow evolution
far away from the shock.

3. Results

In this section we present the results of the reflection-coefficient calculation obtained
by modelling the jet dynamics with both the V-S and F-T models. We first consider
a Strouhal number St = 0.68, a jet Mach number Mj1 = 1.1 and a temperature ratio
T ≈ 0.81 (corresponding to an acoustic Mach number Ma1 ≈ 0.987), which results in a jet
Mach number Mj2 = 0.91 and an acoustic Mach number Ma2 ≈ 0.84 downstream of the
shock. These upstream jet conditions and Strouhal number are selected to match conditions
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for which screech has been experimentally observed by Mancinelli et al. (2019a, 2021).
Due to the axisymmetric nature of the resonance mode, we here study the azimuthal
mode m = 0. Furthermore, we focus on the reflection coefficient of the upstream-travelling
guided mode of the second radial order given that this mode has been proven to be the
closure mechanism for axisymmetric screech modes (see Edgington-Mitchell et al. 2018;
Mancinelli et al. 2019a, 2021). Finally, for the F-T model, we explore the variation of the
reflection coefficient as a function of both St and Mj.

3.1. Incident, reflected and transmitted waves
First, we identify the reflected and transmitted waves generated by the interaction of the
incident K–H wave with the shock discontinuity for both the V-S and F-T models upstream
and downstream of the shock, respectively. Figure 3 shows the V-S eigenspectrum in the
complex-k plane upstream of the shock. For the sake of brevity and clarity of the figure, in
the present manuscript we show eigenvalues only for real ω (see Mancinelli et al. (2022)
for the corresponding eigenspectrum for ω ∈ C). Several distinct families of modes can be
identified. The V-S model supports one convectively unstable mode, the K–H mode, which
is denoted hereinafter kKH . The unstable kKH wave has a complex conjugate and both
eigenvalues have positive phase and group velocities according to the criteria (2.18). The
V-S model also supports guided modes, i.e. modes that use the jet as a wave guide. These
modes, hereinafter denoted kp, belong to a hierarchical family of waves identified by their
azimuthal and radial orders m and nr, respectively. According to Towne et al. (2017), these
modes are guided or completely trapped inside the jet depending on the St and the radial
order considered. Specifically, we observe evanescent kp waves for nr = 1 with supersonic
negative phase speed. The wave associated with ki > 0 is a downstream-travelling wave,
whereas the wave with ki < 0 is upstream travelling. The kp mode for nr = 2 is propagative
and upstream travelling and has a slightly subsonic negative phase speed. All the k±

p modes
with nr ≤ 2 have support both inside and outside of the jet for the St analysed. The k+

p
modes for nr > 2 represent acoustic waves trapped inside the jet due to total reflection
at the V-S, which effectively behaves as a soft-walled duct (Towne et al. 2017; Martini,
Cavalieri & Jordan 2019). Finally, we find propagative and evanescent acoustic modes,
which are hereinafter denoted ka. Among them, modes lying on the real and imaginary
axes with kr < 0 and ki < 0, respectively, are upstream-travelling modes.

Figure 4 shows the eigenspectrum upstream of the shock computed using linear stability
theory for a shear layer with finite thickness R/δ = 10. In addition to the mode families
supported by the V-S, the F-T model supports critical-layer modes, denoted hereinafter
kcr. These modes have positive, subsonic phase and group velocities and lie on the real
axis. Their spatial support is concentrated in the critical layer of the jet, i.e. the region
of the jet where the phase speed equals the local mean-flow velocity (Tissot et al. 2017).
Critical-layer modes with small wavenumbers are characterised by a spatial support mainly
concentrated in the core of the jet and possess a phase speed close to the mean jet velocity,
whereas kcr modes with larger wavenumbers are mostly concentrated in the shear layer
and have a phase-speed value which decreases as the spatial support of the mode moves
more and more outside of the jet. To summarise, both the V-S and F-T models support
two families of reflected waves upstream of the shock: (i) guided jet modes and (ii)
propagative and evanescent acoustic modes. Among the guided modes, we may distinguish
the evanescent k−

p mode with nr = 1 and the propagative k−
p mode with nr = 2. In the

remainder of this paper, we focus our attention on the reflection coefficient between the
K–H wave and the propagative k−

p mode with nr = 2, since this interaction is responsible
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Figure 3. Eigenspectrum upstream of the shock obtained using the V-S model for azimuthal mode m = 0,
T ≈ 0.81, Mj1 = 1.1 and ω ∈ R. Blue 
 represent k+

