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The application of control tools to complex flows frequently requires approximations,
such as reduced-order models and/or simplified forcing assumptions, where these may
be considered low rank or defined in terms of simplified statistics (e.g. white noise). In
this work we propose a resolvent-based control methodology with causality imposed via a
Wiener–Hopf formalism. Linear optimal causal estimation and control laws are obtained
directly from full-rank, globally stable systems with arbitrary disturbance statistics,
circumventing many drawbacks of alternative methods. We use efficient, matrix-free
methods to construct the matrix Wiener–Hopf problem, and we implement a tailored
method to solve the problem numerically. The approach naturally handles forcing terms
with space–time colour; it allows inexpensive parametric investigation of sensor/actuator
placement in scenarios where disturbances/targets are low rank; it is directly applicable to
complex flows disturbed by high-rank forcing; it has lower cost in comparison to standard
methods; it can be used in scenarios where an adjoint solver is not available; or it can
be based exclusively on experimental data. The method is particularly well suited for
the control of amplifier flows, for which optimal control approaches are typically robust.
Validation of the approach is performed using the linearized Ginzburg–Landau equation.
Flow over a backward-facing step perturbed by high-rank forcing is then considered.
Sensor and actuator placement are investigated for this case, and we show that while the
flow response downstream of the step is dominated by the Kelvin–Helmholtz mechanism,
it has a complex, high-rank receptivity to incoming upstream perturbations, requiring
multiple sensors for control.
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1. Introduction

Flow control is a challenging problem both from the academic perspective and in terms
of concrete applications, where problems such as laminar-to-turbulent transition, drag
reduction and flow-induced vibration are of practical concern (Rowley et al. 2006;
Kim & Bewley 2007; Bagheri & Henningson 2011; Luhar, Sharma & McKeon 2014;
Brunton & Noack 2015; Jin, Illingworth & Sandberg 2020). The difficulties arise from the
nonlinearity of flow dynamics, which is often avoided by considering a linearized system.
Nevertheless, it is not clear how to model the neglected nonlinear terms, and effective
methods to determine the optimal location of sensors and actuators are still a topic of
research. Among the linear control strategies presently available, inverse feed-forward,
wave-cancellation, optimal and robust control are popular choices. Throughout this work,
by optimal and robust control we mean the corresponding linear control approaches.

In flows dominated by convection, wave cancellation has been proposed as a
simple-but-effective control strategy. Waves are identified by upstream sensors, and
actuators situated between the sensors and targets act to minimize perturbations at the
target location (Sasaki et al. 2016). Although the approach is not guaranteed to be causal, in
so far as computation of the actuation signal may require future sensor readings, causality
can be imposed by ignoring the non-causal part of the control kernel. This has been
shown to closely reproduce optimal control when there is sufficient distance between
sensors, actuators and targets (Sasaki et al. 2018a). While this can significantly reduce the
effectiveness of the controller (Brito et al. 2021), the approach has been successfully used
in numerous studies (Hanson et al. 2014; Sasaki et al. 2018b; Maia et al. 2021). A similar
approach was used by Luhar et al. (2014), where opposition control based on the resolvent
operator was performed. Adaptive control strategies are often similar to wave-cancellation
approaches, but use additional downstream sensors to adapt the control law to changes in
the flow (Fabbiane et al. 2014; Simon et al. 2016).

Optimal control, on the other hand, minimizes a quadratic cost functional (Bagheri
et al. 2009b), frequently associated with the mean perturbation energy. This approach
provides a maximal reduction of perturbation energy and has been used to control flow
instabilities (Bewley & Liu 1998) or to reduce the receptivity of a flow to disturbances
(Barbagallo, Sipp & Schmid 2009; Semeraro et al. 2011; Juillet, Schmid & Huerre 2013;
Juillet, McKeon & Schmid 2014; Morra et al. 2020; Sasaki et al. 2020), to delay transition
to turbulence, for instance. However, the robustness of optimal control may be hindered
by feedback between actuators and sensors and/or by small errors in the flow model.
In some cases, such issues may even cause the control law to further destabilize the
system. While the model can be accurately known in some scenarios, for instance, when
simulating transitional flows subject to small disturbances, applications in off-design
conditions or in cases where nonlinear dynamics are important, will generally result in
a reduction of the accuracy with which the linear model represents the physical system.
Robust control allows a balance to be struck between the cost-functional reductions and
the control robustness: at the cost of achieving lower energy reduction than optimal
control, robust control can tolerate higher modeling errors. This kind of approach has
been used in several recent studies (Dahan, Morgans & Lardeau 2012; Jones et al. 2015;
Jin et al. 2020). Robust control is particularly important for the control of oscillator
systems where actuators are frequently situated upstream of sensors (Bagheri et al. 2009b).
For this kind of configuration, optimal control is typically not robust (Schmid & Sipp
2016).

There are, however, many scenarios where optimal control is robust. Schmid & Sipp
(2016) showed that this is the case for amplifier flows, where sensors are typically located
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upstream of actuators. Semeraro et al. (2011) arrived at a similar conclusion for the
control of boundary layer disturbances, where the optimal control was found to be robust
to changes in Reynolds numbers and pressure gradients. Our study is focused on this
scenario: the development of optimal control for amplifier flows.

The usual approach to obtain optimal control laws involves solution of Riccati equations.
The computational cost grows rapidly with the number of degrees of freedom (DOFs) of
the system. As problems in fluid mechanics typically have many DOFs, methods based on
the solution of Riccati equations are impractical. A standard way of dealing with this issue
is to base control design on reduced-order models (ROMs) (Bagheri et al. 2009b). Several
bases have been used to obtain ROMs, such as proper orthogonal decomposition modes
(Noack & Eckelmann 1993), eigenmodes (Åkervik et al. 2007), and balanced modes
(Bagheri et al. 2009b; Barbagallo et al. 2009). The eigensystem realization algorithm
(ERA) (Juang & Pappa 1985) was shown to be equivalent to a ROM based on balanced
modes, with only a fraction of the costs when external disturbances are low rank (Ma,
Ahuja & Rowley 2011). A drawback of such techniques is that control laws obtained from
these ROMs are not guaranteed to be optimal when applied to the full system. Model
reduction with balanced modes has upper-error bounds for modelling open-loop systems,
but even when the open-loop system is accurately represented by the ROM, a control law
based on the ROM can be ineffective when applied to the original problem (Åström &
Murray 2010, p. 349).

