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Resolvent analysis is a powerful tool for modelling and analysing transitional and
turbulent flows and, in particular, for approximating coherent flow structures. Despite
recent algorithmic advances, computing resolvent modes for flows with more than one
inhomogeneous spatial coordinate remains computationally expensive. In this paper we
show how efficient and accurate approximations of resolvent modes can be obtained using
a well-posed spatial marching method for flows that contain a slowly varying direction,
i.e. one in which the mean flow changes gradually. First, we derive a well-posed and
convergent one-way equation describing the downstream-travelling waves supported by
the linearized Navier–Stokes equations. The method is based on a projection operator that
isolates downstream-travelling waves. Integrating these one-way Navier–Stokes (OWNS)
equations in the slowly varying direction, which requires significantly less CPU and
memory resources than a direct solution of the linearized Navier–Stokes equations,
approximates the action of the resolvent operator on a forcing vector. Second, this
capability is leveraged to compute approximate resolvent modes using an adjoint-based
optimization framework in which the forward and adjoint OWNS equations are marched in
the downstream and upstream directions, respectively. This avoids the need to solve direct
and adjoint globally discretized equations, therefore bypassing the main computational
bottleneck of a typical global resolvent calculation. The method is demonstrated using
the examples of a simple acoustics problem, a Mach 1.5 turbulent jet and a Mach
4.5 transitional zero-pressure-gradient flat-plate boundary layer. The optimal OWNS
results are validated against corresponding global calculations, and the close agreement
demonstrates the near-parabolic nature of these flows.
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A. Towne and others

1. Introduction

Resolvent analysis (also called input/output analysis or frequency response analysis)
is a powerful and popular tool for studying linear energy-amplification mechanisms
within the Navier–Stokes equations. The resolvent operator is derived from the linearized
Navier–Stokes equations and constitutes a transfer function between inputs and outputs
of interest. It has been used to study the linear response of flows to external excitation
(Trefethen et al. 1993; Farrell & Ioannou 2001; Jovanović & Bamieh 2005; Sipp
et al. 2010) and to forcing from the nonlinear terms in the Navier–Stokes equations
(McKeon & Sharma 2010). In the latter context, the method can be derived by
reorganizing the Navier–Stokes equations into terms that are linear and nonlinear with
respect to perturbations to a laminar base flow or a turbulent mean flow. The singular
value decomposition (SVD) of the resolvent operator associated with the linearized
Navier–Stokes equations then identifies modes that are optimal in terms of their linear
gain between the nonlinear terms (thought of as an input) and the perturbations to the
mean (output). These optimal modes can be used to study worst-case transition scenarios
for laminar flows (Monokrousos et al. 2010) and have been shown to provide a useful
model of coherent structures within turbulent flows. In particular, resolvent modes provide
an approximation of the space–time coherent structures educed from data using spectral
proper orthogonal decomposition (Towne, Schmidt & Colonius 2018).

While there are variations in the approaches, a typical procedure for computing
resolvent modes involves (i) discretization of the continuous flow problem to obtain a
finite-dimensional one, (ii) representing the linearized relationship between inputs and
outputs as a matrix (the resolvent operator), and (iii) finding one or more singular
values/vectors of the resolvent matrix via SVD.

The computational resources required to compute resolvent modes depend critically on
the number of spatial dimensions that must be numerically discretized. The linearized
Navier–Stokes equations nominally contain three spatial dimensions, but the equations
can be simplified by expanding the flow variables into Fourier modes in homogenous
dimensions, i.e. directions in which the base flow (about which the equations are
linearized) does not vary. This drastically reduces the size of the discretized operators that
must be manipulated, decreasing the computational cost of the model. Methods in which
all inhomogeneous dimensions are discretized are often called global methods (Theofilis
2011).

Computing global resolvent modes for flows with more than one inhomogeneous
direction remains a computationally intensive task (Jovanović 2021). Whereas flows with
one inhomogeneous direction can now be tackled on a laptop computer, high-memory
workstations and large-scale clusters must be employed for flows with two and three
inhomogeneous directions, respectively (Taira et al. 2017). These requirements limit the
utility of global resolvent analysis for many flows of interest and mitigate some of their
advantages compared with fully nonlinear numerical simulations.

Recent efforts to reduce the cost of resolvent analysis have focused on reducing the cost
of computing the SVD of the resolvent operator. For example, Moarref et al. (2014) used a
randomized singular value decomposition (RSVD) algorithm to compute resolvent modes
for a turbulent channel flow (which has only one inhomogeneous direction) and reported
that this reduced the cost of the calculations by a factor of two. Ribeiro, Yeh & Taira
(2020) offered several improvements for the application of RSVD to resolvent analysis
and achieved an order-of-magnitude speedup compared with standard SVD algorithms
for a separated flow around an airfoil (which has two inhomogeneous directions). Given
the reduced cost of computing the SVD, the majority of the remaining cost in their
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Efficient global resolvent analysis via OWNS

algorithm is associated with computing the action of the resolvent operator on a vector.
This requires solution (inversion) of the linear system, which is typically accomplished
using lower–upper (LU) decomposition. The computation rate and memory bottlenecks
of this step limit the grid sizes of such solutions and/or force them to be performed in a
high-performance-computing environment. Computing the action of the resolvent operator
on a vector is also the limiting factor for time-stepping methods (Monokrousos et al. 2010;
Farghadan et al. 2021; Martini et al. 2021), where the dominant cost is integrating direct
and adjoint linear equations in the time domain used to apply the resolvent operator and its
adjoint. As typically one aims to characterize the input/output relationships over a broad
range of frequencies and parameters, it is of great interest to reduce the computational
burden of resolvent analysis.

In this paper we develop a method that significantly reduces the cost of computing
resolvent modes for flows that include a slowly varying spatial direction, i.e. a direction
in which the mean flow is inhomogeneous but changes gradually. This common class of
flows includes free-shear flows like mixing layers and jets as well as wall-bounded flows
with spatially developing boundary layers on gradually changing objects like a flat plate,
cone, airfoil, etc. First, we show how the action of the resolvent operator on a forcing
vector can be efficiently and accurately approximated for slowly varying flows using a
well-posed spatial marching technique. Second, we show how this capability can be used
to compute the singular modes of the resolvent operator using iterative downstream and
upstream marching at significantly reduced computational cost, especially in terms of
memory requirements.

Spatial marching methods are commonly applied to slowly varying flows in order to
compute approximate eigenmodes or the downstream response to an initial disturbance
introduced at some upstream location. The classical tool for these purposes is the
parabolized stability equations (PSE), which constitute an ad hoc generalization of
classical parallel-flow stability theory (Bertolotti, Herbert & Spalart 1992; Herbert 1997).
The basic idea of PSE is to separate the flow variables at each frequency into a slowly
varying shape function and a rapidly varying wave-like component. Inserting this ansatz
into the linearized Navier–Stokes equations leads to a modified set of equations for
the shape function, which can be rapidly solved via spatial integration in the slowly
varying direction, leading to an approximation of the downstream response to an initial
disturbance. The initial disturbance is usually chosen to be a locally parallel eigenmode,
in which case the PSE solution is interpreted as a weakly non-parallel eigenmode of the
flow or as the response to a localized forcing designed to generate that mode at the domain
inlet.

Several authors have recently observed that for flows dominated by a single convective
instability, the PSE solution appears to provide a reasonable approximation of the leading
resolvent output mode, i.e. the left singular vector of the resolvent operator with the largest
singular value (Beneddine et al. 2016; Jeun, Nichols & Jovanović 2016). However, there are
several issues that limit the utility of PSE for approximating resolvent modes. First, PSE
does not provide any information about the input resolvent modes or gains, both of which
are critical for analysis and modelling. Second, PSE can accurately capture the influence
of only a single instability mechanism. This limitation stems from the fact that, despite
their name, the parabolized stability equations are, in fact, elliptic in the slowly varying
direction due to the boundary value nature of the linearized Navier–Stokes equations
(Li & Malik 1997). As a result, the PSE spatial integration is mathematically ill-posed,
and regularization methods are required to stabilize the spatial march. Recently, Towne,
Rigas & Colonius (2019) showed that these regularization methods contaminate the PSE
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Figure 1. Schematic comparison of global vs spatial marching problems. Global methods discretize the full
domain, while spatial marching methods integrate the equations in the downstream direction. Typically PSE
prevents upstream-travelling waves from destabilizing the march by damping them using numerical dissipation
created by a minimum step size restriction, which also dampens most downstream-travelling waves. Explicitly
OWNS removes upstream-travelling waves and properly retains all downstream-travelling waves.

solution, except in cases where the flow is dominated by a single instability mode at each
frequency. As a result, PSE is not an appropriate tool for flows in which multiple modes
are of interest, including multiple instability mechanisms, transient growth or acoustics.

Towne & Colonius (2015) introduced an alternative method for obtaining fast,
approximate linear solutions for slowly varying flows that overcomes these issues by
constructing well-posed spatial evolution equations that do not require detrimental
PSE-like regularization. Using ideas originally developed for constructing high-order
non-reflecting boundary conditions (Hagstrom & Warburton 2004), the flow variables
are decomposed into upstream- and downstream-travelling waves in the slowly varying
direction. An approximate evolution equation is derived for the downstream-travelling
waves, which can be solved via a well-posed spatial march. The method, which has come
to be known as the one-way Navier–Stokes (OWNS) equations, has been applied to both
free-shear flows such as mixing layers (Towne & Colonius 2013) and jets (Towne &
Colonius 2014; Rigas et al. 2017b) as well as wall-bounded flows (Rigas, Colonius & Beyar
2017a; Kamal et al. 2020) and is typically more than an order-of-magnitude faster than
global methods. A schematic comparison of global methods, PSE and OWNS is provided
in figure 1. However, the original formulation of OWNS developed by Towne & Colonius
(2015) cannot accommodate a forcing term on the linearized flow equations. Such a
forcing term is fundamental to resolvent analysis, making this formulation unsuitable for
computing resolvent modes.

To enable efficient computation of resolvent modes using spatial marching, we introduce
a new variant of OWNS that naturally accommodates a forcing term. The method is
formulated in terms of a projection operator that splits the flow variables into upstream
and downstream-travelling components and which can be applied to the linearized
Navier–Stokes equations to obtain evolution equations for each set of waves. Importantly,
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Efficient global resolvent analysis via OWNS

the projection operator can also be used to split arbitrary forcing terms into parts which
influence downstream and upstream travelling waves, enabling its use for approximating
resolvent modes. We show that this framework can be extended to solve, in an iterative
fashion, for the singular values and vectors of the resolvent operator at the same
significantly reduced computational cost and memory overhead.

To distinguish between the two variants of OWNS, we will refer to the original
formulation as OWNS-O and the new formulation as OWNS-P, in recognition of their
connections with outflow boundary conditions and a projection operator, respectively.
When distinguishing between the two variants is unimportant, we will drop the letters
and simply refer to OWNS.

The remainder of this paper is organized as follows. In § 2 we formulate the global
resolvent problem and briefly review techniques for calculating the resolvent modes. We
develop and analyse the OWNS-P method in § 3, and then reformulate the problem of
calculating resolvent modes using the OWNS-P framework in § 4. In § 5 we demonstrate
and validate the ability of this methodology to accurately reproduce the action of the
resolvent operator and global resolvent modes for three example problems: a simple
acoustics problem, a turbulent Mach 1.5 jet and a laminar Mach 4.5 zero-pressure-gradient
flat-plate boundary layer. While we focus on supersonic flows, the methodology is robust
and efficient for all flow speeds. In § 6 we summarize the advantages and restrictions of
the optimal OWNS-P framework and discuss how it can be employed to compute resolvent
modes as well as other reduced-complexity models in flows for which the global approach
would be intractable.

2. Resolvent analysis

2.1. Problem set-up
We begin with the compressible Navier–Stokes equations in an arbitrary coordinate
system, written abstractly as

∂q
∂t

= N (q). (2.1)

Equation (2.1) contains mass, momentum and energy equations, and the state vector
q(x, y, z, t) contains an appropriate set of variables, e.g. velocity components and two
thermodynamic variables such as density and pressure. Incompressible Navier–Stokes
equations can also be easily accommodated within a global resolvent analysis. For
the one-way methodology developed in § 3, the lack of a time derivative within the
incompressible continuity equation changes the mathematical nature of the equations.
Instead, incompressible flows can be addressed within the one-way framework by selecting
a small Mach number, e.g. 0.01, which does not lead to stiffness issues in the spatial march
as it would for time stepping.