KH and k∗+
KH waves, red ◦ represents propagative k−

p mode
with nr = 2, black

�
represent evanescent k±

p modes with nr = 1, green � represent k+
p modes with nr ≥ 2,

magenta ∗ represent k±
a waves. Dashed lines refer to the sonic speed ±c∞. Incident and reflected waves are

indicated with arrows and labelled.
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Figure 4. Eigenspectrum upstream of the shock obtained using the F-T model for azimuthal mode m = 0,
T ≈ 0.81, Mj1 = 1.1 and ω ∈ R. Markers and colours to identify the modes are the same used in figure 3
in the case of the V-S. The modes that are only supported by the F-T model, that is the k+

cr modes, are here
indicated by cyan ×. Dashed lines refer to the sonic speed ±c∞. Incident and reflected waves are indicated
with arrows and labelled.

for the screech resonance at this frequency and Mach number (Edgington-Mitchell et al.
2018; Mancinelli et al. 2019a, 2021; Nogueira et al. 2022).

We now consider the eigenspectrum downstream of the shock with the aim of
identifying the transmitted modes for both the V-S and F-T models. Figure 5 shows the
eigenspectrum obtained using the V-S. According to Towne et al. (2017), in the subsonic
regime for 0.82 ≤ M < 1 the guided modes are characterised by two upstream-travelling
branches delimited by two saddle points in the kr-St plane: one branch characterised by
a larger negative phase speed close to the ambient speed of sound, the above-defined
k−

p , and one with a lower phase-speed absolute value, herein denoted k−
d . Similar to the

eigenspectrum upstream of the shock, we may identify the k+
KH wave and its complex
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Figure 5. Eigenspectrum downstream of the shock obtained using the V-S model for ω ∈ R, azimuthal mode
m = 0, T ≈ 0.85 and Mj2 = 0.91 (which corresponds to Ma2 = 0.84): (a) global view, (b) zoom around the
origin. Blue 
 represent k+

KH and k∗+
KH waves, red ◦ represents propagative k−

d mode with nr = 1, black
�

represent evanescent k±
p modes with nr = 1, green � represent k±

p modes with nr ≥ 2, magenta ∗ represent k±
a

waves. Dashed lines refer to the sonic speed ±c∞. Transmitted waves are indicated with arrows and labelled.

conjugate k∗+
KH , the downstream- and upstream-travelling kp waves with nr = 1, which are

evanescent and have supersonic negative phase speed at this frequency, and the k±
a modes.

As outlined in Mancinelli et al. (2022), propagative, downstream-travelling acoustic modes
are not found in the vicinity of the sonic line due to numerical issues in the root-finder
algorithm. We show in Appendix D that these modes are not relevant for the determination
of the reflection coefficient. We then locate the upstream-travelling propagative k−

d wave
for nr = 1, which has a duct-like behaviour (Towne et al. 2017), and the evanescent k±

p
waves with nr ≥ 2, which behave like modes in a soft duct as well at this frequency. In this
regard, we note that the kp eigenvalues with ki > 0 are associated with k+ waves, whereas
the eigenvalues with ki < 0 are associated with k− modes.

Figure 6 shows the eigenspectrum downstream of the shock computed using a F-T
model. Unlike those computed by the V-S, the evanescent guided modes for nr > 1
bend towards the supersonic phase-speed region as nr increases and eventually merge
with the evanescent free-stream acoustic modes for nr > 4. Additionally, we observe
the k+

cr waves that are not supported by the V-S. To summarise, within the V-S model,
possible downstream-travelling transmitted modes are: (i) the K–H mode and its complex
conjugate, (ii) the evanescent guided mode of first radial order with supersonic phase
speed, (iii) the evanescent trapped modes of higher radial order with subsonic phase speed
and (iv) the acoustic modes. For the F-T model, in addition to the transmitted modes listed
above for the V-S, we include the critical-layer modes. For this flow model, unlike the
V-S model and consistent with the eigenspectrum shown in figure 6, we use evanescent k+

p
waves on the transmitted side up to the radial order nr = 4, that is, before this mode branch
merges with the evanescent k+

a modes and become no longer distinguishable. A summary
of the modes involved in the reflection coefficient computation is reported in table 1.

Examples of the normalised pressure eigenfunctions of the waves upstream and
downstream of the shock are reported in figure 7. For the V-S (figure 7a), the incident and
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Figure 6. Eigenspectrum downstream of the shock obtained using the F-T model for ω ∈ R, azimuthal mode
m = 0, T ≈ 0.85 and Mj2 = 0.91 (which corresponds to Ma2 = 0.84): (a) global view, (b) zoom around the
origin. Markers and colours are the same as used in figure 5 to identify the modes in the case of the V-S. The
modes that are only supported by the F-T model, that is the k+

cr modes, are here indicated by cyan ×. Dashed
lines refer to the sonic speed ±c∞. Transmitted waves are indicated with arrows and labelled.