Several approaches exist for obtaining estimation and control laws for the full system.
Optimal estimation and control gains for the full system can be obtained iteratively
(Semeraro et al. 2013; Luchini & Bottaro 2014). This, however, requires integration
of a large auxiliary system for real-time application; this adds significant cost when
used in a numerical simulation and is likely unfeasible for experimental implementation.
Alternatively, the control law can be reduced a posteriori (design-then-reduce), instead
of being designed based on a ROM (reduce-then-design). Another approach applicable to
the full system is to use estimation strategies using an ensemble Kalman filter (Colburn,
Cessna & Bewley 2011). However, this requires the integration of multiple realizations
of the full system, which adds significant computational cost when applied to numerical
solutions.

Control strategies are highly dependent on actuator and sensor placement, and the
optimal choice is often unclear. As ROMs are frequently derived for a specific set of
sensors and actuators, studies of the role of their placement for control often rely on the
derivation of multiple ROMs. An example is the study of Belson et al. (2013), in which
an ERA ROM was required for each sensor position. This highlights the role of ROMs in
studies of sensor and actuator placement and how this can be costly. As sensor and actuator
positioning substantially impacts the control strategy (Ilak & Rowley 2008; Illingworth,
Morgans & Rowley 2011; Belson et al. 2013; Freire et al. 2020), it is of interest to be able
to obtain control laws without having to rely on ROMs for each possible choice of sensor
and actuator.

Most approaches used for flow control typically require simplified forcing assumptions,
frequently modelled as white-in-time noise. Although complex spatial-temporal forcing
colour can be used in the Kalman-filter framework, the approach requires use of an
expanded system that filters a white-noise input to create a coloured noise, with the
extra assumption that the forcing cross-spectral density (CSD) is a rational function of
the frequency (Åström & Wittenmark 2013). Simplified forcing-colour models are thus
typically used to avoid this complexity. However, it has been shown that the use of
realistic spatiotemporal forcing colour is crucial for accurate estimation of complex flows
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(Chevalier et al. 2006; Martini et al. 2020; Amaral et al. 2021). This is an indication that
control can be considerably enhanced if realistic forcing models are used.

Another approach to estimation and control is possible using the Wiener–Hopf
formalism. An optimal non-causal estimation method, known as a Wiener filter (Wiener
1942; Barrett & Moir 1987), and optimal control strategies, known as Wiener regulators
(Youla, Jabr & Bongiorno 1976; Grimble 1979; Moir & Barrett 1989), can be obtained
based on CSDs between sensors, actuators and flow states. Although well described in
the control literature, their potential for flow control has not been appropriately explored.
To the best of the authors’ knowledge, Martinelli (2009) is the only work in which
the formalism has been used for flow control. Difficulties in solving the associated
Wiener–Hopf problems limited that study to the use of one sensor and one actuator, and
the significant cost of converging the CSDs probably hindered further application of the
method.

Wiener–Hopf problems appear when causality constraints are imposed on the estimation
and control kernels. The Wiener–Hopf method has been used in the fluid mechanics
community to obtain solutions to linear problems with spatial discontinuities, such as
acoustic scattering by edges (Noble 1959; Peake 2004). Solutions to this class of problem
are typically based on a factorization of the Wiener–Hopf kernel into components that are
regular on the upper/lower halves of the complex frequency plane. Such factorization can
be achieved analytically only for scalar problems (Crighton & Leppington 1970; Peake
2004) and for some special classes of matrices (Daniele 1978; Rawlins & Williams 1981).
Lacking general analytical solutions, several numerical approaches can be used (Tuel 1968;
Daniele & Lombardi 2007; Atkinson & Shampine 2008; Kisil 2016). The potential of the
method for estimation and control comes from the fact that the size of the matrices to be
factorized scales with the number of sensors and actuators, in contrast to control strategies
based on solutions of algebraic Riccati equations that scale with the system’s size.

While the use of a linear control strategy for nonlinear systems has clear limitations,
i.e. it is expected to work only when the disturbances around a reference flow can be
reasonably approximated by a linear model, there are many examples in the literature
(several of which are cited above) that show how the approach is useful in a broad variety
of flows.

The objective of our study is to obtain a method for real-time estimation and control that
avoids some of the drawbacks of previous approaches. To achieve this, we strategically
combine three pre-existing tools: the Wiener–Hopf regulator for flow control (Martinelli
2009); a numerical method to solve matrix Wiener–Hopf problems (Daniele & Lombardi
2007); and matrix-free methods for obtaining the resolvent operator of large systems
(Martini et al. 2020, 2021; Farghadan et al. 2021). Combining these tools provides a novel
method that can, for the first time, simultaneously handle complex forcing colour and be
applied directly to large systems without the need for a priori model reduction, allowing
parametric investigation of sensor/actuator placement at low cost when forcing/targets
are low rank. To the best of the authors’ knowledge, this is also the first time that
the Wiener–Hopf regulator is constructed from first principles, i.e. from the linearized
equations of motion and a model of the forcing, as in the linear quadratic Gaussian
(LQG) framework. This construction provides physical insights on the structures that can
be estimated and controlled. The approach can also be used to improve wave-cancelling
strategies (Li & Gaster 2006; Fabbiane et al. 2014; Sasaki et al. 2018a; Brito et al. 2021;
Maia et al. 2021), minimizing the effect of kernel truncation.

The method can be viewed as an extension of the resolvent-based estimation methods
recently developed by Towne, Lozano-Durán & Yang (2020) and Martini et al. (2020).
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In the former study, a resolvent-based approach was developed to estimate space–time
flow statistics from limited measurements. The central idea is to use the measurements
to approximate the nonlinear terms that act as a forcing of the linearized Navier–Stokes
equations, which in turn provide an estimate of the flow state upon application of the
resolvent operator in the frequency domain. The latter study extends this resolvent-based
methodology to obtain optimal estimates of the time-varying flow state and forcing. The
estimator is derived in terms of transfer functions between the measurements and the
forcing terms and can be written in terms of the resolvent operator and the CSD of the
forcing. However, these methods are nominally non-causal, making them appropriate for
flow reconstruction but limiting their applicability for flow control.