Applying the Reynolds decomposition

q(x, y, z, t) = q̄(x, y, z) + q′(x, y, z, t), (2.2)

and moving terms that are linear and nonlinear in the fluctuation q′ to the left- and
right-hand sides of the equations, respectively, leads to an equation of the form

∂q′

∂t
− Aq′ = f . (2.3)

The left-hand-side of (2.3) is the linearized Navier–Stokes equations, while the
right-hand-side vector f (x, y, z, t) contains all remaining nonlinear terms, which within
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A. Towne and others

the context of resolvent analysis are interpreted as an external forcing on the linearized
equations. The linear operator A(x, y, z) is the Jacobian of N evaluated at the mean flow
q̄. We also introduce an observable

y′ = Cq′, (2.4)

that is extracted from the state vector by the output matrix C(x, y, z).

2.2. Global resolvent analysis
In practice, computing resolvent modes requires numerical discretization of (2.3) in
all inhomogeneous spatial directions (if the base flow is homogenous in a coordinate
direction, the solution can be decomposed into Fourier modes in that direction to reduce
the number of dimensions in which the linearized equations must be discretized). After
discretization and incorporation of appropriate boundary conditions, (2.3) may be written
as

∂q′
g

∂t
− Agq′ = Bgf g, (2.5a)

y′
g = Cgq′

g, (2.5b)

where q′
g, Ag and Cg are the globally discretized state vector, linear operator and output

matrix, respectively. We have also introduced an input matrix Bg that can be used to tailor
the properties of the forcing f g, e.g. to restrict it to certain parts of the domain. The
‘g’ subscripts are used to distinguish these globally discretized variables from analogous
semi-discretized variables defined later in the context of OWNS.

The relationship between the nonlinear forcing term and the observable can be expressed
in the frequency domain as

ŷg = CgRgBgf̂ g, (2.6)

where ŷg and f̂ g are the Fourier transforms of y′
g and f g, respectively, and

Rg = (−iωI − Ag)
−1, (2.7)

is the global resolvent operator.
Resolvent analysis seeks the forcing and response pairs that produce the largest gain. To

make this concept precise, we must define a global inner product

〈a, b〉g = 〈a, W eb〉 = aHW xyzW eb = aHW gb, (2.8)

where H represents the Hermitian transpose and W g is a positive-definite weight matrix.
Here W g is constructed as W g = W xyzW e, where W e is chosen so that the output represents
a physical quantity of interest (e.g. energy) and W xyz is a diagonal positive-definite matrix
of quadrature weights so that the inner product represents, up to a discretization error, the
volume-integrated quantity. Inner products without any subscripts involve only quadrature
weights.

The gain between the forcing and response is defined by the global Rayleigh quotient

σ 2
g (ω) = 〈ŷg, ŷg〉g

〈 f̂ g, f̂ g〉g
= f̂ H

g BH
g RH

g CH
g W gCgRgBgf̂ g

f̂ H
g W gf̂ g

. (2.9)

The forcing and response that maximize the gain are then sought, and solutions to this
standard problem can be obtained via SVD. Owing to the weight matrix, one can either
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Efficient global resolvent analysis via OWNS

work with a generalized SVD or transform to the standard one by defining f̂ gW = W 1/2
g f̂ g

and maximizing

σ 2
g (ω) =

f̂ H
gWRH

gWRgW f̂ gW

f̂ H
gW f̂ gW

, (2.10)

where RgW = W 1/2
g CgRgBgW −1/2

g is a weighted form of the resolvent operator Towne
et al. (2018). Optimal gains and forcings are obtained by computing the eigenvalue
decomposition of RH

gWRgW or, equivalently, the SVD

RgW = UgWΣgV H
gW . (2.11)

The singular values, which appear within the diagonal positive-semi-definite matrix Σg,
give the square root of the optimal gains between the input and output modes contained in
the columns of the matrices V g = W −1/2

g V gW and Ug = W −1/2
g UgW , respectively.

While the explicit construction of Rg can usually be avoided (Jeun et al. 2016; Schmidt
et al. 2018; Ribeiro et al. 2020), it is necessary to compute the action of the resolvent
operator on an arbitrary forcing vector, i.e. to evaluate (2.6). Typically, a direct LU
decomposition is performed to factorize (−iωI + Ag), and this step constitutes the bulk
of the computational cost of resolvent analysis. In § 3 we will show how the slow variation
of the mean flow present in many flows can be leveraged to efficiently and accurately
approximate the action of the resolvent operator on a forcing vector using a spatial
marching method. Then in § 4 we will show how this capability can be used to computer
optimal forcings and responses, i.e. the singular modes of the approximate resolvent
operator.

3. One-way Navier–Stokes equations – a projection approach

3.1. Identifying downstream- and upstream-travelling waves
The first critical step in developing a well-posed one-way equation is to identify parts of the
solution that transfer energy in the positive and negative streamwise directions, which we
call downstream-travelling and upstream-travelling, respectively. To this end, we rewrite
(2.3) as

∂q′

∂t
+ A

∂q′

∂x
+ Bq′ + C

∂q′

∂x
+ D

∂2q′

∂x2 = f . (3.1)

Here, x ∈ R is the slowly varying direction along which we will apply spatial marching,
and y and z are additional, transverse spatial dimensions. In (3.1) we have isolated
x-derivative terms arising from the convective and pressure terms in the Navier–Stokes
equations (A(∂/∂x)) and from streamwise viscous terms (C(∂/∂x), D(∂2/∂x2)); the
linear operator B contains all other terms in the linearized Navier–Stokes equations.
While typically unimportant, the C(∂/∂x) term can arise due to compressibility or from
non-Cartesian coordinate systems.

To obtain a one-way equation, we wish to work in terms of a system including only first
x-derivatives (Towne & Colonius 2015). This can be accomplished in one of several ways.
The viscous terms can be parabolized by redefining the state vector to include both q′ and
∂q′/∂x and writing (3.1) as an expanded system (of twice the original size) using this new
state variable (Towne 2016; Harris & Hack 2020), analogous to the standard approach for
solving quadratic eigenvalue problems (Tisseur & Meerbergen 2001). Alternatively, the
streamwise viscous terms can be moved to the right-hand-side of (3.1) and treated as a
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forcing term, which is later evaluated using the solution at the previous step in the spatial
march (Kamal et al. 2020). Finally, following the standard boundary-layer approximation,
the streamwise viscous terms can simply be neglected. We have found this simplification
to be sufficient for all flows, including both free-shear and wall-bounded flows, to which
OWNS has been applied to date. Accordingly, we neglect C(∂/∂x) and D(∂2/∂x2) in what
follows.

Next, we discretize (3.1) in the transverse directions using a collocation method (such
as finite differences) with Nc collocation points. The semi-discrete approximation of (3.1)
can then be written as

∂q′

∂t
+ A(x)

∂q′

∂x
+ B(x)q′ = f (x, t), (3.2)

where q′(x, t), f (x, t) ∈ CN and A, B ∈ CN×N are semi-discrete analogues of q, f , A and
B, respectively. The entries of A consist of the values of A at the collocation points, while
the matrix B contains discrete approximations of transverse derivatives contained within
B as well as modifications required to enforce the desired transverse boundary conditions.
The total size of the semi-discrete system is N = NqNc, where Nq is the number of state
variables in the Navier–Stokes equations (e.g. Nq = 5 for three-dimensional problems).

Equation (3.2) is a one-dimensional strongly hyperbolic system since A is diagonalizable
and has real eigenvalues (Kreiss & Lorenz 2004). That is, there exists a transformation
T (x) such that

T AT−1 = Ã =
⎡
⎣Ã++ 0 0

0 Ã−− 0
0 0 Ã00

⎤
⎦ , (3.3)

where Ã is a diagonal matrix and the diagonal entries of the submatrices Ã++ ∈
RN+×N+ > 0, Ã−− ∈ RN−×N− < 0 and Ã00 ∈ RN0×N0 = 0 contain the positive, negative
and zero eigenvalues of A, respectively. Here, N+, N− and N0 denote the number
of positive, negative and zero eigenvalues, respectively, and N = N+ + N− + N0. The
transformation T is known analytically since it is the discretization of the matrix that
diagonalizes A.

To derive a one-way equation, it is convenient to work in terms of the characteristic
variables of (3.2), which are defined in terms of the transformation T (x),

φ(x, t) = T (x)q′(x, t). (3.4)

These characteristic variables can be split into three components associated with the
positive, negative and zero blocks of Ã,

φ =
⎧⎨
⎩
φ+
φ−
φ0

⎫⎬
⎭ , (3.5)

with φ+ ∈ RN+ , φ− ∈ RN− and φ0 ∈ RN0 . For later use, we also define

φ± =
{
φ+
φ−

}
, (3.6)

which contains only the characteristic variables associated with the non-zero block of Ã,

Ã±± =
[

Ã++ 0
0 Ã−−

]
. (3.7)
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To be clear, the ± subscript here and throughout the paper does not indicate that we are
choosing either the plus or minus characteristic, as in the typical usage of that symbol, but
rather both component, as exemplified in (3.6) and (3.7).

In terms of the characteristic variables, (3.2) becomes

∂φ

∂t
+ Ã(x)

∂φ

∂x
+ B̃(x)φ = f φ(x, t), (3.8)

where B̃ = T BT−1 + ÃT (dT −1/dx) and f φ = T f .
We ultimately wish to obtain the response to a forcing in the frequency domain.

However, we proceed by applying a Laplace transform in time, rather than a Fourier
transform, to (3.8), giving

sφ̂ + Ã(x)
dφ̂
dx

+ B̃(x)φ̂ = f̂ φ(x, s), (3.9)

where φ̂(x, s) is the Laplace transform of φ(x, t) and s = η − iω (η, ω ∈ R) is the Laplace
dual of t. We will ultimately take η = 0 and set ω to a particular value to obtain the
response to a forcing at that frequency, but keeping the possibility of non-zero η will help
us distinguish between upstream- and downstream-travelling solutions of (3.8).

Up to this point, we have made no approximation (aside from discarding a small subset
of viscous terms), and the action of the resolvent operator on a forcing vector could be
computed by discretizing (3.9) in x, applying boundary conditions at the beginning and end
of the x domain, solving for φ̂, and inverting the transformation (3.4) to obtain q̂. However,
this involves solving a large system of equations, as discussed in § 2, which constitutes a
large fraction of the cost of resolvent analysis. Instead, we will obtain an approximate
solution of (3.9) via spatial integration. Directly integrating (3.9) is ill-posed (Li & Malik
1997; Towne & Colonius 2015; Towne et al. 2019), leading to exponential divergence of
the solution. To circumvent this, we will derive a well-posed one-way equation that can be
stably integrated.

To proceed, we isolate the x-derivatives within (3.9), giving

Ã±±
dφ̂±
dx

= L±±φ̂± + L±0φ̂0 + f̂ φ,±, (3.10a)

0 = L0±φ̂± + L00φ̂0 + f̂ φ,0, (3.10b)

with

L(x, s) =
[

L±± L±0
L0± L00

]
= −(sI + B(x)). (3.11)

Here and throughout the paper, the subscripts of a matrix indicate its size, e.g. L0± ∈
CN0×(N++N−).

Equation (3.10) is a differential-algebraic equation (DAE) due to the zero left-hand-side
of (3.10b), which occurs because of the zero eigenvalues of A contained in the zero matrix
Ã00. These zero eigenvalues correspond to points in the base flow where the streamwise
velocity is zero or exactly sonic (Towne & Colonius 2015). The algebraic conditions in
(3.10b) function as a constraint on the allowable form of φ̂. Assuming that L00 is invertible,
then (3.10) is a DAE of index 1 and the zero characteristic variable φ̂0 is slaved to positive
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A. Towne and others

and negative characteristic variables as

φ̂0 = −L−1
00 (L0±φ̂± + f̂ φ,0). (3.12)

To obtain a one-way equation, it is convenient to reduce (3.10) to an ordinary differential
equation (ODE) for φ̂±, which is accomplished by using (3.12) to eliminate φ̂0 from
(3.10a), leading to

dφ̂±
dx

= M(x, s)φ̂± + ĥ(x, s), (3.13)

with

M = A−1
±±(L±± − L±0L−1

00 L0±) (3.14)

and

ĥ = Ã−1
±±( f̂ φ,± − L±0L−1

00 f̂ φ,0). (3.15)

While these expressions formally contain L−1
00 , this inverse, and its potential detrimental

effect on the sparsity of M , is in practice avoided by reversing the contraction of the system
(from (3.10) to (3.13)) in the final set of one-way equations (see § 3.5 and Appendix C).