Vortex sheet Finite thickness

Incident k+
KH k+

KH

Reflected propagative k−
p with nr = 2 propagative k−

p with nr = 2
evanescent k−

p with nr = 1 evanescent k−
p with nr = 1

propagative and evanescent k−
a propagative and evanescent k−

a

Transmitted k+
KH and k∗+

KH k+
KH and k∗+

KH
evanescent k+

p with nr ≥ 1 evanescent k+
p with nr ≥ 1

propagative and evanescent k+
a propagative and evanescent k+

a
— k+

cr

Table 1. Summary of the eigenmodes supported by the V-S and F-T models involved in the reflection
coefficient computation.

transmitted K–H waves show a peak at the V-S location and the reflected waves, that is k−
p

and k−
a modes, have support both inside and outside the jet. We note that, although there

is no energy loss at r = rMAX as a consequence of the imposition of a soft-wall boundary
condition, the energy of ka modes reflected back cannot be transferred to the other discrete
modes since the flow is locally parallel. On the transmitted side downstream of the shock,
while the evanescent k+

p wave with nr = 1 has a support both in the inner and outer part
of the jet, the transmitted k+

p modes with nr > 1 show a spatial support concentrated
inside the jet, consistent with their identity as acoustic waves trapped within the jet core.
Examples of the pressure eigenfunctions of the waves upstream and downstream of the
shock computed using the F-T model are shown in figure 7(b). The incident K–H mode
and the reflected k−

p and k−
a have a similar shape to that found using the V-S model.
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Figure 7. Pressure eigenfunctions for m = 0 and St = 0.68 computed using (a) the V-S model and (b) the F-T
model. The colours are the same as those used in figures 3, 4, 5 and 6 to identify the different mode families
upstream and downstream of the shock, respectively. (i) Incident and reflected waves upstream of the shock for
Mj = 1.1 and T ≈ 0.81: solid blue line refers to the incident k+

KH wave, dashed red line to the propagative k−
p

wave with nr = 2, dotted black line to the evanescent k−
p mode with nr = 1, dash-dotted magenta line to the

propagative k−
a wave. (ii) Transmitted waves downstream of the shock for Mj2 = 0.91 and T ≈ 0.85: solid blue

line refers to the transmitted k+
KH mode, dotted black line to the evanescent k+

p with nr = 1, dashed green line
to the evanescent k+

p with nr = 2, dash-dotted magenta line to the propagative k+
a wave, solid and bold cyan

lines to k+
cr modes.

As mentioned above, k+
cr modes have eigenfunctions with a spatial support concentrated

either inside of the jet or in the shear layer depending on the wavenumber value considered.
The spatial support of the critical-layer modes moves to larger r and the phase velocity Uφ

decreases as |kcr| increases.
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Figure 8. Evolution of the normalised objective function as a function of the number of modes: (a) V-S, (b)
F-T model. Markers and colours are the same as those used to identify the modes in the eigenspectra in figures 3
and 5 for the V-S and figures 4 and 6 for the F-T model.

3.2. Reflection coefficient
Second, we present the reflection-coefficient values calculated by minimising the error
objective function F in (2.8) via the pseudo-inverse solution (2.12). Figure 8 shows
the evolution of the objective function F as a function of the number of reflected and
transmitted modes n = nR + nT for both the V-S and F-T models. Here, F is normalised
so as to have unitary value when the sole incident K–H wave is considered in the
minimisation algorithm, thus allowing us to quantify the relevance of the modes added
in the computation in terms of error reduction. We here make a convergence analysis
showing how the objective function changes by adding reflected and transmitted modes. In
the absence of any unquestionable criterion allowing us to know a priori the relevance of
each mode in the reflection/transmission dynamics, we choose to add modes as a function
of the family they belong to. For each mode family, waves are added by increasing |k|.
Specifically, we first add in the calculation the reflected waves, that is the k−

p and k−
a mode

families, and then we add the transmitted modes downstream of the shock, that is k+
KH

and its complex conjugate, the k+
p modes for nr ≥ 1, the k+

a modes and the k+
cr waves

in the case of the F-T model, for a total number of modes N = NR + NT = 800. The
final results are independent of the mode arrangement. The objective function remains
approximately constant when reflected waves are added. The transmitted K–H mode
provides a significant decay in the cost function, which indicates that it has an important
role in the reflection/transmission mechanism, as the impinging and transmitted K–H
modes have a similar structure. For the V-S, the addition of the other transmitted modes
has a small impact on the cost functional, which saturates at a value of ≈10−2. On the
contrary, for the F-T model, the addition of critical-layer modes produces an important
reduction of the cost function, which saturates at a value of 5 × 10−3, lower than that
observed in the case of the V-S.