The method developed in the current paper follows that of Martini et al. (2020), but
with additional constraints to enforce causality. It is these constraints that lead to the
aforementioned Wiener–Hopf problem. The causality of the new resolvent-based estimator
makes it applicable for real-time estimation, and we use a similar approach to develop
an optimal resolvent-based controller. The resulting estimation and control methods are
thus obtained directly for the full-rank flow system, without requiring ROMs, and they
make use of the spatiotemporal forcing statistics, thus avoiding the simplified forcing
assumptions that can lead to significant reductions in performance.

The paper is structured as follows. The derivation of optimal estimation and control
kernels based on the Wiener–Hopf formalism are constructed in § 2, and solutions
are compared to those obtained from the algebraic Riccati equation using a linearized
Ginzburg–Landau problem. Implementation of the method using numerical integration of
the linearized system and using experimental data are described in § 3. An application
to flow over a backward-facing step is presented in § 4. Final conclusions are drawn in
§ 5. An introduction to Wiener–Hopf problems (which appear in § 2) and their solution is
presented in Appendix A.

2. Estimation and control using Wiener–Hopf methods

In what follows, we define the linear system considered, followed by the derivation of
optimal estimation and control kernels based on the Wiener–Hopf approach. Optimality
here is defined in terms of quadratic cost functionals. An approach to recover estimation
and control gains from the proposed approach is presented. The derivation for full-state
control is presented in Appendix B.

2.1. System definition
We consider the linear time-invariant system

du
dt

(t) = Au(t) + Bf f (t) + Baa(t),

y(t) = Cyu(t) + n(t),
z(t) = Czu(t),

⎫⎪⎬
⎪⎭ (2.1)

where u ∈ Cnu represents the flow state, f ∈ Cnf is an unknown stochastic forcing,
which can represent external disturbances and/or nonlinear interactions (McKeon &
Sharma 2010), a ∈ Cna represents flow actuation used for control, y ∈ Cny is a set of
system observables, n ∈ Cny is measurement noise and z ∈ Cnz is a set of targets for the
control problem, for instance, perturbations at a given position or surface loads, to be
minimized. The system evolution is described by the matrix A ∈ Cnu×nu , representing the
linearized Navier–Stokes operator. The matrices B f ∈ Cnu×nf , Ba ∈ Cnu×na, Cy ∈ Cny×nu
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and Cz ∈ Cnz×nu determine the spatial support of external disturbances, actuators, sensors
and targets, as in Bagheri, Brandt & Henningson (2009a). Forcing and sensor noise are
modelled as stochastic zero-mean processes with two-point space–time correlations given
by

F (t − t′) = 〈f (t)f †(t′)〉, (2.2)

N(t − t′) = 〈n(t)n†(t′)〉, (2.3)

with † representing the adjoint operator using a suitable inner product and 〈·〉 representing
the ensemble average. We emphasize that these forcing and noise statistics are more
general than those assumed in the derivation of the Kalman filter and LQG control,
in which they must be uncorrelated in time. A frequency-domain representation of the
two-point correlation is given by the CSDs

F̂ (ω) = 〈f̂ f̂ †〉, (2.4)

N̂(ω) = 〈n̂n̂†〉. (2.5)

Note that this differs from the standard definition, i.e. 〈 f̂ f̂ H〉, with H representing the
conjugate transpose of the matrices; this modified definition simplifies the derivations that
follow.

Throughout this work, we assume the system to be stable, that is, all eigenvalues λ of
A, i.e. λ for which Aû = −iλû has non-trivial solutions, lie in the lower half-plane. As
discussed in § 1, optimal control strategies are best suited for amplifier flows, which satisfy
this stability requirement.

It is useful to split (2.1) into two systems, one of which is driven by the forcing and
includes sensor noise,

du1

dt
(t) = Au1(t) + Bf f (t),

y1(t) = Cyu1(t) + n(t),
z1(t) = Czu1(t),

⎫⎪⎬
⎪⎭ (2.6)

and another noiseless system driven by actuation only,

du2

dt
(t) = Au2(t) + Baa(t),

y2(t) = Cyu2(t),
z2(t) = Czu2(t).

⎫⎪⎬
⎪⎭ (2.7)

The original system can be recovered adding the variables with subscripts ‘1’ and ‘2’,
that is,

u = u1 + u2, y = y1 + y2, z = z1 + z2. (2.8a–c)

Figures 1 and 2 illustrate these systems.
The derivations that follow make use of the frequency-domain form of these equations.

Taking a Fourier transform of (2.6) and (2.7) yields the input–output relationships

ŷ1(ω) = Ryf (ω)f̂ (ω) + n̂(ω), with Ryf (ω) = CyRBf , (2.9)

ẑ1(ω) = Rzf (ω)f̂ (ω), with Rzf (ω) = CzRBf , (2.10)

ŷ2(ω) = Rya(ω)â(ω), with Rya(ω) = CyRBa, (2.11)

ẑ2(ω) = Rza(ω)â(ω), with Rza(ω) = CzRBa, (2.12)
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f

a

Bf

R u

y z

Ba
Cy Cz

Figure 1. Block diagram representing the system (2.1).

where

R = (−iωI − A)−1 (2.13)

is the resolvent operator. Note that the above input–output relations are exact within the
linearized model used here, and thus has the same limitation as any linear modelling of the
original nonlinear system, i.e. treating the nonlinear interactions as exogenous stochastic
noise. This framework is shared by all linear control laws that have been developed.

2.2. The estimation problem
Before deriving the optimal causal estimator that we seek, we first briefly review the
derivation of the optimal non-causal estimator (Martini et al. 2020). We will see later
that the two cases are closely related but that imposing causality leads to the appearance
of an additional term. We focus on the uncontrolled estimation problem, i.e. a(t) = 0, thus
making (2.1) and (2.6) equivalent.

The optimal estimator minimizes the cost functional

J =
∫ ∞

−∞
〈e†(t)e(t)〉 dt = 1

2π

∫ ∞

−∞
〈ê†(ω)ê(ω)〉 dω, (2.14)

defined in terms of the estimation error

e(t) = z(t) − z̃(t), (2.15)

where z is the target, i.e. the quantity to be estimated, and z̃ is its estimate and where 〈 · 〉
represents the expected value. Note that full-state estimation is recovered using Cz = I .