If N0 = 0, which is the case, e.g. in subsonic free-shear flows, then all matrices
containing a zero index vanish, φ̂ = φ̂±, and (3.13) and (3.15) reduce to the simpler forms

M = −Ã−1(sI + B̃) (3.16)

and

ĥ = Ã−1f̂ φ = Ã−1T f̂ . (3.17)

Since (3.2) is hyperbolic, the solution φ̂± of (3.13) consists of a summation of
downstream- and upstream-travelling modes, i.e. waves that transfer energy in the positive
and negative x direction, respectively (waves that do not propagate were eliminated by the
contraction of the system that lead to M). These downstream- and upstream-travelling
components of the solution of (3.13) can be identified based on the eigenvalues and
eigenvectors of M . Consider the eigen-expansion of the solution

φ̂±(x, s) =
N∑

k=1

vk(x, s)ψk(x, s), (3.18)

where each vk is an eigenvector of M with an associated eigenvalue iαk, and ψk
is an expansion coefficient defining the contribution of mode k to the solution. The
well-posedness theory of Kreiss (1970), which can be thought of as an extension to
x-dependent systems of Briggs’ criteria (Briggs 1964), provides a means to distinguish
downstream- and upstream-travelling components of the solution: the mode associated
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Efficient global resolvent analysis via OWNS

with the eigenvalue αk(x, s) is downstream travelling at x = x0 if

lim
η→+∞ Im[αk(x0, s)] = +∞, (3.19)

and upstream travelling if

lim
η→+∞ Im[αk(x0, s)] = −∞. (3.20)

The eigenvalue decomposition of M can be written as

M = [V+ V−]
[

D++ 0
0 D−−

] [
U+
U−

]
, (3.21)

where the columns of V+ ∈ CN×N+ and V− ∈ CN×N− and the rows of U+ ∈ CN+×N and
U− ∈ CN−×N contain the left and right eigenvectors associated with the downstream- and
upstream-travelling eigenvalues of M , respectively, which are contained in the diagonal
matrices D++ ∈ CN+×N+ and D−− ∈ CN−×N− . The eigenvectors are normalized such that

[V+ V−]
[

U+
U−

]
=
[

U+
U−

]
[V+ V−] = I. (3.22)

Using this block matrix notation, (3.18) can be written as

φ̂± = Vψ = V+ψ+ + V−ψ−, (3.23)

where

ψ =
{
ψ+
ψ−

}
, (3.24)

and ψ+ and ψ− are vectors of expansion coefficients for the downstream- and
upstream-travelling modes, respectively. Therefore, the downstream-travelling part of the
solution is

φ̂
′
± = V+ψ+, (3.25)

and the upstream-travelling part is

φ̂
′′
± = V−ψ−. (3.26)

3.2. Exact projection operator
We define a projection operator

P = [V+ V−]
[

I 0
0 0

] [
U+
U−

]
, (3.27)

that exactly splits the solution φ̂± into downstream- and upstream-travelling components
at each x. That is,

φ̂
′
± = Pφ̂±, (3.28a)

φ̂
′′
± = (I − P)φ̂±. (3.28b)
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A. Towne and others

Equation (3.28a) follows from (3.23) and (3.25),

Pφ̂± = [V+ V−]
[

I 0
0 0

] [
U+
U−

]
[V+ V−]

[
ψ+
ψ−

]
(3.29a)

= V+ψ+ (3.29b)

= φ̂
′
±, (3.29c)

and (3.23) and (3.26) can be similarly manipulated to verify (3.28b). Using (3.27) and
(3.22), it is straightforward to show that P is a projection operator, i.e. that PP = P.

3.3. One-way equation
We now obtain a one-way equation for the downstream-travelling component of the

solution φ̂
′
± by applying the projection P to (3.13). This gives

P
dφ̂±
dx

= PMφ̂± + Pĥ. (3.30)

To obtain an evolution equation for φ̂
′
±, we must move P inside the derivative. Using the

chain rule, we have

dφ̂
′
±

dx
= dPφ̂±

dx
= P

dφ̂±
dx

+ dP

dx
φ̂±. (3.31)

Using the fact that P and M commute (since they have the same eigenvectors by (3.21) and

(3.27)), the first term on the right-hand-side of (3.30) can also be written in terms of φ̂
′
±,

PMφ̂± = PPMφ̂± = PMPφ̂± = PMφ̂
′
±. (3.32)

Therefore, using (3.31) and (3.32), (3.30) can be written as

dφ̂
′
±

dx
= P(Mφ̂

′
± + ĥ) + dP

dx
φ̂±. (3.33)

Following the same steps, but with I − P replacing P, we similarly obtain

dφ̂
′′
±

dx
= (I − P)(Mφ̂

′′
± + ĥ) − dP

dx
φ̂±. (3.34)

By neglecting (dP/dx)φ̂± in (3.33) and (3.34), we arrive at one-way equations for the
downstream- and upstream-travelling components of the solution,

dφ̂
′
±

dx
= P(Mφ̂

′
± + ĥ), (3.35)

dφ̂
′′
±

dx
= (I − P)(Mφ̂

′′
± + ĥ). (3.36)
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Efficient global resolvent analysis via OWNS

When M is x-independent, dP/dx = 0 and (3.35) and (3.36) exactly describe the
evolution of downstream- and upstream-travelling waves, respectively. When M is
x-dependent, dP/dx /= 0 and (3.35) and (3.36) are approximate. Insight into the nature
of the approximation can be gained by solving both (3.33) and (3.34) for (dP/dx)φ̂± and
equating the expressions, giving

dφ̂
′
±

dx
− P(Mφ̂

′
± + ĥ) = −

(
dφ̂

′′
±

dx
− (I − P)(Mφ̂

′′
± + ĥ)

)
= dP

dx
φ̂±. (3.37)

Comparing (3.35) and (3.37) reveals that neglecting (dP/dx)φ̂± is equivalent to setting
φ′′ = 0 when calculating φ′. In other words, the one-way equation (3.35) neglects the
influence of the upstream-travelling waves on the evolution of the downstream-travelling
waves. In the same way, comparing (3.36) and (3.37) reveals that neglecting (dP/dx)φ̂± is
equivalent to setting φ′ = 0 when calculating φ′′; the one-way equation (3.36) neglects the
influence of the downstream-travelling waves on the evolution of the upstream-travelling
waves. As discussed in detail by Towne & Colonius (2015), it is reasonable to neglect
the influence of upstream-travelling waves on the downstream-travelling waves (and vice
versa) when M is slowly varying in x. Since M inherits its x-dependence from the mean
flow q̄, the one-way equation will yield an accurate approximation of the downstream-
or upstream-travelling response to the forcing for slowly varying flows, i.e. for flows in
which the gradient of the mean flow is much smaller in the streamwise direction than in
the cross-stream directions.

Next, we will show that (3.35) and (3.36) are well posed as one-way equations.
This amounts to showing that their eigenvalues correspond to downstream- and
upstream-travelling modes, respectively. Focusing first on (3.35), the relevant operator is

PM = [V+ V−]
[

I 0
0 0

] [
U+
U−

]
[V+ V−]

[
D++ 0

0 D−−

] [
U+
U−

]
(3.38a)

= [V+ V−]
[

D++ 0
0 0

] [
U+
U−

]
. (3.38b)

Compared with the original elliptic operator M , the eigenvectors and downstream-travelling
eigenvalues of the one-way operator PM are unchanged, but the upstream-travelling
eigenvalues have been eliminated. Therefore, (3.35) is well posed as a one-way equation
and can be solved by integrating the equations in the positive x direction.

The relevant operator for the well posedness of (3.36) is

(I − P)M = [V+ V−]
[

0 0
0 I

] [
U+
U−

]
[V+ V−]

[
D++ 0

0 D−−

] [
U+
U−

]
(3.39a)

= [V+ V−]
[

0 0
0 D−−

] [
U+
U−

]
. (3.39b)

The downstream-travelling eigenvalues have been eliminated, so (3.36) is well posed as
a one-way equation and can be solved by integrating the equations in the negative x
direction.

This projection-based paradigm for obtaining one-way equations and the projection
operator defined in (3.27) were originally derived by Towne (2016) and was recently
rederived by Harris & Hack (2020). While it is well posed, as we have shown, its
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A. Towne and others

computational efficiency is problematic; the eigen-decomposition of M is required at every
x to construct the exact projection P, resulting in an intolerably high computational cost
for large N due to the nominal O(N3) scaling of the number of operations required to solve
each eigenvalue problem. To obtain a practically useful one-way equation, we construct in
the next section an approximation of P that can be efficiently computed.

3.4. Approximate projection operator
The following set of recursion equations approximate the action of P on an arbitrary vector
φ̂±:

φ̂
−Nβ

+ = 0, (3.40a)

(M − iβ j
−I)φ̂

−j
± − (M − iβ j

+I)φ̂
−j−1
± = 0 j = 1, . . . , Nβ − 1, (3.40b)

(M − iβ0
−I)φ̂

0
± − (M − iβ0

+I)φ̂
−1
± = (M − iβ0

−I)φ̂±, (3.40c)

(M − iβ j
+I)φ̂

j
± − (M − iβ j

−I)φ̂
j+1
± = 0 j = 0, . . . , Nβ − 1, (3.40d)

φ̂
Nβ

− = 0. (3.40e)

Here, we have introduced a set of auxiliary variables {φ̂ j
± : j = −Nβ, . . . , Nβ} and a set of

complex scalar recursion parameters {β j
+, β

j
− : j = 0, . . . , Nβ − 1}. Here Nβ is the order

of the approximate projection.
In Appendix A we show that the zero-indexed variable is the approximate projection of

φ̂±, i.e. that

φ̂
0
± = PNβ φ̂± ≈ φ̂

′
±. (3.41)

The operator

PNβ = [V+ V−]
[

I −R+−
−R−+ I

]−1 [
I 0
0 0

] [
I −R+−

−R−+ I

] [
U+
U−

]
, (3.42)

is the approximation of the exact projection P that is implicitly defined by the recursions
(3.40). It is easy to verify that PNβ PNβ = PNβ , so PNβ is itself a projection. Furthermore,
comparing (3.27) and (3.42) we see that PNβ → P as R+−, R+− → 0. Therefore, the
approximation converges if every entry of R+− and R+− converges toward zero as the
order of the approximation increases. In Appendix A we show that the (n, m) entry of
R+− and the (m, n) entry of R−+ are, respectively,

(R+−)nm = F(α+,n)

F(α−,m)
(w+−)nm, (3.43a)

(R−+)mn = F(α+,n)

F(α−,m)
(w−+)mn, (3.43b)

where

F(α) =
Nβ−1∏
j=0

α − β
j
+

α − β
j
−

, (3.44)
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Efficient global resolvent analysis via OWNS

α+,n is the nth downstream-travelling eigenvalue, α−,m is the mth upstream-travelling
eigenvalue, and (w+−)nm and (w−+)mn are scalar weights that do not depend on the
recursion parameters. Since the weights are fixed, the recursion parameters must be chosen
such that F(α+,n)/F(α−,m) goes to zero for all m, n.

A geometric interpretation of F is helpful for choosing parameters that accomplish
this objective. Notice that the magnitude of each term in the product defining F is less
than one for regions of the complex α plane that are closer to β

j
+ than β

j
− (|α − β

j
+| <

|α − β
j
−|) and greater than one for regions that are closer to β

j
− than β

j
+ (|α − β

j
+| >

|α − β
j
−|). Therefore, F(α+,n) is driven to zero by placing the β

j
+ parameters near the

downstream-travelling eigenvalues in the complex plane, and F(α−,m) is driven to infinity
by placing the β

j
− parameters near the upstream-travelling eigenvalues.