Figure 9 shows the evolution of the amplitude and phase of the reflection coefficient
associated with the upstream-travelling guided mode of second radial order as a function of
the number of modes n obtained using the V-S model. On the reflected side, the significant
drop of |R| observed when k−

a modes are added is due to propagative acoustic modes.
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Figure 9. Evolution of the reflection coefficient computed using the V-S as a function of the modes considered
in the calculation (markers and colours are the same as those used to identify the modes in the eigenspectra in
figures 3 and 5): (a) amplitude, (b) phase. Blue dotted lines indicate ±π in the phase plot.

Similar to the objective function in figure 8(a), both the amplitude and phase of the
reflection coefficient undergo a significant jump when modes on the transmitted side are
included in the calculation. Specifically, the solution does not drastically change after the
inclusion of the k+

KH mode and remains approximately constant. The solution converges to
5.8 × 10−3 and −0.38 for the amplitude and phase, respectively.

The evolution of the amplitude and phase of the reflection coefficient as a function
of n in the case of the F-T model is shown in figure 10. Similar to the V-S model, we
see a significant change in the value of both amplitude and phase when modes on the
transmitted side are included in the calculation. Consistent with what we observed in the
objective function trend, the addition of the k+

cr modes plays an important role in the
determination of the reflection coefficient. Specifically, a significant drop in amplitude
occurs for critical-layer modes with 5.5 ≤ |k| ≤ 21, after which both the amplitude and
phase values remain approximately constant. These are modes with wavelength in the
range ≈ [0.3D, D] and, hence, 6 to 20 times the shear-layer thickness. Their phase speed
is ≈ 0.2Uj ≤ Uφ ≤ 0.75Uj, and they are mostly concentrated in the centre of the shear
layer, as shown in figure 11.

A summary of the reflection-coefficient values obtained for both flow models is reported
in table 2. A large discrepancy between the V-S and F-T model is found for both the
amplitude and phase of the reflection coefficient. This result suggests that the presence
of a finite thickness and the associated shear-layer dynamics, which cannot be described
using a vortex sheet, plays an important role in the reflection/transmission mechanism
and needs to be taken into account to perform a reliable estimation of the reflection
coefficient.

3.2.1. Reflected and transmitted pressure fields
The reflected and transmitted pressure fields for the flow condition investigated above
using a F-T model are here reconstructed in the x–r plane. Using the normal-mode ansatz
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Figure 10. Evolution of the amplitude and phase of the reflection coefficient computed using the F-T model
as a function of the number of modes considered. Markers and colours are the same as those used in figures 4
and 6 to identify the mode families. (a) amplitude, (b) phase. Blue dotted lines indicate ±π in the phase plot.
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|û x(

r)
|
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Figure 11. Normalised eigenfunctions of k+
cr modes computed using the F-T model as a function of

wavenumber k and radial distance r: (a) pressure, (b) axial velocity, (c) radial velocity.

Reflection-coefficient values
Amplitude Phase

Vortex sheet (V-S) 0.0058 −0.38
Finite thickness (F-T) 0.02 1.5

Table 2. Summary of the reflection-coefficient values associated with the upstream-travelling guided mode of
second radial order generated by the interaction between an incident K–H wave on a shock. Results obtained
using both the V-S and F-T models to describe the jet dynamics are reported.
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Figure 12. Reconstruction of the reflected fields in the x − r plane for a shock discontinuity located at x = 0:
(a) k−

p mode with nr = 2, (b) k−
p mode with nr = 1, (c) propagative k−

a wave, (d) evanescent k−
a wave, (e) total

field.