We seek an estimate of the targets in the form of a linear combination of sensor readings,
in the form of

z̃(t) =
∫ ∞

−∞
T z,nc(τ )y(t − τ) dτ, ˜̂z(ω) = T̂ z,ncŷ(ω), (2.16a,b)

where the subscript nc is a reminder that the kernel, T z,nc ∈ Cnz×ny , is, in general,
non-causal, and T̂ z,nc is its Fourier transform. Expanding (2.14) leads to

J = 1
2π

∫ ∞

−∞
((Rzf − T̂ z,ncRyf )

†F̂ (Rzf − T̂ z,ncRyf ) + R†
yf T̂ †

z,ncN̂T̂ z,ncRyf ) dω. (2.17)

In the above equations, and henceforth, the frequency dependence is omitted for clarity.
The minimum is found by taking the derivative of the cost function (2.17) with respect to
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T̂ †
z,nc(ω) and setting it to zero. The optimal estimation kernel is obtained as the solution of

T̂ z,ncĜl = Ĝr , (2.18)

where

Ĝl = Ryf F̂R†
yf + N̂, (2.19)

Ĝr = Rzf F̂R†
yf . (2.20)

Note that the forcing CSD F̂ appears explicitly in the equation, and is thus naturally
handled by the approach.

Causality of the estimation kernel can be enforced in (2.14) using Lagrange multipliers
(Martinelli 2009), as

J′ = J +
∫ ∞

−∞
Tr(Λ−(t)T z,c(t) + Λ

†
−(t)T †

z,c(t)) dt

= J +
∫ ∞

−∞
Tr(Λ̂−T̂ z,c + Λ̂

†
−T̂ †

z,c) dω, (2.21)

where the Lagrange multipliers Λ−, Λ+ ∈ Cny×nz are required to be zero for t > 0, thus
enforcing the condition T z,c(t < 0) = 0. The subscript c is used to emphasize the causal
nature of this kernel.

The functionals J and J′ differ only by linear terms in the estimation kernel, and thus it
is straightforward to see that taking the derivative of J′ and setting it to zero leads to

T̂ z,cĜl + Λ̂− = Ĝr . (2.22)

This apparently simple equation hides significant complexities. First, this is a single
equation with two variables, T̂ z,c and Λ̂. Nevertheless, it admits a unique solution due to
the requirements that T z,c(t < 0) = 0 and Λ(t > 0) = 0, which in the frequency domain
impose restrictions on T̂ z,c and Λ̂, namely that these quantities are regular on the upper and
lower complex planes, respectively. This restriction means that the values of T̂ z,c and Λ̂ for
different frequencies have a non-trivial relation between them, and thus cannot be chosen
independently. Equation (2.22), with the regularity constrains, constitutes a Wiener–Hopf
problem. As discussed in § 1, analytical solutions are only known for special cases, and
thus we resort to numerical methods. An introduction to Wiener–Hopf problems and
numerical methods to solve them is presented in Appendix A. The solution of (2.22), once
inverse Fourier transformed, is the optimal causal estimation kernel for the linear system
at hand.

In previous studies (Martini et al. 2020; Amaral et al. 2021) we have shown that using
the spatiotemporal forcing statistics considerably improves the accuracy of the estimation
of a turbulent channel flow. The estimation method presented here preserves the ability to
handle these complex forcing models, while being applicable in real time via the simple
integration of

z̃(t) =
∫ ∞

0
T z,c(τ )y(t − τ) dτ, (2.23)

which is similar to (2.16a,b), but with integration restricted to positive τ , implying that
only present and past sensor measurements are used for estimation.
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2.3. Partial-knowledge control
Control can be divided in full-knowledge control, where the full state of the flow is
assumed to be known, and partial-knowledge control, where the flow state needs to be
estimated from limited, noisy, sensor readings. In this section we derive the optimal
partial-knowledge control; the full-knowledge case is considered in Appendix B for
completeness.

Analogous to the estimation problem, we seek a control law that constructs an actuation
signal as a linear function of sensor readings,

a(t) =
∫ ∞

−∞
Γ ′(τ )y(t − τ) dτ, â = Γ̂ ′ŷ, (2.24)

where Γ ′ ∈ Cna×ny is the control kernel and Γ̂ ′ is its Fourier transform. However, the
derivation of the kernel is simplified if instead the actuation is expressed only in terms of
y1, i.e. ignoring the influence of the actuator on the sensor,

a(t) =
∫ ∞

−∞
Γ (τ )y1(t − τ) dτ, â = Γ̂ ŷ1, (2.25)

where again Γ ∈ Cna×ny and Γ̂ its Fourier transform.
This implies no loss of generality: as y2 is a function only of the previous actuation,

which is known, it can be computed using the actuator impulse response and subtracted
from y to obtain y1. The approach is equivalent to the formalism of an internal model
control (Morari & Zafiriou 1989). The control kernel Γ is then chosen so as to minimize
a cost functional that trades off the expected value of targets and actuation,

J =
∫ ∞

−∞
〈z†(t)z(t) + a†(t)Pa(t)〉 dt =

∫ ∞

−∞
〈ẑ†ẑ + â†Pâ〉 dω, (2.26)

where P ∈ Cna×na is a positive-definite matrix containing actuation penalties. For
simplicity, we do not include a state cost matrix. This does not imply any loss of generality,
as any state cost matrix Q ∈ Cnu×nu , which must be positive definite, can be absorbed into
the definition of the targets as Cz

′ = CzQc, where Q = QcQH
c is a Cholesky decomposition

of Q.
Using the identity Tr(ΦΨ ) = Tr(Ψ Φ), valid for any matrices Ψ and Φ with suitable

sizes, the functional is rewritten as

J =
∫ ∞

−∞
〈Tr(ẑ(ω)ẑ†(ω)) + Tr(Pâ(ω)â†(ω))〉 dω. (2.27)

The functional is expanded using

〈ẑẑ†〉 = 〈ẑ1ẑ†
1〉 + 〈ẑ2ẑ†

1〉 + 〈ẑ1ẑ†
2〉 + 〈ẑ2ẑ†

2〉, (2.28)

〈ââ†〉 = Γ̂ 〈ŷ1ŷ†
1〉Γ̂ †. (2.29)