This is exactly the same requirement for convergence as derived for the OWNS-O
method by Towne & Colonius (2015). This has several important implications. First, as
established by Towne & Colonius (2015), if α+,n /=α−,m for all m,n, there always exist
recursion parameters that make the approximation error arbitrarily small. Second, if the
recursion parameters are well placed, the convergence of the approximation is exponential.
Third, any recursion parameters derived for OWNS-O can be used without modification for
OWNS-P. A general strategy for choosing recursion parameters was outlined by Towne &
Colonius (2015), and effective sets of recursion parameters have been developed for mixing
layers (Towne & Colonius 2014), jets (Towne & Colonius 2013), subsonic boundary layers
(Rigas et al. 2017a) and supersonic boundary layers (Kamal et al. 2020, 2021).

Finally, to be rigorous, we must show that (3.35) and (3.36) remain well posed as
one-way equations when PNβ is used in place of P. This is confirmed in Appendix B.

3.5. Implementation
The recursion equations defining the approximate projection operator define a system of
equations of the form

φ̂
′
± = P3φ̂

aux
, (3.45a)

P2φ̂
aux = P1φ̂±, (3.45b)

where φ̂
aux ∈ CNaux is a vector containing all of the auxiliary variables, the matrices P1 ∈

CNaux×N and P2 ∈ CNaux×Naux are defined by the recursion equations (3.40), P3 ∈ CN×Naux

is a matrix that extracts the projected state from the auxiliary variables via (3.41) and
Naux = 2NNβ + N0. The structure of these matrices is exemplified in Appendix C.

From (3.45), we see that applying the projection operator to a vector φ̂± to obtain the
projected state φ̂

′
± requires the solution of a linear system of size Naux; the cost of this

operation compared with those associated with a global solution strategy is discussed
in the next section. We stress that in practice we never form the approximate projection
operator PNβ .

The approximate form of the one-way equation (3.35) can be expressed as a DAE
input/output system

A‡ dφ̂
‡

dx
= L‡φ̂

‡ + B‡f̂ φ, (3.46a)

φ̂
′ = C‡φ̂

‡
. (3.46b)
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The expanded state vector is

φ̂‡=

⎡
⎢⎢⎣
φ̂

′
±
φ̂

′
0

φ̂
aux

⎤
⎥⎥⎦ , (3.47)

and the operators in (3.46) are

A‡=
⎡
⎣I

0
0

⎤
⎦ , B‡=

⎡
⎣ 0 0

P1Ã−1
±± 0

0 I

⎤
⎦ , C‡ =

[
I 0 0
0 I 0

]
(3.48)

and

L‡=
⎡
⎣ 0 0 P3

P1Ã−1
±±L±± P1Ã−1

±±L±0 −P2
L0± L00 0

⎤
⎦ . (3.49)

The input to the system is the forcing f̂ φ = T f̂ , while the output is φ̂
′
, the

downstream-travelling component of the characteristic variable, from which the OWNS-P

approximation of the physical state variable can be obtained using (3.4) as q̂′ = T−1φ̂
′
.

The DAE (3.46) can be efficiently integrated in the positive x direction given a specified

value for φ̂
′
± at the inlet of the domain; this value is physically a boundary condition for

the global problem but functions as an initial condition for the spatial integration of the
DAE.

An additional issue arises in the practical implementation of the method. Specifically,
errors incurred during the numerical integration of (3.46) will not lie entirely in the
downstream-travelling subspace. In other words, the numerical approximation of φ̂

′
±

collects an error that projects onto the zero eigenvalues of PNβ M , which is then propagated
along during the march. This causes an accumulation of error that contaminates the
solution. Fortunately, there is an easy fix: apply the projection operator to the solution
after each step in the march.

We emphasize that the OWNS-P approach differs significantly from PSE, the latter of
which achieves a stable spatial march by numerically damping upstream-travelling waves,
either by using an implicit axial discretization along with a restriction on the minimum step
size (Li & Malik 1996) or by explicitly adding damping terms to the equations (Andersson,
Henningson & Hanifi 1998). The damping prevents the upstream-travelling waves from
destabilizing the spatial march, but also introduces uncontrollable errors, to different
degrees that depend on the complexity of the solution, into all of the downstream-travelling
waves (Towne et al. 2019).

3.6. Computational cost
The standard approach for obtaining the action of the resolvent operator on a forcing vector
requires the solution of a linear system of equations of size NqNxNc, where Nx and Nc are
the number of discretization points in x and in all transverse directions, respectively, and
Nq is the number of state variables, e.g. Nq = 5. In the following scaling estimates, we
drop the dependence on Nq since it is a constant for a given problem. Assuming the use of
sparse discretization schemes and direct solution via multi-frontal LU decomposition, the
CPU cost (FLOPS) of solving the linear system is found, empirically, to scale as O(Na

x Na
c ),
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Efficient global resolvent analysis via OWNS

and the memory usage scales as O(Nb
x Nb

c ), where the factors 1 < a ≤ 3 and 1 < b ≤ 2
depend on the sparsity and structure of the matrix and the sophistication of the algorithm
employed (Duff, Erisman & Reid 2017). In our global computations for two-dimensional
(2-D) base flows corresponding to turbulent jets presented in § 5, we observed a ≈ 1.6
and b ≈ 1.2, whereas in some preliminary computations for three-dimensional (3-D) base
flows, we observed a ≈ 2 and b ≈ 2. We have found these values to be quite robust
across multiple software packages and operating platforms. We have also implemented
iterative solvers based on generalized minimal residual (GMRES) and biconjugate gradient
stabilized (Bi-CG-Stab) methods, which decrease both a and b to near unity, but, without
preconditioning, these were typically much slower as the number of iterations required
grew large.

The main cost for OWNS-P is solving the system of (3.45) of size Naux = 2NβN + N0 =
2NβNqNc + N0 if the DAE (3.46) is explicitly integrated or a system of size N‡ = (2Nβ +
1)N + N0 = (2Nβ + 1)NqNc + N0 if it is implicitly integrated. In both cases, the dominant
factor in these size expressions is NcNβ , and other terms are dropped. As the sparsity and
structure of the OWNS matrices are analogous to those in the global solution, the FLOPS
and memory of solving (3.45) scale as O(NxNa

c Na
β) and O(Nb

c Nb
β). The additional factor of

Nx in the FLOPS scaling follows from the fact that an equation of this form must be solved
at each step in the spatial march. Assuming Nx > Nβ , OWNS-P represents a FLOPS and
memory speedup by factors of Na−1

x /Na
β and Nb

x /Nb
β , respectively.

Clearly OWNS-P will achieve significant savings in memory, and, for sufficiently large
Nx, significant saving in FLOPS, compared with global methods. These reductions allow
problems that would otherwise require high-performance computing resources to be solved
on a laptop. The advantage grows for 3-D base flows where the factors a and b are
larger.

Finally, comparing OWNS-P to OWNS-O, the set of recursion equations that must be
solved within the OWNS-P method is roughly twice as large as those required for the
OWNS-O method; the index of the auxiliary variables for an approximation of order
Nβ span the range [−Nβ, Nβ] and [0, Nβ ] for OWNS-P and OWNS-O, respectively.
This is the price that must be paid to accommodate the inhomogeneous forcing
term.

4. Computing resolvent modes with OWNS-P

Next, we show how to use the ability of OWNS-P to approximate the action of the resolvent
operator on a vector to compute optimal forcing and response modes. To match the set-up
of the global system considered in (2.5), we introduce semi-discrete input and output
operators Bq and Cq by replacing f with Bq f in (3.2) and introducing a semi-discrete
observable

y(x, t) = Cqq′. (4.1)

The input matrix is incorporated into the OWNS-P DAE (3.46) by defining Bφ = T BqT−1

and replacing B‡ with B‡Bφ .
The constrained optimization is performed by defining the Lagrangian function

L(φ̂‡, φ̂‡∗
, φ̂

‡
in, φ̂

‡
out, f̂ φ) = J (φ̂‡) − 〈φ̂‡∗

, (A‡∂x − L‡)φ̂‡ − B‡f̂ φ〉. (4.2)
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A. Towne and others

Here, J is a generic cost function to be maximized subject to the governing approximate
OWNS-P equations, which are enforced via the adjoint variable φ̂‡∗

. To keep the notation
compact, we have used ∂x to indicate x-derivatives here and in what follows.

We define an inner product over the cross-stream coordinates

(a, b)O = (a, W eb) = aH(x)W yzW e(x)b(x) = aH(x)W O(x)b(x), (4.3)

and over the entire volume

〈a, b〉O = 〈a, W eb〉 =
∫

Ω

aH(x)W yzW e(x)b(x) dx =
∫

Ω

aH(x)W O(x)b(x) dx

=
∫

Ω

(a, b)O dx, (4.4)

where Ω = [xin, xout] is the streamwise extent of the domain, and xin and xout correspond
to the streamwise coordinates of the inlet and outlet planes, respectively. As before,
the weight matrix is constructed by composing factors so that the norm represents a
quantity of interest (e.g. energy) and quadrature weights for the cross-stream discretization,
i.e. W O(x) = W yzW e(x). In this way 〈a, b〉O ≈ 〈a, b〉g (equal up to a discretization error).

The inner product in (4.2) can be expanded through integration by parts, yielding

〈φ̂‡∗
, (A‡∂x − L‡)φ̂‡ − B‡f̂ φ〉

= 〈(−A‡∗
∂x − L‡∗

)φ̂‡∗
, φ̂‡〉 + [(A‡∗

φ̂‡∗
, φ̂‡)]xout

xin
− 〈φ̂‡∗

, B‡f̂ φ〉
= 〈(−A‡∗

∂x − L‡∗
)φ̂‡∗

, φ̂‡〉 + (A‡∗
φ̂

‡∗
out, φ̂

‡
out) − (A‡∗

φ̂
‡∗
in , φ̂

‡
in) − 〈φ̂‡∗

, B‡f̂ φ〉,
(4.5)

where

A‡∗ = W ‡−1

yz A‡H
W ‡

yz, L‡∗ = W ‡−1

yz L‡H
W ‡

yz, (4.6a,b)

and W ‡
yz is the augmented diagonal quadrature-weight matrix to accommodate the

auxiliary variables. Thus, we can define the adjoint to (3.48) as

(A‡∗
∂x − L‡∗

)φ̂‡∗ = f̂ ∗
φ, (4.7)

where f̂ ∗
φ is the adjoint characteristic forcing determined from evaluating the stationary

points of the Lagrangian function. Note that the negative sign in front of A‡∗
has been

dropped since we are marching upstream.
The cost function J is defined similarly to the one for the global resolvent formulation

to determine optimal volumetric forcings, f̂ , which maximize the energy of the flow in the
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Efficient global resolvent analysis via OWNS

domain. Here, it is expressed in terms of characteristic variables as

J (φ̂‡, f̂ φ) = σ 2
O(ω) = 〈ŷ, ŷ〉O

〈 f̂ , f̂ 〉O
=

∫
Ω

q̂HCH
q W OCqq̂ dx∫

Ω

(T −1f̂ φ)HW O(T −1f̂ φ) dx

=

∫
Ω

φ̂‡H
W ‡

yz

W ‡︷ ︸︸ ︷
W ‡−1

yz C‡H
T−HCH

q W OCqT−1C‡ φ̂‡ dx∫
Ω

f̂ H
φ W yz W −1

yz T−HW OT−1︸ ︷︷ ︸
W f

f̂ φ dx
= 〈φ̂‡, W ‡φ̂‡〉

〈 f̂ φ, W f f̂ φ〉 .