(2.4), the reflected and transmitted fields are given by

pR (x, r, θ) =
NR∑

nR=1

RnRp̂1R,nR exp(i (knRx + mθ)), (3.1a)

pT (x, r, θ) =
NT∑

nT=1

TnT p̂2T,nT exp(i (knTx + mθ)). (3.1b)

We set x = 0 to be the location of the shock discontinuity, so the reflected
upstream-travelling and transmitted downstream-travelling waves evolve along negative
and positive x directions, respectively. Figure 12 shows the entire reflected field as well
as the reflected fields for each type of the upstream-travelling modes considered in
the reflection-coefficient calculation, that is the propagative k−

p mode with nr = 2, the
evanescent k−

p mode with nr = 1 and an example of the propagative and evanescent k−
a

waves with |k| ≈ 2.79 and 2.1, respectively. The fields reconstructed using the k−
p modes

show a spatial support both inside and outside the jet with a prescribed radial decay.
Regarding the axial evolution, the evanescent k−

p mode with nr = 1 exhibits a decay
starting from the shock position x = 0, whereas the k−

p mode with nr = 2 has a fixed
axial structure consistent with its neutrally stable nature. A similar behaviour is found for
the pressure fields reconstructed using propagative and evanescent free-stream acoustic
waves. The entire reflected pressure field, which results from the linear superposition of
all the reflected k− waves, shows an axially and radially decaying structure starting from
x = 0 and r = 0, respectively.

The entire transmitted field as well as the transmitted fields for each mode family
considered in the reflection-coefficient calculation are shown in figure 13. We here report
the fields obtained using the k+

KH wave, the evanescent supersonic k+
p mode with nr = 1,

the evanescent subsonic k+
p mode with nr = 2, the propagative and evanescent k+

a waves

954 A9-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.991


M. Mancinelli, E. Martini, V. Jaunet, P. Jordan, A. Towne and Y. Gervais

4.03.53.02.52.01.51.00.50

0

2

2 4

0 2

2

4

4

2

4

0 2 4

0 2

2

4

45

–5

(×10–4)

0

5

(×10–3)

(×10–3)

–5

0

0

0

–0.1

–1

–2

1

–0.2
–0.1

Re
 [

p T 
(x

, 
r, 

m
)]

Re
 [

p T 
(x

, 
r, 

m
)]

Re
 [

p T 
(x

, 
r, 

m
)]

0.1

2

5

–2

–5

0.2

0

0

0

2

4

0 2 4

0 2

2

4

4

2

4

4

x

r

r

r

(e)

(g)

(b)(a) (c)

(d ) ( f )

Figure 13. Reconstruction of the transmitted fields in the x–r plane for a shock discontinuity located at x = 0:
(a) k+

KH wave, (b) supersonic k−
p mode with nr = 1, (c) subsonic k+

p with nr = 2, (d) propagative k+
a wave, (e)

evanescent k+
a wave, ( f ) k+

cr mode, (g) total field.

with |k| ≈ 2.7 and 2.8, respectively, and the k+
cr mode for |k| ≈ 11.5. Consistent with its

unstable nature, the shape and intensity of the total transmitted field is dominated by
the K–H mode. The shape of the transmitted fields reconstructed using the individual
mode family is consistent with the neutral/evanescent nature and radial structure described
above.

3.2.2. Frequency–Mach-number dependence of the reflection coefficient
We here explore the frequency–Mach-number dependence of the reflection coefficient
associated with the upstream-travelling guided mode with nr = 2 obtained using the F-T
model. For this purpose, we let the jet Mach number vary in the range Mj = [1, 1.7] and
explore the Strouhal-number band for which the guided mode is propagative for such flow
conditions, that is the St-number range delimited by the branch and saddle points (see
Mancinelli et al. 2019a, 2021). The resolutions for ΔMj and ΔSt were set equal to 10−2

and 5 × 10−3, respectively. Figure 14 shows the evolution of the normalised objective
function F as a function of Mj and St. The errors are very small for low Mj and gradually
rise as the jet Mach number increases but never exceed 13 %. The amplitude and the phase
modulus of the reflection coefficient as a function of St and Mj are shown in figure 15.
The reflection-coefficient amplitude rises with increasing Mj for a given St and appears
to be larger in the proximity of the saddle point for all Mj, with the jet-flow region
Mj = [1.17, 1.37] showing the highest amplitude. Overall, the phase gradually increases
for larger Mj and lower St. We note that a jump from in-phase to out-of-phase conditions
is found for Mj = 1.58 for most frequencies.

4. Conclusions

The scattering of a K–H wave into a discrete, upstream-travelling guided mode due
to a normal shock in a jet flow was computed in the present manuscript. Jets with

954 A9-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.991


Reflection of a jet K–H wave incident on a shock

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.02

0.04

0.06

0.08

0.10

0.12

Mj

F∗

0.8

0.7

0.6

0.5

0.4

St

Figure 14. Normalised error objective function as a function of Strouhal and jet Mach numbers for the F-T
model. Dashed and dash-dotted lines refer to the branch- and saddle-point locations, respectively.
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Figure 15. Evolution of the reflection coefficient as a function of Strouhal and jet Mach numbers for the
F-T model. Dashed and dash-dotted lines refer to the branch- and saddle-point locations, respectively. (a)
Amplitude, (b) phase.