Before further expanding these terms, we define

Ĥ l(ω) = R†
za(ω)Rza(ω) + P, Ĥr(ω) = −R†

za(ω). (2.30a,b)
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As shown in Appendix B, these terms are the counterparts of Ĝl and Ĝr for the
full-knowledge control problem. It is now straightforward to show that

〈ŷ1ŷ†
1〉 = Ĝl , (2.31)

〈ẑ1ẑ†
1〉 = Rzf F̂R†

zf , (2.32)

〈ẑ2ẑ†
2〉 = Ĥr

†Γ̂ Ĝl Γ̂
†Ĥr , (2.33)

〈ẑ2ẑ†
1〉 = −Ĥr

†Γ̂ Ĝr
†. (2.34)

The cost functional can then be expressed as

J =
∫ ∞

−∞
Tr(Rzf F̂R†

zf + Ĥr
†Γ̂ ncĜl Γ̂

†
ncĤr − Ĥr

†Γ̂ ncĜr
†Cz

† − CzĜr Γ̂
†
ncĤr) dω

+
∫ ∞

−∞
Tr(PΓ̂ ncĜl Γ̂

†
nc) dω, (2.35)

where the subscript ‘nc’ was added to emphasize the non-causal nature of the control that
will be obtained. Using the cyclic property of the trace and isolating terms with Γ̂ †

nc , we
obtain

J =
∫ ∞

−∞
(Tr(Rzf F̂R†

zf − Ĥr
†Γ̂ ncĜr

†Cz
†) + Tr((Ĥ l Γ̂ ncĜl − Ĥr CzĜr)Γ̂

†
nc)) dω, (2.36)

where Ĥ l = Ĥr Ĥr
† + P was used. The minimum of J is found by differentiating (2.36)

with respect to Γ̂ †
nc, leading to

Ĥ l Γ̂ ncĜl = Ĥr Ĝr , (2.37)

which can be solved for the optimal control kernel as

Γ̂ nc = Ĥ l
−1Ĥr Ĝr Ĝl

−1. (2.38)

From (2.38), it can be seen that the optimal non-causal control kernel is a combination of
the optimal non-causal estimation of targets (Ĝr Ĝl

−1, solution of (2.18)) with the optimal
full-knowledge, non-causal control, described in Appendix B, (Ĥ l

−1Ĥr , solution of (B3)),
acting to minimize these targets with actuation inputs.

As this control kernel is, in general, not causal, it cannot be used in real-time
applications. It does, however, provide upper bounds for the effectiveness of causal control,
and it is the basis for the control method proposed by Sasaki et al. (2018b), where the kernel
is truncated to its causal part. This approach was also successfully applied to experiments
(Brito et al. 2021; Maia et al. 2021). However, truncating the non-causal control kernel is,
in general, sub-optimal.

To obtain the optimal causal control law, causality is again enforced via Lagrange
multipliers. The modified cost functional reads as

J′ = J +
∫ ∞

−∞
Tr(Λ−(t)Γ c(t) + Λ

†
−(t)Γ †

c(t)) dt

= J +
∫ ∞

−∞
Tr(Λ̂−Γ̂ c + Λ̂

†
−Γ̂ †

c) dω, (2.39)

where the subscript c emphasizes the causal nature of the control that will be obtained.
Just as in the estimation problem, the linear terms added to J, contribute to an additional
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f Bf R

RaΓ
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Cy
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z

Figure 2. Block diagram representing the system (2.6) and (2.7).

f Bf

R

R
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Γ

Γ ′

u

–1

Ba
Cy

y
CyBa

Cz

z

Figure 3. Closed-loop control diagram.

term when taking the derivative of J′. The control kernel is now given by the solution of

Ĥ l Γ̂ cĜl + Λ̂− = Ĥr CzĜr . (2.40)

Again, as in the estimation problem, the requirements that Γ (t < 0) = 0 and
Λ−(t > 0) = 0 makes this a well-posed problem, and specifically another type of
Wiener–Hopf problem. The procedure to solve this problem is equivalent to the one used
for the estimation problem, and is presented in Appendix A.

The control kernel Γ ′ can be now recovered from Γ . The expression for the actuation

â = Γ̂ y1 = Γ̂ (ŷ − ŷ2) = Γ̂ (ŷ − Ryaâ), (2.41)

can be rewritten as

â = (I + Γ̂ Rya)
−1Γ̂︸ ︷︷ ︸

Γ̂ ′

ŷ, (2.42)

thus recovering Γ ′.
The closed-loop control diagram is illustrated in figure 3, where the relation between Γ̂ ′

and Γ̂ is shown. As y2 is a function only of the previous actuation, it can be computed in
real time and subtracted from y to obtain y1. This procedure is by construction included in
Γ ′.

Note that it is the process of removing the actuator’s response from the sensor readings
that can lead to instabilities if the feedback is not accurately modelled (Belson et al. 2013).
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For amplifier flows, the actuators are typically located downstream of the sensors, the
feedback tends to be small, and the optimal control is thus robust (Schmid & Sipp 2016).
This explains the successful use of optimal control in many studies (Semeraro et al. 2011;
Barbagallo et al. 2012; Morra et al. 2020; Sasaki et al. 2020; Maia et al. 2021). As our
method targets amplifier flows, the issue of robustness is not further addressed.

2.4. Recovering Kalman and LQR control gains
We now demonstrate that gain matrices for the Kalman-filter estimation (L) and LQR
control (K ) can be recovered from the Wiener–Hopf formalism. As both methods have
the same optimality properties, they amount to different approaches for obtaining the
same result if applied to a system satisfying the common assumptions in the derivation
of Kalman filters and LQR control, such as white-in-time disturbances, i.e. F̂ (ω) = F 0.

From the Kalman-filter estimation equation (Åström & Wittenmark 2013),

dũ
dt

= (A − LCy)ũ + Ly, (2.43)

the impulse response of the ith sensor, yj(t) = δj,iδ(t), is such that ũ(0+) = Li, where Li is
the ith row of L. Thus, from (2.16a,b),

L = T u(0). (2.44)

The LQR control gains can be recovered by emulating an initial condition u0 at t = 0,
which can be accomplished by setting B f = I and using f (t) = u0δ(t), or equivalently,
ẑ1 = CzRu0. From the LQR framework,

a(t) = Ku(t). (2.45)

Since u(t < 0) = 0, it follows that a(t < 0) = 0. Comparing with the solution of (A16),
(B6) and (2.10), we have

â(ω) = Ĥ l
−1
+ (ω)(Ĥ l

−1
− (ω)Ĥr(ω)ẑ(ω))+

= Ĥ l
−1
+ (ω)(Ĥ l

−1
− (ω)Ĥr(ω)CzR(ω))+︸ ︷︷ ︸

Π̂c(ω)

u0. (2.46)

Comparing (2.45) and (2.46), we have K = Πc(0).
Knowledge of LQR gains K and the Kalman filter L may be useful to understand

regions of the flow that require accurate estimation to obtain effective control strategies,
as discussed by Freire et al. (2020).