(4.8)

The Lagrangian function (4.5), after setting φ̂in = 0, and after substituting the cost
function (4.8), is

L(φ̂‡, φ̂‡∗
, φ̂

‡
out, f̂ φ) = 〈φ̂‡, W ‡φ̂‡〉

〈 f̂ φ, W f f̂ φ〉 − 〈(A‡∗
∂x − L‡∗

)φ̂‡∗
, φ̂‡〉

− (A‡∗
φ̂

‡∗
out, φ̂

‡
out) + 〈φ̂‡∗

, B‡f̂ φ〉. (4.9)

The optimal forcing and responses are obtained by finding the stationary points of the
Lagrangian function,

δL = 〈∇
φ̂‡∗L, δφ̂‡∗〉 + 〈∇

φ̂‡L, δφ̂‡〉 + 〈∇
φ̂

‡
out
L, δφ̂

‡
out〉 + 〈∇f̂ φ

L, δf̂ φ〉 = 0. (4.10)

We now set each inner product of the stationary points individually to zero,

〈∇
φ̂‡∗L, δφ̂‡∗〉 = 0 → 〈−(A‡∂x − L‡)φ̂‡ + B‡f̂ φ, δφ̂‡∗〉 = 0, (4.11a)

〈∇
φ̂‡L, δφ̂‡〉 = 0 →

〈
(W ‡ + W ‡

yz
−1

W ‡H
W ‡

yz)φ̂
‡

〈 f̂ φ, W f f̂ φ〉 − (A‡∗
∂x − L‡∗

)φ̂‡∗
, δφ̂‡

〉
= 0,

(4.11b)

〈∇
φ̂

‡
out
L, δφ̂

‡
out〉 = 0 → 〈−A‡∗

φ̂
‡∗
out, δφ̂

‡
out〉 = 0, (4.11c)

〈∇f̂ φ
L, δf̂ φ〉 = 0 →

〈
− 〈φ̂‡, W ‡φ̂‡〉

〈 f̂ φ, W f f̂ φ〉2
(W f + W −1

yz W H
f W yz)f̂ φ

+ W −1
yz B‡H

W ‡
yzφ̂

‡∗
, δf̂ φ

〉
= 0. (4.11d)

An iterative procedure for finding the stationary points of the system of (4.11) is
summarized in algorithm 1 and depicted schematically in figure 2. Note that N optimal
and suboptimal forcings, { f̂ 1, f̂ 2, . . . , f̂ N}, and responses, {q̂1, q̂2, . . . , q̂N}, can also
be determined by initializing the optimization procedure such that 〈 f̂ i, f̂ j〉 = δij, and
orthonormalizing the forcings at each iteration.
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A. Towne and others

Algorithm 1 Optimal forcing and response with OWNS-P

1: Initialize random f̂ i such that 〈 f̂ i, f̂ j〉O = δij. Set threshold ε (here 10−4).
2: repeat
3: Solve the forced OWNS-P equations to determine the response by spatial marching

in +x
(A‡∂x − L‡)φ̂

‡
i = B‡f̂ φi

, φ̂i(x = xin) = 0.

4: Calculate adjoint forcing

f̂ ∗
φi

= α∗
i (W ‡ + W ‡−1

yz W ‡H
W ‡

yz)φ̂
‡
i ,

where α∗
i is a normalization coefficient such that f̂ φi

∗
has unit norm.

5: Solve the adjoint OWNS-P equations by spatially marching in −x

(A‡∗
∂x − L‡∗

)φ̂
‡∗
i = f̂ φi

∗
, φ̂∗

i (x = xout) = 0.

6: Calculate direct forcing

f̂ = G[T−1(W f + W −1
yz W H

f W yz)
−1W −1

yz B‡H
W ‡

yzφ̂
‡∗
i ],

where G[ ] is the Gram–Schmidt orthonormalization operator such that

〈 f̂ i, f̂ j〉O = δij.

7: Calculate the relative change of the cost function

Δ =
∣∣∣∣Jk+1 − Jk

Jk

∣∣∣∣ =
∣∣∣∣ 〈q̂, q̂〉O,k+1 − 〈q̂, q̂〉O,k

〈q̂, q̂〉O,k

∣∣∣∣ .
8: until Δ < ε

Algorithm 1 constitutes a power iteration scheme augmented with Gram–Schmidt
orthogonalization to allow computation of multiple modes. More sophisticated iteration
schemes such as the Arnoldi method or RSVD (Halko, Martinsson & Tropp 2011) could be
used to accelerate convergence. However, for the examples presented in § 5, we observed
that the power iteration converges in just a few iterations. Accordingly, we have presented
the power iteration scheme for the sake of simplicity and clarity.

In addition to finding optimal volumetric forcing and response modes, optimal initial
(boundary) conditions, as previously done using PSE (Tempelmann, Hanifi & Henningson
2010, 2012), can be computed by restricting the input to the inlet plane, prolonging it to the
solution space via Bq and, if desired, restricting the output to a smaller space, e.g. some
downstream plane, via Cq.

5. Examples

In this section we present three example problems – a simple acoustics problem, a turbulent
Mach 1.5 jet and a laminar Mach 4.5 boundary layer – to validate and demonstrate the
OWNS-P method (§ 3) and its application for computing resolvent modes (§ 4). In each
case, the OWNS-P results are validated against global calculations (§ 2) and, for the
boundary layer, recent results from the literature (Bugeat et al. 2019).
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Efficient global resolvent analysis via OWNS

Lagrangian Maximize Output/Input

Random

Forcing

ForcingResponse

ResponseDirect OWNS

Adjoint OWNS

(A‡∗
∂x – L‡∗

) φ̂‡∗ = f̂ φ
∗

f̂φ

f̂φ

f̂ φ
∗

φ̂‡∗

φ̂‡

xin xoutx

Cost OWNS-P constraint

(A‡∂x – L‡) φ̂‡ – B‡ f̂φ

〈φ̂‡, W ‡ φ̂‡〉
〈 f̂φ, Wf

  f̂φ〉
J =J (φ̂‡) (A‡∂x – L‡) φ̂‡ – B‡ f̂φ 〉– 〈φ̂‡∗

, L = 

Figure 2. Schematic of the iterative adjoint-looping algorithm for the calculation of the optimal responses and
forcings using the OWNS-P framework. By marching the direct and adjoint OWNS-P, instead of solving the
globally discretized equations, significant computational savings are achieved.

5.1. Governing equations
The flow dynamics are governed by the compressible Navier–Stokes equations for an ideal
gas,

Dρ

Dt
+ ρ(∇ · u) = 0, (5.1a)

ρ
Du
Dt

+ ∇p = 1
Re

∇ · τ, (5.1b)

ργ R
DT
Dt

− (γ − 1)
Dp
Dt

= γ − 1
PrRe

∇ · (k∇T) + γ − 1
Re

(τ : ∇u), (5.1c)

τ = 2μS + κ(∇ · u)I, (5.1d)

S = 1
2

(
∇u + (∇u)T − 2

3
(∇ · u)I

)
, (5.1e)

p = ρRT, (5.1f )

Re = ρ∞c∞L
μ∞

, (5.1g)

Pr = μ∞cp∞
k∞

, (5.1h)

where ρ, u, p, γ , R, T , k, κ , c, μ, cp, Re and Pr are the density, velocity vector, pressure,
specific heat ratio, gas constant, temperature, thermal conductivity, bulk viscosity, speed
of sound, dynamic viscosity, isobaric specific heat, Reynolds number and Prandtl number,
respectively (Kamal et al. 2020). All relevant quantities have been non-dimensionalized by
the dimensional ambient quantities c∞, ρ∞, k∞, cp∞ and μ∞, and a problem dependent
length scale L.
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A. Towne and others

We define the state vector as q = (ρ, u, T)T and apply the Reynolds decomposition (2.2)
to obtain the linearized equations (2.3). For some of the calculations, e.g. the acoustics
problem, we employ a simplified formulation of the compressible Navier–Stokes equations
described by Towne (2016).

We assume the fluid to be an ideal gas with cv = cv(T) and cp = cp(T) and that
fluid properties k, μ, κ and γ depend solely on temperature. We denote any of the
aforementioned fluid properties as Φ and perform a Taylor series expansion about T̄ ,

Φ(T) = Φ(T̄) + dΦ

dT

∣∣∣∣
T=T̄

T ′ + higher-order terms. (5.2)

The linearized fluid property perturbation is thus

Φ ′ = dΦ

dT

∣∣∣∣
T=T̄

T ′. (5.3)

Unless otherwise stated, we will assume the fluid as calorically perfect air with γ = 1.4
and Pr = 0.72 with viscosity and thermal conductivity calculated using Sutherland’s law

μ†=μ†
∞

(
T†

T†∞

)3/2 T†∞ + S†

T†+S† , (5.4)

where S† = 110.4 K and ()† denotes dimensional quantities.
The acoustics problem and the flat-plate boundary layer flow are solved in Cartesian

coordinates with x = (x, y, z) corresponding to the streamwise, wall-normal and spanwise
directions, respectively, and u = (u, v, w). The jet flow is solved in cylindrical coordinates
with x = (x, r, θ) corresponding to the streamwise, radial and azimuthal directions,
respectively, and u = (ux, ur, uθ ). Due to the periodicity of the examined flows in
the spanwise or azimuthal directions, the perturbation fields are decomposed as q′ =∑

q̂(x, y) exp(iβz − iωt) and q′ =∑ q̂(x, r) exp(imθ − iωt), where β and m are the
spanwise and azimuthal wavenumbers, respectively.

All inner products, e.g. 〈a, b〉g, are defined so as to induce the Chu energy norm (Chu
1965)

EChu = 1
2

∫ ∫
Ω

RT̄
ρ̄

ρ′2 + ρ̄|u′|2 + Rρ̄

T̄(γ − 1)
T ′2 dx dA ≈

∫
Ω

q′∗W yzW eq′ dx, (5.5)

where W e is the diagonal Chu energy weight matrix defined as

W e = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

RT̄
ρ̄

0 0 0 0

0 ρ̄ 0 0 0
0 0 ρ̄ 0 0
0 0 0 ρ̄ 0

0 0 0 0
Rρ̄

T̄(γ − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.6)

5.2. Global and OWNS solvers
The global and OWNS calculations are performed using the Caltech stability and
transition analysis toolkit. The linearized equations are discretized in inhomogeneous

948 A9-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.647


Efficient global resolvent analysis via OWNS
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β+
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(×10–3)
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0 (5 × 10–2) 0.1

0

2

4
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4
(×10–3)

(a) (b) (c)

Figure 3. Placement of recursion parameters β+ and β− for the M = 4.5 flat-plate boundary layer flow. The
local spectra of the Navier–Stokes and OWNS-P operators are shown. The β+ recursion parameters are placed
near the downstream-travelling modes, whereas the β− parameters are placed near the upstream acoustic
modes. For a sufficiently large number Nβ of recursion parameters, the OWNS-P operator converges to the
downstream-travelling modes, thus eliminating the ellipticity associated with upstream modes and enabling
stable, convergent marching in the slowly varying x direction.

transverse directions using fourth-order central finite differences with summation-by-parts
boundary closure (Strand 1994; Mattsson & Nordstróm 2004). Far-field radiation boundary
conditions are enforced at free transverse boundaries using a super-grid damping layer
(Appelo & Colonius 2009) truncated by Thompson characteristic conditions (Thompson
1987). For global calculations, the streamwise direction is discretized using the same
scheme and streamwise boundary conditions are implemented using inlet and outlet
sponges in addition to the characteristic boundary conditions. For OWNS calculations, the
numerical treatment of the x direction is slightly different in each problem and is reported
in the following subsections. Additional details of the code can be found in Kamal et al.
(2021).

An important consideration in the calculation of the OWNS response is the placement
of the recursion parameters. For all cases, we follow the general recipe presented by Towne
& Colonius (2015). An estimate for the eigenvalues of the downstream and upstream
modes for each frequency and for each streamwise location can be obtained assuming
locally parallel and uniform flow equal to the free-stream velocity. The effectiveness
of the OWNS-P projection to accurately filter the upstream-travelling modes without
modifying the downstream ones is demonstrated in figure 3, where the local (in x)
spectra of the Navier–Stokes and OWNS-P equations are shown for the boundary layer
problem discussed in § 5.5 for three values of Nβ . The spectra were calculated by solving
a generalized eigenvalue problem obtained from the unforced (homogeneous) form of
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(a) (b) (c)

(d) (e) ( f )

Figure 4. Dipole test case: (a) forcing applied to the energy equation; (b) OWNS-P downstream-travelling
pressure response; (c) OWNS-P upstream-travelling pressure response; (d) exact pressure response;
(e) OWNS-P total pressure response recovered by summing the downstream- and upstream-travelling solutions;
( f ) error computed as the difference between the total OWNS-P and exact pressure responses, normalized by
the maximum of the exact pressure.