zero-thickness and F-T shear layers were modelled with an analytical V-S and a numerical
solution of the Rayleigh equation, respectively. The reflection coefficient associated with
the scattered, upstream-travelling wave was calculated via a mode-matching technique
enforcing conservation equations through the shock discontinuity. Assuming small
disturbances, the shock equations were linearised about the mean flow and the possible
scattered modes, i.e. upstream-travelling reflected waves and downstream-travelling
transmitted waves, were identified by assessing the corresponding group velocity using the
Briggs–Bers criteria. Solutions based on a truncated set of modes were obtained via the
minimisation of the error in the conservation equations, which corresponds to a weighted
pseudo-inverse solution. The F-T model showed that critical-layer modes, characterised by
eigenfunctions with radial support mostly concentrated in the centre of the shear layer, by a
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wavelength 6 to 20 times the shear-layer thickness and by a phase velocity between 0.2 and
0.75 of the jet velocity, play an important role in the reflection-coefficient calculation and,
thus, most likely in the physical mechanisms underpinning the process. The reconstructed
reflected and transmitted pressure fields in the x–r plane showed an organised structure
consistent with the axial and radial evolution of the modes calculated by the F-T model.
The frequency–Mach-number dependence of the reflection coefficient has been explored,
revealing that the reflection-coefficient amplitude is larger for frequencies in the proximity
of the saddle point and for jet Mach-number values in between 1.17 and 1.37. The
phase exhibited a gradual increase as the Strouhal and jet Mach numbers decreased and
increased, respectively.

The mode-matching approach described in this paper appears to be a relevant and
promising tool for better describing and predicting resonant dynamics found in jets, such as
screech in supersonic jets. A similar approach may be developed to evaluate the reflection
coefficient at the nozzle exit, thus providing all the elements to make screech-frequency
predictions without any input from data using the model presented in Mancinelli et al.
(2021).
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Appendix A. Linearised Euler equations

The non-dimensional Euler equations in cylindrical coordinates are

Dρ

Dt
+ ρ∇ · u = 0,

ρ
Dux

Dt
= −∂p

∂x
,

ρ

(
Dur

Dt
− u2

θ

r

)
= −∂p

∂r
,

ρ

(
Duθ

Dt
+ uruθ

r

)
= −1

r
∂p
∂θ

,

DT
Dt

+ (γ − 1) T∇ · u = 0,

p = γ − 1
γ

ρT,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1a–f )
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where

D
Dt

= ∂

∂t
+ ux

∂

∂x
+ ur

∂

∂r
+ uθ

r
∂

∂θ
, (A2a)

∇ · u = ∂ux

∂x
+ ∂ur

∂r
+ ur

r
+ 1

r
∂uθ

∂θ
. (A2b)

Inserting the Reynolds decomposition (2.2), removing the mean and linearising, the
LEE are written

∂ρ

∂t
+ ūx

∂ρ

∂x
+ ur

∂ρ̄

∂r
+ ρ̄

(
∂ux

∂x
+ ∂ur

∂r
+ ur

r
+ 1

r
∂uθ

∂θ

)
= 0,

ρ̄

(
∂ux

∂t
+ ūx

∂ux

∂x
+ ur

∂ ūx

∂r

)
= −∂p

∂x
,

ρ̄

(
∂ur

∂t
+ ūx

∂ur

∂x

)
= −∂p

∂r
,

ρ̄

(
∂uθ

∂t
+ ūx

∂uθ

∂x

)
= −1

r
∂p
∂θ

,

∂T
∂t

+ ūx
∂T
∂x

+ ur
∂T̄
∂r

+ (γ − 1) T̄
(

∂ux

∂x
+ ∂ur

∂r
+ ur

r
+ 1

r
∂uθ

∂θ

)
= 0,

p = γ − 1
γ

(
ρ̄T + T̄ρ

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3a–f )

where we removed the primes from the fluctuating variables for notational simplicity. The
locally parallel-flow assumption implies that the derivatives along the axial and azimuthal
directions x and θ are zero as well as the mean radial and azimuthal velocities ūr and ūθ .
Assuming the normal-mode ansatz (2.4) yields