2.5. Validation using a linearized Ginzburg–Landau problem
We here compare the kernels and gains computed with the present method to
those obtained with the Kalman-filter and the LQR approaches. We use a linearized
Ginzburg–Landau problem, for which standard tools can be used for the computation of
estimation and control gains without resorting to model reduction. Such models have been
used in many previous studies (Bagheri et al. 2009b; Lesshafft 2018; Cavalieri, Jordan &
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Lesshafft 2019). The model reads as

∂u(x, t)
∂t

= Au(x, t) + f (x, t), A = −U
∂

∂x
+ μ(x) + γ

∂2

∂x2 , (2.47)

and we use the same parameters as in Martini et al. (2020), namely: U = 6, γ = 1 − i and
μ(x) = βμc(1 − x/20), where β = 0.1 was used and μc = U2Re(γ )/|γ |2 is the critical
value for onset of absolute instability (Bagheri et al. 2009b).

For this validation, we use F̂ = I , two sensors located at x = 5 and 20, an actuator
at x = 15, and a target at x = 30. Figure 4 compares gains obtained from the proposed
approach and from the algebraic Riccati equations. Both approaches produce identical
gains, indicating their equivalence when white-noise forcing is assumed. Estimation and
control kernels are shown in figure 5, again showing the equivalence between the two
methods. The Kalman and LQG kernels are obtained as follows. From (2.16a,b), the state
estimation is obtained as

ũ(t) =
∫ ∞

−∞
T u,kal(τ )y(t − τ) dτ, (2.48)

with the estimation kernel given by

T u,kal(τ ) =
{

e(A−LCy)τ L, τ ≥ 0,

0, τ < 0.
(2.49)

The LQG kernel is obtained from

d
dt

ũ(t) = Aũ(t) + Baa(t) + L(y(t) − LCyũ(t)), (2.50)

a(t) = −K ũ(t), (2.51)

with the solution reading as

a(t) =
∫ ∞

−∞
Γ ′

lqg(τ )y(t − τ) dτ, (2.52)

and where the control kernel is given by

Γ ′
lqg(τ ) =

{
K e(A−LCy−BaK)τ L, τ ≥ 0,

0, τ < 0.
(2.53)

Figures 4 and 5 show that the Riccati-based and proposed approaches provide the same
results, illustrating their equivalence.

3. Implementation

The size of the Wiener–Hopf problems (2.22) and (2.40) is independent of the size of
the linear system nu. The dominant cost to solve these problems is the Wiener–Hopf
factorization of Ĥ l and Ĝl , which are matrices that scale with ny and na, respectively.
Accordingly, a solution can be obtained with low cost for arbitrarily large systems, as
long as the number of sensors and actuators remains reasonable. However, the coefficient
matrices of the Wiener–Hopf problems are functions of the resolvent operator (2.13), and
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Figure 4. (a) Blue/red lines show the estimation gains corresponding to the first and second sensor obtained
using the proposed method. Dashed black lines show results obtained from the algebraic Riccati equation. (b)
Same for control gains.
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Figure 5. (a,b) Kernels for the estimation of the system at different locations. Colour lines/black markers show
results from the proposed method and from the algebraic Riccati equations. (c) Same for the control kernel.
(d) Spatial support of the sensors, actuator and target. Vertical lines show locations for which the estimation
kernels in (a,b) were computed.

thus requires the inversion of matrices of size nu to be constructed, which is unfeasible for
large systems.

In § 3.1 we show a method to construct the coefficients of the Wiener–Hopf problems
efficiently, with an approach to incorporate effective forcing models presented in § 3.2.
In § 3.3 we show that the terms in the equations correspond to CSD matrices that can be
obtained directly from numerical and physical experiments. The latter technique allows
application of the tools developed in this paper when adjoint solvers are not available or in
experimental set-ups.
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3.1. Matrix-free implementation
In this section we apply methods developed in previous works (Martini et al. 2020, 2021)
to construct the terms Ĥ l , Ĥr , Ĝl and Ĝr , circumventing the need to construct the resolvent
operator, which would make their construction prohibitive in any practical scenario. The
approach consists of using time-domain solutions of the linearized equations to obtain the
action of the resolvent operator on a vector, which in turn can be used to reconstruct the
operator.

As an example, assume that the action of Ry f on a vector v̂d can be efficiently computed.
The operator can be constructed row-wise by setting v̂d = ei, where ei is an element of the
canonical basis for the forcing space: the resulting vector Ry f ei provides the ith row of
Ry f . If nf is small, Ry f can be recovered by repeating the procedure for i = 1, . . . , nf , and
subsequently used for the construction of Ĥ l .

To obtain the action of the resolvent operator on a vector for all resolved frequencies
simultaneously, we use an approach based on the transient-response method, developed in
Martini et al. (2021). The action of Ry f and Rz f on a vector v̂d(ω) is obtained using the
system

dq
dt

(t) = Aq(t) + Bf vd(t), rd(t) = Cyq(t), sd(t) = Czq(t), (3.1a–c)

q̂ = RBf v̂d, r̂d = CyRBf︸ ︷︷ ︸
Ryf

v̂d, ŝd = CzRBf︸ ︷︷ ︸
Rzf

v̂d, (3.2a–c)

where (3.2a–c) is obtained from a Fourier transform of (3.1a–c). Here v̂d is regarded as
an input, with r̂d and ŝd as outputs of the system, with their dimensions implicit by the
context. Using vd(t) = eiδ(t) ensures that the canonical basis is used for all frequencies.
A time-domain solution of (3.1a–c) will be referred to as a forcing direct run. An actuator
direct run is obtained by replacing B f with Ba, and provides the action of Rya and Rza on
a given vector.