(3.46) by assuming a locally parallel flow, for which ∂x → iα and the complex streamwise
wavenumber α is the eigenvalue.

5.3. Dipole forcing of a quiescent fluid
In this problem a 2-D dipole forcing is used to excite waves in an inviscid quiescent fluid.
The right-hand-side forcing that is applied to the energy equation is shown in figure 4(a),
and the proper forcing terms are applied to the other equations in order to produce a dipole
response in the pressure field, which is shown in figure 4(d). This is an exact solution of
the Euler equations.

We use the OWNS-P method to obtain an approximate solution. The computational
domain extends ten wavelengths in both x and y and is discretized using 200 equally spaced
points in each direction. No incoming fluctuations are specified at the domain boundaries –
the waves are excited exclusively by the inhomogeneous forcing terms.

The pressure field obtained by integrating the one-way equations from left to right is
shown in figure 4(b). Clearly, the downstream-travelling waves are accurately captured.
Similarly, the pressure field obtained by integrating from right to left is shown in
figure 4(c). This time, the upstream-travelling waves are captured. Since the governing
equations are x-independent in this problem, the full solution can be recovered by summing
the downstream- and upstream-travelling solutions, which is shown in figure 4(e). The
error in the full OWNS-P solution, relative to the exact solution, is shown in figure 4( f ).
The total L2 error is 0.28 %, and this error is concentrated at angles nearly perpendicular
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Figure 5. Mean flow of the M = 1.5 turbulent jet. Local Mach number is shown.

to the marching direction as measured from the position of the source. As shown by Towne
& Colonius (2015), these high angles converge with Nβ at a slower, but still exponential,
rate than lower angles.

5.4. Supersonic turbulent jet
Next, we demonstrate our method using the example of a turbulent jet. Resolvent analysis
has been applied to jets by numerous authors (Garnaud et al. 2013; Jeun et al. 2016;
Schmidt et al. 2018; Lesshafft et al. 2019), and resolvent modes have been shown to capture
a rich set of physical phenomena. These include the Kelvin–Helmholtz instability, which
leads to large-scale coherent wavepacket structures (Jordan & Colonius 2013), the Orr
mechanism (Tissot et al. 2017; Schmidt et al. 2018), the lift-up mechanism (Nogueira
et al. 2019; Pickering et al. 2020) and trapped acoustic waves within the jet core (Tam &
Hu 1989; Towne et al. 2017b). The slow spread of the jet makes OWNS applicable, and
the diverse set of physics embedded within the resolvent operator make it a challenging
test case.

We will make comparisons between a standard global solution of the linearized
Navier–Stokes equation and those obtained using OWNS-P (and OWNS-O and PSE when
applicable). The global solution comprises the result of applying the resolvent operator to
a given forcing vector, giving a point of comparison for the approximation of this action
provided by the OWNS-P method.

We consider the specific case of a jet with Mach number M = Uj/c∞ = 1.5,
Reynolds number Re = ρjUjD/μ = 1760000 and temperature ratio Tj/T∞ = 1, where the
subscripts j and ∞ denote conditions at the jet nozzle exit and in the far field, respectively.
The mean flow about which the Navier–Stokes equations are linearized is obtained from
a large-eddy simulation (LES) described by Brès et al. (2017) and is shown in figure 5.
Within the linearized equation, we use a turbulent Reynolds number of ReT = 1760, three
orders of magnitude less than the true Reynolds number. This choice is motivated by recent
work showing that using an eddy-viscosity model or reduced effective Reynolds number
improves both the near-field (Pickering et al. 2021a) and far-field (Pickering et al. 2021b)
predictions in free-shear flows.

The linearized equations in cylindrical coordinates are discretized in the radial direction
as described earlier, and boundary conditions at the polar axis are enforced using the
approach of Mohseni, Colonius & Freund (2002). The physical portion of the domain
extends to r/D = 6 and is discretized using 150 grid points with a higher concentration
around the shear layer at r/D = 0.5, while the damping layer contains an additional 50
points. While the LES from which the mean flow is obtained includes the nozzle within the
computational domain, the resolvent calculations do not; previous publications have shown
that excluding the nozzle does not hinder favourable comparisons with data (Schmidt et al.
2018; Pickering et al. 2020). Since the mean flow is axisymmetric, the azimuthal direction
is homogeneous and can be decomposed into a Fourier series. In what follows, we focus
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on the axisymmetric mode (m = 0), which is often of foremost interest in the study of jet
aeroacoustics (Cavalieri et al. 2012; Chen & Towne 2021).

The streamwise grid for each method extends from x/D = 0.5 to 30 with equidistant
spacing of Δx = 0.05 (with the exception of the PSE method, which determines its
own step size) and an additional sponge region included in the global computation at
three diameters upstream and downstream. The OWNS-O and OWNS-P equations are
integrated in the streamwise direction using the second-order backward difference formula
and a fifth-order Runge–Kutta Radau II scheme, respectively (Hairer & Wanner 1971).
Here Nβ = 13 recursion parameters are used for estimating the OWNS operators. In the
following subsections, we show results for two frequencies, St = 0.26 and 0.52, which
are close to the frequency of maximum acoustic radiation (Jordan & Colonius 2013) and
maximum near-field resolvent gain (Schmidt et al. 2018), respectively.

5.4.1. Near-nozzle Kelvin–Helmholtz forcing
First, we compute the downstream response of the linearized equations to a disturbance
near the nozzle exit, and compare the OWNS-P solution to those obtained using
PSE, OWNS-O and a global computation. Specifically, the local Kelvin–Helmholtz
eigenfunction is specified at x/D = 0.5 as an initial condition in the PSE and OWNS
marches and as a boundary condition for the global method. The solution can be
interpreted as the response to a localized forcing at the upstream boundary. In other
words, we are computing the result of applying the resolvent operator, approximated by
each method, to a forcing vector that is localized at the upstream boundary and which
specifically excites the Kelvin–Helmholtz instability.

Results of this test case are shown in figure 6, which shows the pressure field computed
by each method for St = 0.26 and 0.52. The OWNS-P solution closely matches the
global solution for both frequencies, demonstrating that the OWNS-P method provides
a good approximation of the action of the resolvent operator on the Kelvin–Helmholtz
forcing vector. The OWNS-P solution also matches the OWNS-O solution, which has been
previously validated for a similar turbulent jet (Towne & Colonius 2015). As shown by
Sinha et al. (2014) and others, PSE also provides a reasonable solution for supersonic
jets forced by a Kelvin–Helmholtz mode. In this case PSE performs well because its
underlying assumptions are valid; we have artificially excited a single instability mode by
using the Kelvin–Helmholtz mode as an initial condition. While the acoustic radiation is
slightly damped compared with the other three solutions, especially for St = 0.26, it is also
reasonably captured because its wavelength is nearly the same as the Kelvin–Helmholtz
mode for low-supersonic jets (Towne et al. 2019). However, PSE cannot handle more
complex forcings such as those considered next.

5.4.2. Volumetric forcing using LES data
Second, we use both OWNS-P and the standard global approach to compute the response
of the linearized equations to global forcing vectors extracted from LES data. The
right-hand-side forcing term f in (2.3) is obtained by computing the two left-hand-side
terms using the LES approximation of the nonlinear Navier–Stokes operator N . The first
term can be computed as

∂q′

∂t
= ∂q

∂t
= N (q), (5.7)
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Figure 6. Response of the jet to the Kelvin–Helmholtz initial condition at x/D = 0.5 using global, PSE,
OWNS-O and OWNS-P methods, top to bottom, respectively. Contours of pressure are shown in each panel.

since q̄ does not depend on time (Towne 2016). The second term can be approximated as

A(q̄)q′ = ∂N
∂q

(q̄)q′ ≈ N (q̄ + εq′) − N (q̄)

ε
(5.8)

for some ε � 1 (de Pando, Sipp & Schmid 2012). We take ε = 10−7 and note that the
results are nearly independent of ε over a range spanning at least four orders of magnitude.
Details of the procedure can be found in Towne (2016).

After performing an azimuthal Fourier transform, an ensemble of realizations of q̂ and
f̂ are obtained from the LES data by segmenting q′ and f into overlapping blocks, each
containing Nf snapshots of data. We use blocks of length Nf = 256 with 80 % overlap and
employ the wC∞

4
window proposed by Martini et al. (2019) to minimize spectral leakage.

This results in 189 realizations of the flow at discrete frequencies, separated by ΔSt =
0.02604.

Each of these q̂, f̂ pairs approximately satisfy (2.6). That is, applying the resolvent
operator to f̂ yields q̂. This relationship is approximate for the LES data for two reasons.
First, by necessity, we used a finite length discrete Fourier transform in place of an infinite
and continuous Fourier transform to obtain q̂ and f̂ , leading to aliasing and spectral
leakage. In particular, q̂ exhibits a relatively flat spectrum up to moderate frequencies,
making it especially susceptible to aliasing (Towne, Brès & Lele 2017a; Karban et al.
2022). Second, the forcing term f was defined implicitly using the LES operator as
described above, whereas our resolvent operator is obtained by explicitly linearizing the
Navier–Stokes equations and discretizing the linear equations using numerics different
from those within the LES. Thus, we do not expect our global and OWNS-P approximation
of the action of the resolvent operator on f̂ to exactly reproduce the corresponding q̂
obtained from the LES data. Nevertheless, the f̂ vectors obtained from the LES data
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Figure 7. Realizations of the Mach 1.5 jet, including an LES-derived forcing and pressure response realization
(top two rows, respectively) and global and OWNS-P computed pressure realizations (bottom two rows,
respectively) forced with the above LES forcing realization.

provide a physically motivated forcing that can be used to compare the action of the
resolvent operators obtained via the OWNS-P march and the standard global solution.

Figure 7 shows one realization of the forcing and response for St = 0.26 and 0.52.
Specifically, we show the component of the forcing that is applied to the energy equation
and the response of the pressure field; other components of the forcing and response
are qualitatively similar (Towne 2016). The forcing is rather incoherent and lacks readily
visible large-scale structures. In contrast, the pressure field contains distinct wavepacket
structures and an acoustic beam emanating from the near field to the far field. Despite
the lack of structure within the forcing, its introduction as a volumetric forcing term to
the global and OWNS-P operators produces a response that is quite similar to the LES
pressure field. Some minor differences can be observed, e.g. both the global and OWNS-P
solutions contain stronger acoustic waves downstream of the main beam near the top-right
corner of the figure. These and other minor differences can be attributed to the factors
described earlier.

Of greater relevance to the current study, the OWNS-P response closely matches the
global response. For both frequencies, the OWNS-P response accurately captures the
relevant dynamics in the jet, including near-field structures such as Kelvin–Helmholtz
wavepackets (similar to those observed in figure 3) and Orr-type wavepackets (farther
downstream, e.g. 15 < x/D, 20), as well as the angle and intensity of acoustic
radiation to the far field. This substantial agreement between the global and OWNS-P
responses indicates that the OWNS-P approximation of the action of the resolvent
operator on this forcing vector accurately mimics that of the global resolvent
operator.

The ensemble of LES flow and forcing realizations can be used to compute the average
error of the OWNS-P approximation over many potential forcing vectors. Figure 8 shows
the power spectral density (PSD) of the LES, global and OWNS-P pressure fields for
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Figure 8. Full-field pressure PSD results for LES (a,b), global (c,d) and OWNS-P (e, f ).

St = 0.26 and 0.52, i.e. the squared amplitude of the response averaged over the ensemble
of realizations. In each case, the PSD is scaled by the maximum value of the PSD of the
LES data. The PSD of the global and OWNS-P solutions accurately mimic that of the
LES data. More importantly, the PSD computed from the ensemble of OWNS-P solutions
closely matches the PSD computed from the global solutions. Both the envelope of the
high-energy near-field region and intensity and directivity of the acoustic beam show good
agreement for both frequencies.