− iωρ̂ + ūxikρ̂ + ∂ρ̄

∂r
ûr + ρ̄

(
ikûx + ∂ ûr

∂r
+ ûr

r
+ im

r
ûθ

)
= 0,

ρ̄

(
−iωûx + ūxikûx + ∂ ūx

∂r
ûr

)
= −ikp̂,

ρ̄
(−iωûr + ūxikûr

) = −∂ p̂
∂r

,

ρ̄
(−iωûθ + ūxikûθ

) = − im
r

p̂,

− iωT̂+ūxikT̂ + ∂T̄
∂r

ûr + (γ − 1) T̄
(

ikûx + ∂ ûr

∂r
+ ûr

r
+ im

r
ûθ

)
= 0,

p̂ = γ − 1
γ

(
ρ̄T̂ + T̄ρ̂

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4a–f )

The Fourier-transformed LEE (A4f ) can be written exclusively in terms of pressure,
leading to the compressible Rayleigh equation (2.13). The eigenfunctions ûi(r), ρ̂(r) and
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T̂(r) are recovered from the pressure

ûx (r) = − 1

ρ̄ (ūxk − ω)2
∂ ūx

∂r
∂ p̂
∂r

− k
ρ̄ (ūxk − ω)

p̂, (A5a)

ûr (r) = − 1
ρ̄ (ūxik − iω)

∂ p̂
∂r

, (A5b)

ûθ (r) = − m
ρ̄r (ūxk − ω)

p̂, (A5c)

ρ̂ (r) = − 1

(ūxk − ω)2

(
∂2p̂
∂r2 +

(
1
r

− 2k
ūxk − ω

∂ ūx

∂r

)
∂ p̂
∂r

−
(

k2 + m2

r2

)
p̂
)

, (A5d)

T̂ (r) = − (γ − 1) T̄

ρ̄ (ūxk − ω)2

(
∂2p̂
∂r2 +

(
1
r

− 2k
ūxk − ω

∂ ūx

∂r
− 1

ρ̄

∂ρ̄

∂r
+ 1

(γ − 1) T̄
∂T̄
∂r

)
∂ p̂
∂r

−
(

k2 + m2

r2

)
p̂
)

. (A5e)

Appendix B. Energy norm derivation

Eigenfunctions are normalised to have zero phase for the pressure eigenfunction on the
centreline and to have unitary energy norm. Following Chu (1965), the energy norm is
defined as

E = 1
2

∫
V

(
Au∗

i ui + Bρ∗ρ + CT∗T
)

dV, (B1)

where the ∗ indicates the complex conjugate and the constants A, B and C have to
determined on the basis of the flow considered (Hanifi et al. 1996). We assume a medium
at rest, thus implying ūx = 0 and ∂ q̄/∂r = 0. Hence, the LEE reduce to the following:

∂ρ

∂t
+ ρ̄∇ · u = 0,

ρ̄
∂ux

∂t
= −∂p

∂x
,

ρ̄
∂ur

∂t
= −∂p

∂r
,

ρ̄
∂uθ

∂t
= −1

r
∂p
∂θ

,

∂T
∂t

+ (γ − 1) T̄∇ · u = 0,

p = γ − 1
γ

(
ρ̄T + T̄ρ

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2a–f )

where we have removed the prime for the fluctuating part for notational simplicity. We
calculate the time evolution of the energy norm

∂E
∂t

= ∂E
∂ui

∂ui

∂t
+ ∂E

∂ρ

∂ρ

∂t
+ ∂E

∂T
∂T
∂t

, (B3)
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which, exploiting (B2a), can be written as

∂E
∂t

= −1
2

∫
V

(
Aui

1
ρ̄

∇p + Bρρ̄∇ · u + CT (γ − 1) T̄∇ · u
)

dV. (B4)

Expressing ρ = (γ /γ − 1)(p/T̄) − (ρ̄/T̄)T from (B2f ) and applying integration by
parts on the first term on the right-hand side of (B4), the time evolution of the energy
norm becomes

∂E
∂t

= −
∫

∂V
uip dS +

∫
V

(
A
ρ̄

p − Bρ̄

(
γ

γ − 1
p
T̄

− ρ̄

T̄
T
)

− CT (γ − 1) T̄
)

∇ · u dV,

(B5)

where
∫
∂V uip dS represents the acoustic power crossing the domain V . Hence, ∂E/∂t +∫

∂V uip dS can be interpreted as the total energy variation, which we impose to be
conservative thus leading to the following expression:

∫
V

(
A
ρ̄

− B
ρ̄

T̄
γ

γ − 1

)
p∇ · u dV +

∫
V

(
B

ρ̄2

T̄
− C (γ − 1) T̄

)
T∇ · u dV = 0. (B6)

Equation (B6) can be equal to zero if and only if

A
ρ̄

− B
ρ̄

T̄
γ

γ − 1
= 0,

B
ρ̄2

T̄
− C (γ − 1) T̄ = 0.