Similarly, the action of the operators R†
y f and R†

ya on a vector is constructed by time
marching the adjoint system,

−dq
dt

(t) = A†q(t) + Cy
†va(t), ra(t) = Bf

†q(t), sa(t) = Ba
†q(t), (3.3a–c)

q̂ = R†Cy
†v̂a, r̂a = Bf

†R†Cy
†︸ ︷︷ ︸

R†
yf

v̂a, ŝa = Ba
†R†Cy

†︸ ︷︷ ︸
R†

ya

v̂a, (3.4a–c)

referred to here as a sensor adjoint run. A target adjoint run is obtained by replacing Cy

with Cz and can be used to obtain the action of R†
z f and R†

za.
The action of more complex terms can be obtained by solving (3.1a–c) and (3.3a–c) in

succession. For example, if the output ra of a sensor adjoint run is an input of a direct run,
then the outputs of the latter will be given by r̂d = Ry f R†

y f v̂a and ŝd = Rz f R†
y f v̂a. The

resulting system is referred to as a sensor adjoint-direct run. Following similar procedures,
direct-adjoint, direct-adjoint-direct and adjoint-direct-adjoint runs are constructed. The
terms whose action are obtained from each of these runs are illustrated in figure 6.

In practice, to link together direct and adjoint runs as described above, checkpoints of
the output of one time integration are saved to disk and subsequently read and interpolated
in the following run to be used as forcing terms. Details of this procedure as well as the
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+ F.T. + F.T.
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Figure 6. Illustration of the terms obtained from different combinations of direct and adjoint
time-domain solutions. The left and right flowcharts represent a sensor adjoint(-direct-adjoint) system
and an actuator direct(-adjoint-direct) system. Readings refer to inner products of the state with
sensors/forcing/targets/actuators spatial supports, and F.T. to a Fourier transform. Diagrams for the target and
forcing systems are equivalent to the left(right) diagrams with Cy(Ba) exchanged by Cz(B f ), and the y(a)

subscripts of the rightmost terms in each quantity exchanged by z( f ).

impact of different interpolation strategies are described by Martini et al. (2021), to which
we refer the reader for details. Alternatively, Farghadan et al. (2021) developed an approach
that minimizes the data to be retained using streaming Fourier sums to obtain the action
of the operator on a discrete set of frequencies.

The most effective approach for constructing the Wiener–Hopf problems depend on the
rank of forcing and targets. In the following sections, we outline the best approach for
four possible scenarios and discuss the associated computational cost and the types of
parametric studies that can be easily conducted in each case.

3.1.1. Low-rank Bf and Cz

In this case scenario, the terms Ry f , R†
za and R†

z f are small matrices and can be obtained
using nf direct and nz adjoint runs. With those terms, Ĝl , Ĝr , Ĥ l and Ĥr can be constructed.

Note that as Ry f is obtained from state readings in (3.1a–c), storing snapshots of q(t)
allows for computing Ry f for any Cy from inexpensive data post-processing. Using the
same strategy in (3.3a–c) allows R†

za to be computed for any Ba. It is thus possible to
inexpensively compute the control kernels for any sensor and actuator when the forcing
and targets are low rank.

3.1.2. High-rank Bf and low-rank Cz
In this scenario, Ry f and Rz f are large matrices, and it is impractical to construct
and manipulate them. Instead, Ry f R†

y f and Rz f R†
y f , which are still small matrices, are
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obtained from ny sensors adjoint-direct runs, while Rya can be constructed from nz target
adjoint runs, as in § 3.1.1.

These terms can then be used to construct Ĝl , Ĝr , Ĥ l and Ĥr , assuming that F =
I . A strategy to efficiently include complex forcing models in this approach will be
detailed in § 3.2. As the sensor position is an input of the sensor adjoint-direct run,
it becomes expensive to perform parametric sensor studies in this scenario. However,
actuator placement studies are still inexpensive.

3.1.3. Low-rank Bf and high-rank Cz
This scenario is similar to the one in § 3.1.2, with the role of sensors and actuators reversed.
Here Ry f is constructed from nf forcing direct runs, and Rza is obtained from na actuator
direct runs. Since Ĥr and Ĝr are both large matrices, the product Ĥr Ĝr is constructed
directly from R†

zaRz f , which can be obtained from nf forcing direct-adjoint runs, and R†
y f ,

which is obtained directly from Ry f .
In this scenario, parametric studies of actuator placement are costly, while such studies

for the sensors are inexpensive.

3.1.4. High-rank Bf and Cz

Finally, in this scenario, the product Ĝr Ĥr cannot be broken into the product of
small matrices as before, and thus has to be constructed directly using ny sensor
adjoint-direct-adjoint runs or na actuator direct-adjoint-direct runs. The term Ĥ l(Ĝr) is
constructed from ny(na) sensor adjoint-direct(actuator direct-adjoint) runs. Again, we have
assumed here that F = I .

In this scenario, parametric studies of both sensors and actuators are expensive.

3.1.5. Summary
A brief summary of the costs of each scenario is presented in table 1. Note that the
descriptions above focused on the solution of the Wiener–Hopf problem, which provide
Γ . In some scenarios, supplementary runs are required to obtain Rya, which is required to
construct Γ ′ as in (2.42). This term can be obtained using sensor adjoint runs or actuator
direct runs. We also report the extra runs required to obtain R†

z f Rz f , which will be used to
obtain offline estimates of the control performance in § 3.5.

3.2. Using coloured forcing statistics
Previous results show that incorporating accurate coloured forcing statistics in the model
is important to obtain accurate estimates of the flow state (Chevalier et al. 2006; Martini
et al. 2020; Amaral et al. 2021). We now detail how to incorporate forcing colour for each
of the scenarios described in the previous sections.