A more quantitative assessment is provided in figure 9, which shows the PSD of the
LES, global and OWNS-P pressure fields as a function of x/D at r/D = 0.5 (the jet lip
line) and r/D = 6 (the maximum radial position of the physical domain). The OWNS-P
solution closely matches the global solution except in two low-energy regions where
upstream-travelling waves are non-negligible. First, OWNS-P undershoots the global
solution very close to the nozzle for r/D = 0.5. Since the solution was initiated with a
zero boundary condition, the downstream-travelling waves have not yet developed at the
nozzle inlet, allowing the weak influence of upstream-travelling waves to be observed.
Second, the global solution contains weak upstream-travelling acoustic waves that cannot
be captured via one-way marching, resulting in an under prediction by OWNS-P along
r/D = 6 for x/D < 5, well away from the main acoustic beam observed at higher
values of x/D. Both of these minor discrepancies are expected given the one-way nature
of OWNS.

The PSD of the error between the global and OWNS-P solutions, normalized by the
maximum value of the PSD of the global solution, is shown in figure 10. Comparing with
figure 8, the average error is observed to be at least an order of magnitude smaller than the
average solution in both the near-field hydrodynamic region and the acoustic field. Overall,
these results indicate that the OWNS-P method provides an accurate approximation of the
action of the resolvent operator for the ensemble of forcing realizations extracted from the
LES data. Physically, the accuracy of the OWNS-P solution confirms the dominance of
downstream-travelling waves in the forced jet.
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Figure 9. Pressure PSD for LES (blue), global (orange) and OWNS-P (yellow) for (a) St = 0.26;
(b) St = 0.52. Solid and dashed lines correspond to r/D = 0.5 and 6, respectively.
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Figure 10. Full-field error between global and OWNS-P pressure PSD.

5.4.3. Optimal forcing and response
Next, we show that the OWNS-P framework provides an accurate approximation of the
global optimal forcing and response modes. The input forcing has been constrained to
0.5 < x/D < 30, Rmin < r/D < Rmax. We use Rmin = 0.0425 to prevent the forcing from
damaging the pole conditions (Mohseni et al. 2002) and Rmax is defined as the radial
jet location where the velocity is greater than 5 % of the maximum jet velocity, i.e. the
forcing is contained only within the jet. The output is defined in the full numerical domain,
0.5 < x/D < 30, 0 < r/D < 17.

The real part of the optimal pressure forcing and response from the OWNS-P and
global resolvent methods for St = 0.26 and 0.52 and m = 0 are shown in figure 11. At
these frequencies, the response is dominated by the amplification of disturbances due
to the Kelvin–Helmholtz instability (Schmidt et al. 2018; Pickering et al. 2020). The
global and OWNS-P solutions are shown along the jet lip line r/D = 0.5 in figure 12.
Quantitative agreement is obtained, justifying the assumption of weak influence of the
upstream-travelling modes during the OWNS-P parabolization procedure.

5.5. Mach 4.5 boundary layer
Finally, we consider a Mach 4.5 laminar flat-plate zero-pressure-gradient boundary layer.
Optimal forcing and response modes are computed using the OWNS-P and global methods
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Figure 11. Optimal forcing (a–d) and response (e–h) for the M = 1.5 turbulent jet. Comparison between global
(a,b,e, f ) and OWNS-P (c,d,g,h). Contours of the real pressure component at St = 0.26 and St = 0.52 are
shown.
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Figure 12. Optimal pressure response for the jet along r/D = 0.5 for (a) St = 0.26 and (b) St = 0.52. Solid
and dashed lines show the global and OWNS-P solutions, respectively.

for several frequency and wavenumber combinations corresponding to different instability
mechanisms. These cases, and the numerical parameters used for each, are summarized in
table 1.

All boundary layer quantities are non-dimensionalized using the free-stream velocity
U∞ and the local compressible displacement thickness δ∗(x) or the displacement thickness
at the outlet of the domain δ∗

0 . The Mach number is M = U∞/c∞ = 4.5. The outlet
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Boundary layer ω β Nx × Ny (OWNS-P) Nx × Ny (Global) x/δ∗
0 y/δ∗

0

Streaks 0.002 2.2 1601 × 81 601 × 108 0.01–155 0–9
Second mode 2.5 0 2401 × 108 1001 × 180 0.01–155 0–9
Oblique mode 0.32 1.2 1601 × 81 651 × 81 0.01–155 0–9

Table 1. Numerical parameters for the supersonic boundary layer cases.

of the domain is at Reout
x = ν∞x/U∞ = 1.74 × 106, or Reout

δ∗
0

= 11, 216. The domain

inlet is located a small distance form the leading edge at Rein
x = 105, corresponding to

Rein
δ∗

0
= 871, to avoid the singularity in the similarity solution that we use in this study.

The domain size is similar to that of Bugeat et al. (2019), where in their calculations
the outlet is at Reout

x = 1.75 × 106 or Reout
δ∗

0
= 11000. However, in their calculations the

flat-plate leading edge was also included in the computational domain, resulting in a weak
shock at the leading edge and small discrepancies in the momentum thickness at the outlet
compared with the similarity solution.

In order to properly resolve the instabilities near the wall and critical layer, grid
stretching in the y direction is employed clustering half of the points near the wall
for y/δ∗

0 < 0.9 (Malik 1990). No-slip and adiabatic boundary conditions (û = v̂ = ŵ =
∂T̂/∂y = 0) are enforced at the wall (Poinsot & Lele 1992). Integration of the OWNS-P
equations in x is performed using a second-order backward differentiation formula. As
indicated in table 1, fewer x grid points were used for the global calculation due to
the higher-order discretization and computational limitations due to its large memory
requirements.

All calculations were performed with Nβ = 15, which gave a good approximation for
the filtering of the upstream-travelling modes and accurate capturing of the downstream
ones.

5.5.1. Base flow
The laminar base flow is obtained from a similarity solution of the compressible
boundary layer equations. The Howarth–Dorodnitsyn transformation (Stewartson 1964)
was employed to reduce the governing equations to a set of ODEs, given in Appendix D.
The similarity solution is shown in figure 13.

5.5.2. Optimal gain
The resolvent modes for the adiabatic flat-plate boundary layer have been calculated with
the optimal OWNS-P method for a range of frequencies and spanwise wavenumbers.
In figure 14 the optimal input/output gains corresponding to three regions of locally
maximum gain in the β–ω plane are shown. Their maxima correspond to the amplification
of streaks (ω → 0), second Mack modes (β = 0) and oblique first modes. For all three
instability types, we observe excellent agreement of the optimal ω and/or β when
compared with the global resolvent calculations of Bugeat et al. (2019). For all the
calculations presented here, the forcing has been restricted only to the momentum
components ( fu, fv, fw) to match the set-up of Bugeat et al. (2019).
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Figure 13. Base flow of the M = 4.5 adiabatic flat-plate boundary layer obtained from a similarity
transformation. Self-similar streamwise and temperature components (a). Local Mach number (b) with the
dashed line corresponding to the displacement thickness.
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Figure 14. Optimal input/output gain for three linear instability mechanisms for the M = 4.5 flat-plate
adiabatic boundary layer. Validation against normalized results from Bugeat et al. (2019) for a similar
configuration.

5.5.3. Optimal forcing and response
For streaks, the optimal forcing consists of streamwise counter-rotating vortices that lift
the streamwise base flow momentum. This is referred to as the lift-up mechanism and
yields a response that contains primarily streaks of highly amplified streamwise velocity
stretching in the streamwise direction. The dominant input (fv) and output (û) velocity
modes from OWNS-P and global methods are shown in figure 15. Quantitative agreement
is again obtained between the OWNS-P optimal modes and the global ones, but minor
differences are observed near the inlet/outlet boundaries of the domain, where the sponges
of the global method attenuate the response to avoid reflections. Based on our experience,
the tuning of the sponges is a cumbersome procedure and problem specific, a step that
is bypassed during the OWNS-P marching since upstream-travelling waves have been
eliminated at each x location during the parabolization procedure.

In figure 15 we also plot the OWNS-P optimal forcing and response profiles for all
the perturbation components at a fixed streamwise location near the inlet and outlet,
respectively. The OWNS-P results are compared against our global calculations for the
same configuration and the global calculations from Bugeat et al. (2019). Quantitative
agreement is again obtained between OWNS-P and our global results, confirming the
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Figure 15. Streak (steady 3-D) optimal disturbances at ω = 0.002, β = 2.2. Forcing and response amplitude
components at x/δ∗

0 = 35 (a,c,e) and x/δ∗
0 = 159 (b,d, f ). Circle symbols: Bugeat et al. (2019); triangle

symbols: global; solid lines: OWNS-P.

accuracy of the OWNS-P approximation. Some discrepancies are observed for the forcing
away from the wall when our results (both global and OWNS-P) are compared against
Bugeat et al. (2019). These discrepancies can be attributed to the differences in the
computational domain (inclusion of leading edge and shock) and the different choice of
the input norm between the two studies. The forcing amplitudes presented in Bugeat et al.
(2019) likely correspond to the conservative form of the momentum equations, whereas
we perform our analyses using primitive variables (Karban et al. 2020). Essentially, our
forcing exists in a different subspace, but we are optimizing the same quantity, i.e. the
disturbance-energy amplification with respect to the Chu energy norm, which explains
the agreement observed in the response profiles despite the differences in the forcing
modes.
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Figure 16. Oblique first mode (unsteady 3-D) optimal disturbances at ω = 0.32, β = 1.2. Forcing and
response amplitude components at x/δ∗

0 = 12 (a,c,e) and x/δ∗
0 = 159 (b,d, f ). Circle symbols: Bugeat et al.

(2019); triangle symbols: global; solid lines: OWNS-P.

Contours of the optimal forcing and response for the oblique first mode are shown in
figure 16 for the dominant components fw and û from the OWNS-P and global calculations.
The optimal forcing field contains upstream-titled structures that are emblematic of the
non-modal Orr mechanism. This generates an oblique wave response with relatively large
streamwise velocity. Good agreement is obtained between the global and OWNS-P results
for all the perturbation input and output components, although a small error of about 1 %
in the wavelength can be observed.

In figure 17 we compare the results for the second mode instability, following a similar
procedure as in the two previous cases. We see the classical trapped acoustic waves
between the wall and relative sonic line as well as thermodynamic amplification near the
generalized inflection point in the response fields (two coexisting mechanisms). For such
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Figure 17. Planar second mode (unsteady 2-D) optimal disturbances at ω = 2.5, β = 0. Forcing and response
amplitude components at x/δ∗

0 = 90 (a,c,e) and x/δ∗
0 = 148 (b,d, f ). Circle symbols: Bugeat et al. (2019);

triangle symbols: global; solid lines: OWNS-P.

a response, the optimal forcing is localized near the generalized inflection point. Good
agreement is also obtained between OWNS-P and our global results for this family of
modes.

The close agreement between the global and OWNS-P modes extends also to suboptimal
modes. For example, figure 18 compares the global and OWNS-P streamwise velocity
response for the first suboptimal modes, i.e. the mode with the second highest gain, for
each of the three instability mechanisms.

6. Conclusions

Computing resolvent modes for flows with multiple inhomogeneous directions remains a
computationally intensive task. In this paper we have developed a new method that reduces
the cost of computing resolvent modes for flows that include a slowly varying direction.
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Figure 18. Streamwise velocity response for the first suboptimal mode computed by the global and OWNS-P
methods: (a,b) streaks; (c,d) oblique first mode; (e, f ) planar second mode.

Our computationally efficient approach contains two parts. First, we showed how the
action of the resolvent operator on a forcing vector can be accurately approximated using
a spatial marching method. This constitutes an extension of the OWNS methodology
introduced by Towne & Colonius (2015) to accommodate a forcing term on the
linear equations, which is central to the concept of resolvent analysis. The method
is based on an approximation of the projection operator that rigorously splits the
solution vector into downstream- and upstream-travelling components. Applying this
projection operator to the linearized Navier–Stokes equations yields a well-posed equation
governing the downstream evolution of the flow, which can be stably integrated in the
slowly varying direction. By construction, the influence of upstream-travelling waves on
downstream-travelling waves is neglected in the one-way march. This projection-based
method, which we call OWNS-P, uses the same recursion parameters and inherits the same
convergence properties as the previous outflow-based OWNS methodology, OWNS-O, of
Towne & Colonius (2015). Unlike the ubiquitous PSE, the OWNS-P method is capable of
capturing the complete downstream response of the flow rather than a single instability
mechanism (Towne et al. 2019).