⎫⎪⎪⎬⎪⎪⎭ (B7a–b)

By legitimately imposing A = ρ̄, it is straightforward to calculate the values for the other
two constants

B = γ − 1
γ

T̄
ρ̄

,

C = ρ̄

γ T̄
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B8a–b)

For an inviscid locally parallel flow with medium at rest, the energy norm is finally given
by (2.14).

Appendix C. Mean radial velocity downstream of the shock

The presence of the shock wave generates a mean pressure gradient along the radial
direction downstream of the shock. This induces the appearance of a mean radial velocity.
This radial velocity is here evaluated in the case of a finite thickness model in order to
establish that it does not affect the calculation of the reflection coefficient. We consider
the momentum equation along the radial direction (A1c). The conservation equation for
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Figure 16. Mean radial velocity profile along the radial direction downstream of the shock for Mj1 and Mj2
equal to 1.1 and 0.91, respectively.

the mean flow is

ρ̄ūr
∂ ūr

∂r
= −∂ p̄

∂r
, (C1)

which gives for the mean radial velocity the following expression:

ūr =
√

−2
∫ ∞

0

1
ρ̄

∂ p̄
∂r

dr. (C2)

The radial derivative is computed using a centred finite-difference method. The radial
profile of the mean radial velocity normalised by the jet Mach number downstream of the
shock is reported in figure 16. We note that ūr /= 0 in the shear-layer region with a peak for
r = 0.5. Nevertheless, since the maximum value is approximately 10 % of the jet velocity,
we may assert that the jet is slowly diverging downstream of the shock, but this feature
does not affect the evaluation of the reflection coefficient given that both the reflection and
transmission mechanisms happen locally and are not influenced by the flow evolution far
away from the shock.

Appendix D. Relevance of the near-sonic, downstream-travelling acoustic modes

As outlined in Mancinelli et al. (2022), propagative, downstream-travelling acoustic
modes in the vicinity of the sonic line cannot be described using the confined V-S
model due to numerical issues in the root-finder algorithm when searching for zeros
of the dispersion relation. Furthermore, the resolution of the acoustic branch close to
the sonic line is function of the distance of the wall boundary rMAX , as exemplified in
figure 17, which shows the maximum value of the acoustic eigenvalue of the propagative,
downstream-travelling branch as a function of rMAX . The resolution in the vicinity of
the sonic line deteriorates for increasing rMAX , thus bringing into question the reliability
of the results obtained using the V-S. To prove the little relevance of near-sonic,
downstream-travelling acoustic modes in the determination of the reflection coefficient we
consider the F-T model and compute R both including and excluding near-sonic modes.
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Figure 17. Maximum eigenvalue of the propagative, downstream-travelling acoustic branch as a function of
the wall distance using the confined V-S model. Flow conditions are the same reported in figure 5 downstream
of the shock. Blue ◦ represent the eigenvalue, dashed red line the position of the sonic line.

0 100 200 300 400 500 600 700 800

n

0

2

1

–1

–2

0

|R|

∠R

10–2

10–1

100 200 300 400 500 600 700 800

(b)

(a)

Figure 18. Evolution of the reflection coefficient as a function of the number of modes considered using the
F-T model: blue 
 refer to results obtained including near-sonic, downstream-travelling acoustic modes, red
◦ refer to results obtained artificially removing near-sonic acoustic modes (k+

aMAX
= 3.2). (a) Amplitude, (b)

phase.

The comparison in figure 18 shows no discrepancy in terms of both amplitude and phase
when near-sonic acoustic modes are artificially removed from the reduced basis of the
transmitted modes, thus suggesting the small influence of these modes in the reflection
coefficient calculation and confirming the reliability of the results obtained using the V-S.
To further support this assertion, we finally show in figure 19 the variation of the objective
function F, the reflection-coefficient amplitude and phase as a function of rMAX when
using the V-S to describe the jet dynamics. The variation is relative to the results obtained
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Figure 19. Variation of the objective function, amplitude and phase of the reflection coefficient as a function
of the wall distance using the confined V-S model. Variations are relative to the results obtained for rMAX =
100 presented throughout the manuscript. (a) Objective function, (b) reflection-coefficient amplitude, (c)
reflection-coefficient phase.

using rMAX = 100 and presented throughout the manuscript. We observe variation lower
than 0.1 % for the objective function and of the order of 10 % and 7 % at maximum for the
reflection-coefficient amplitude and phase, respectively. These variations are considered
acceptable especially given that, as outlined by Mancinelli et al. (2022), the change of rMAX
implies a change of the discretisation of the acoustic branch and, hence, of the number of
modes considered in the calculation of the reflection coefficient.
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