Second, we leverage the ability of OWNS-P to efficiently and accurately approximate the
action of the resolvent operator to compute global resolvent modes at substantially reduced
cost. Using an adjoint-based optimization framework, volumetric forcings that optimally
excite and reveal the dominant 3-D instabilities of the flow are computed by marching
the forward and adjoint OWNS-P equations in the downstream and upstream directions,
respectively. Thus, we bypass the solution of direct and adjoint globally discretized
Navier–Stokes equations, which can be computationally expensive or even intractable for
3-D inhomogeneous (base) flows.

This one-way marching methodology relies on the convective nature of fluid flow and, in
particular, on the dominance of convective modal and non-modal instability mechanisms
in slowly varying shear flows (Huerre & Monkewitz 1990; Schmid & Henningson 2001).
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This limits the applicability of our approach to globally stable flows, the same class of
flows to which resolvent analysis is most naturally applied.

The OWNS-P method was demonstrated using three problems: a simple acoustics
problem, a turbulent Mach 1.5 jet and a laminar Mach 4.5 boundary layer. For the
jet, we showed that the OWNS-P solution faithfully approximates the action of the
resolvent operator on both a localized forcing near the nozzle exit designed to excite
the Kelvin–Helmholtz instability and a distributed volumetric forcing extracted from
LES data. In the latter case, the OWNS-P solution captured all three prominent
downstream-travelling mechanisms present in the jet: Kelvin–Helmholtz, Orr and acoustic
waves. Consequently, the optimal forcing and response modes were accurately computed
using the iterative marching technique. Similarly, for the boundary layer, we showed that
the optimal OWNS-P methodology faithfully computed the gains and forcing and response
modes associated with several different instability mechanisms, including streaks, the
second Mack mode and oblique modes. In both cases, the OWNS-P framework was
validated against global modes calculated by discretizing in all inhomogeneous spatial
directions.

The close agreement between the ONWS-P and global methods strongly implies that
the considered flows lack any significant (in terms of amplification) acoustic feedback
mechanisms or other upstream-travelling waves. While previous work using parallel-flow
stability theory and PSE are predicated on this result, neither framework captures the full
spectrum of downstream-travelling modes, leaving room for doubt that is eliminated by
the present approach. Apart from the computational advantages, the examples also show
that OWNS-P provides a bridge between global amplification mechanisms, which are
often difficult to interpret, and those from classical local spatial instability approaches,
for which the physics underlying various modes are often well understood (Schmid &
Henningson 2001). For example, the OWNS-P solution at any streamwise position can
be readily projected onto the associated parallel-flow eigenspectrum to reveal the local
contribution of each downstream-travelling mode.

In the future, we believe that OWNS-P will enable computation of global resolvent
modes that reveal the dominant instability mechanisms within previously intractable
3-D flows that contain a slowly varying direction, including swept wings and other 3-D
aerodynamic bodies and jets with non-circular nozzles, e.g. rectangular jets and other
complex nozzle geometries typical of modern tactical aircraft.

The OWNS methodology is also applicable to other problems beyond computation of
resolvent modes. For example, OWNS could be used to find the downstream receptivity
to an incident disturbance, compute kernels for closed-loop flow control or predict flow
statistics based on stochastic forcing. Indeed, any problem to which PSE can be applied
can also be addressed using OWNS, and the latter approach will provide greater accuracy
for problems containing multiple relevant physical mechanisms, e.g. multiple instability
modes, transient growth or acoustics. The proper choice between the original OWNS-O
method and the OWNS-P method developed in this paper is dictated by the need, or
lack-there-of, for a forcing term: only the OWNS-P method can accommodate a forcing
term, but at the cost of solving a system of recursion equations that is twice as large
compared with the OWNS-O approach.

Furthermore, the OWNS-P framework can be used for the calculation of nonlinear
optimal disturbances (Rigas, Sipp & Colonius 2021) by including a finite number of
harmonic balanced nonlinear interactions in the Lagrangian formulation. Calculation
of nonlinear disturbances in compressible regimes has been attempted in the past
using nonlinear PSE, which cannot account for multimodal instabilities or non-normal
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amplification mechanisms (Towne et al. 2019), which play a key role during the transition
process.
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Appendix A. Analytical solution of the recursion equations

In this appendix we provide an analytical solution of the recursion (3.40), which leads to
the expression for PNβ given in (3.42).

We begin by writing (3.40b)–(3.40d) in terms of the expansion coefficients ψ j = Uφ̂
j
±,

(D − iβ j
−I)ψ−j − (D − iβ j

+I)ψ−j−1 = 0 j = 1, . . . , Nβ − 1, (A1a)

(D − iβ0
−I)ψ0 − (D − iβ0

+I)ψ−1 = (D − iβ0
−I)ψ, (A1b)

(D − iβ j
+I)ψ j − (D − iβ j

−I)ψ j+1 = 0 j = 0, . . . , Nβ − 1. (A1c)

Since D is diagonal, each scalar component of ψ j can be treated separately,

(iαk − iβ j
−I)ψ−j

k − (iαk − iβ j
+I)ψ−j−1

k = 0 j = 1, . . . , Nβ − 1, (A2a)

(iαk − iβ0
−I)ψ0

k − (iαk − iβ0
+I)ψ−1

k = (iαk − iβ0
−I)ψk, (A2b)

(iαk − iβ j
+I)ψ j

k − (iαk − iβ j
−I)ψ j+1

k = 0 j = 0, . . . , Nβ − 1, (A2c)

for k = 1, . . . , N. The intermediate auxiliary variables (j = −Nβ + 1, . . . , Nβ − 1) can
then be easily eliminated, leaving

ψ
−Nβ

k = F−1(αk)(ψ
0
k − ψk), (A3a)

ψ
Nβ

k = F(αk)ψ
0
k . (A3b)

The function F(α) is the same as in (3.44). Equation (A4) can be written for all k as{
ψ

−Nβ

+
ψ

−Nβ

−

}
=
[

F−1
++ 0
0 F−1

−−

]{
ψ0

+ − ψ+
ψ0

− − ψ−

}
, (A4a)

{
ψ

Nβ

+
ψ

Nβ

−

}
=
[

F++ 0
0 F−−

]{
ψ0

+
ψ0

−

}
, (A4b)

where F++ and F−− are diagonal matrices whose entries are the values of F(α) associated
with each downstream- and upstream-travelling eigenvalue, respectively.
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To apply the termination conditions given by (3.40a) and (3.40e), it is necessary to write

the left-hand-sides of (A4) in terms of φ̂
Nβ

± and φ̂
−Nβ

± . This requires a further partitioning
of the left eigenvectors of M ,

U+ = [U++ U+−] U− = [U−+ U−−], (A5)

where U+− ∈ CN+×N− and so on. Then, (A4) can be written as[
U++ U+−
U−+ U−−

]{
φ̂

−Nβ

+
φ̂

−Nβ

−

}
=
[

F−1
++ 0
0 F−1

−−

]{
ψ0

+ − ψ+
ψ0

− − ψ−

}
, (A6a)

[
U++ U+−
U−+ U−−

]{
φ̂

Nβ

+
φ̂

Nβ

−

}
=
[

F++ 0
0 F−−

]{
ψ0

+
ψ0

−

}
. (A6b)

Applying (3.40a) and (3.40e) and eliminating φ̂
−Nβ

− and φ̂
Nβ

+ leaves[
I −R+−

−R−+ I

]{
ψ0

+
ψ0

−

}
=
[

I 0
0 0

] [
I −R+−

−R−+ I

]{
ψ+
ψ−

}
, (A7)

with

R+− = F++W +−F−1
−−, (A8a)

R−+ = F−1
−−W −+F++, (A8b)

and

W +− = U+−U−1
−−, (A9a)

W−+ = U−+U−1
++. (A9b)

Solving (A7) for ψ0 and reverting to φ̂± variables gives

φ̂
0
± = PNβ φ̂±, (A10)

where PNβ is given by (3.42).

Appendix B. Well posedness of the approximate one-way equation

To show that (3.35) and (3.36) remain well posed as one-way equations when PNβ is
used in place of P, it suffices to show that PNβ → P as η → ∞, since we know that
the eigenvalues of PM and (I − P)M exhibit the correct behaviour for well posedness, as
defined by (3.19) and (3.20), in this limit. Therefore, the task at hand is to show that R+−
and R−+ go to zero as η → ∞. In this limit, M tends to the diagonal matrix −ηÃ−1. Since
it is diagonal, its eigenvector matrices are also diagonal and unitary; U++ and U−− are
appropriate sized identity matrices and U+− and U−+ are zero. Also, the eigenvalues of
the asymptotic form of M approach infinity, which causes F(αk) → 1 for every k since the
recursion parameters are bounded as η → ∞ (Towne & Colonius 2015). Consequently,
F++ and F−− become identity matrices. Putting this all together, we conclude from (A8)
that R+− and R−+ go to zero as η → ∞. Therefore, (3.35) and (3.36) are well posed when
PNβ is used in place of P.
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Appendix C. Approximate projection in matrix form

The recursions (3.40) and (3.41) define a system of equations whose solution provides
the action of the approximate projection operator on a vector. These equations are written
in terms of M . While this aided the theoretical development of the method, in practice
it is preferable to work in terms of L and Ã. This can be achieved by introducing zero
characteristic components to the auxiliary variables satisfying

φ̂
j
0 = −L−1

00 L0±φ̂
j
±. (C1)

Then, (3.40), (3.41) and (C1) can be written together in the form shown in (3.45). Here,
we exhibit the structure of this system using the example Nβ = 2,

φ̂
′
± ≈ φ̂

0
± = [[0±− 0±0] 0 [I±± 0±0] 0 [0±+ 0±0]

]︸ ︷︷ ︸
P3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣φ̂−2

−
φ̂

−2
0

⎤
⎦

φ̂
−1

φ̂
0

φ̂
1⎡

⎣φ̂2
+
φ̂

2
0

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ̂

aux

, (C2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
[
Q(+1)

− Q(+1)
0

]
M(−1)

−Q(+0) Q(−0)[
L0± L00

]
−Q(+0) Q(−0)

−Q(+1)
[
Q(−1)

+ Q(−1)
0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣φ̂−2

−
φ̂

−2
0

⎤
⎦

φ̂
−1

φ̂
0

φ̂
1⎡

⎣φ̂2
+
φ̂

2
0

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ̂

aux

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Q(−0)

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ I

−L−1
00 L0±

⎤
⎦

︸ ︷︷ ︸
P1

φ̂±,

(C3)
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where

Q(+j) = L − iβ j
+Ã, (C4a)

Q(−j) = L − iβ j
−Ã. (C4b)

The superscripts in (C4) indicate which recursion parameter is subtracted, not a power of
the matrix. The single plus, minus and zero matrix subscripts indicate certain columns of
a matrix, as in (3.21). For example, Q(−1)

+ contains the first N+ columns of Q(−1). These
truncated blocks appear in (C3) due to the terminal conditions (3.40a) and (3.40e) within
the recursion equations, which are enforced by removing rows and columns corresponding

to φ̂
Nβ

− and φ̂
−Nβ

+ . Indeed, it is these terminal conditions, and their impact on P2, that force
the recursions to be solved all at once as a coupled set.

Appendix D. Self-similar boundary layer solutions

The 2-D base flow is obtained by applying a Howarth–Dorodnitsyn transformation, under
which the governing compressible boundary layer equations reduce to ODEs of the form
(Stewartson 1964)

ff ′′ +
(

μρ

μ∞ρ∞
f ′′
)′

= 0, (D1a)

(
1

Pr
μρ

μ∞ρ∞
T ′
)′

+ fT ′ + (γ − 1)M2
∞

μρT∞
μ∞ρ∞

f ′′2 = 0, (D1b)

where
f ′ = f ′(η) = U/U∞, (D2)

with corresponding boundary conditions

f (0) = f ′(0) = 0, f ′(∞) = 1, T(∞) = T∞, T ′(0) = 0 (adiabatic). (D3)

In this appendix, ()′ quantities denote derivatives with respect to the vertical self-similar
η direction.
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