In the scenarios described in §§ 3.1.1 and 3.1.3, since the term Ry f is a small matrix,
forcing colour could be easily included a posteriori in the construction of Ĝl and Ĝr . In
the scenarios §§ 3.1.2 and 3.1.4, where Ry f R†

y f is directly obtained from a time-domain
solution, the inclusion of forcing colour requires time-domain convolutions of the output
of the sensor adjoint system with the forcing cross-correlation matrices, before its use
as an input of the direct system. However, the convolutions of a large matrix (F ) and a
vector (output of the adjoint system) is typically unfeasible. To circumvent this limitation,
the approach proposed by Martini et al. (2020) can be used. An estimated forcing CSD,
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Time-domain solutions required to

Scenario Runs used construct Γ construct Γ ′ estimate performance

§ 3.1.1 nf force dir nf + nz + min(ny, nz) +0
na target adj

§ 3.1.2 ny sensor adj-dir 2ny + nz +0 +nz
nz target adj

§ 3.1.3 nf force dir nf + 2nz + min(ny, na) +0
nz target adj-dir

§ 3.1.4 ny sensor adj-dir(-dir) 2ny + 2na+ +0 n.a.
na actuator dir-adj(-dir) min(ny, na)

Table 1. Description and number of time-domain solutions needed in each scenario to construct the Γ , and
the extra time-domain solutions required to construct Γ ′ and to perform an offline estimation of the control
performance.

obtained from low-rank flow measurements, is used to construct Ĝl and Ĝr . This can be
done without explicit construction of F̂ , as will be shown next.

From a set of ny′ auxiliary sensor readings, y′, obtained as Cy
′u, which we assume to

contain the set of sensors that will be used for estimation and/or control (y), and their CSD,
Y ′, the estimated forcing colour is obtained as

F̂ ′ = T̂ f Ŷ ′T̂ †
f , (3.5)

where
T̂ ′

f = R†
y′f (Ry′f R†

y′f + N̂ ′)−1, (3.6)

is a transfer function that estimates forcing from measurements with a prior assumption of
white-noise forcing (Martini et al. 2020; Towne et al. 2020).

Estimates for Ĝl and Ĝr using the estimated forcing CSD, F̂ ′, referred to here as Ĝl
′ and

Ĝr
′, read as

Ĝl
′ = Ryf F̂ ′R†

yf + N̂ = Ryf T̂ f Ŷ ′T̂ †
f R†

yf + N̂, (3.7)

Ĝr
′ = Rzf F̂ ′R†

yf = Rzf T̂ f Ŷ ′T̂ †
f R†

yf , (3.8)

Note that T̂ ′
f ∈ C

nf ×ny′ , and that nf was assumed to be large. To avoid operations with large
matrices, the compound term

Rzf T̂ ′
f = Rzf R†

y′f (Ry′f R†
y′f + N̂ ′)−1, (3.9)

that has size ny × ny′ , can be constructed from Rz f R†
y′ f ∈ C

nz×ny′ and Ry′ f R†
y′ f ∈

C
ny′×ny′ . As the terms extra terms Ry′ f and Ry′ f R†

y′ f can be obtained from the matrix-free
approach described, the time-domain convolution can be replaced by a few extra
time-domain solutions of the linearized problems and inexpensive post-processing.

3.3. Adjointless method
We now show that the terms needed to construct the estimation and control kernels can be
obtained from experimental data alone. We first write the sensors and targets in terms of
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the external disturbances, [
ŷ1
ẑ1

]
=
[

Ryf
Rzf

]
f̂ +

[
1
0

]
n̂. (3.10)

Their CSDs are then obtained from the forcing statistics (Towne et al. 2020) as

[
Sy1,y1 Sy1,z1
Sz1,y1 Sz1,z1

]
=
[

Ryf
Rzf

]
F̂
[
R†

yf R†
zf

]
+
[

N̂ 0
0 0

]
=
[

Ĝl Ĝr

Ĝr
† Rzf F̂R†

zf

]
. (3.11)

The non-causal estimation is obtained via the transfer function Sy,zS−1
y,y . The terms Ĝl

and CzĜr can be constructed from measurements of the uncontrolled system, as they
correspond to sensor CSDs (Sy1,y1) and the cross-spectra between sensors and targets
(Sy1,z1), respectively. As the terms Ĥ l and Ĥr can be obtained from the actuators’ impulse
response, all the required terms can be obtained using physical or numerical experiments.
This not only provides a simple framework to obtain optimal control based on a data-driven
approach, but it also relaxes the requirement of an adjoint solver to obtain these control
strategies for large systems, either by using readings from the nonlinear problem, as done
by Martinelli (2009), or from the direct linearized problem excited by stochastic forcing.

The adjointless approach presented here is in fact the classical application of the Wiener
regulator, which is constructed directly from sensor/target CSDs, with the derivation
presented here showing that the two approaches, the classical and the resolvent-based,
are equivalent when the exact force model is used. However, the statistical convergence of
the CSDs is considerably more expensive, and typically less accurate, than its construction
from first principles (§ 3.1) and, thus, the latter is preferable to a numerical experiment if
an adjoint solver is available. For physical experiments, where obtaining a long time series
is typically inexpensive, the method presented here provides an efficient way to obtain a
data-driven optimal control law.

3.4. The role of sensors for the estimation problem
Insights into the problem of sensor placement can be obtained from further analysis
of (3.11), focusing the discussion on non-causal estimation and white-noise forcing for
simplicity. Sensor and target sensitivities to the forcing terms are given by R†

y f and R†
z f .

We define two forcing subspaces, Ŵ y and Ŵ z, spanned by the rows of R†
y f and R†

z f .
Defining ŵi,y and ŵi,z to be orthogonal bases for these subspaces, the forcing CSD can
be decomposed into four different subspaces:

• Fy,z: spanned by components given by ŵi,yŵ†
i,z + ŵi,zŵ

†
i,y, corresponds to forcing

components correlated with responses in both y and z,
• Fy: the subspace spanned by components ŵi,yŵ†

i,y that are orthogonal to Fy,z,
containing forcing components correlated with responses in y but not in z,

• Fz: the subspace spanned by components ŵi,zŵ
†
i,z that are orthogonal to Fy,z,

containing forcing components correlated with responses in z but not in y,
• F⊥: the complement of the three above subspaces, containing forcing components

that are correlated with neither y nor z.
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Defining F̂ y as the projection of F̂ into Fy, with similar definitions for the other
subspaces, (3.11) can be rewritten as[

Sy1,y1 Sy1,z1
Sz1,y1 Sz1,z1

]
=
[

Ryf F̂ yR†
yf + N̂ 0

0 0

]

+
[

Ryf F̂ y,zR
†
yf Ryf F̂ y,zR

†
zf

Rzf F̂ y,zR
†
yf Rzf F̂ y,zR

†
zf

]
+
[

0 0
0 Rzf F̂ zR

†
zf

]
. (3.12)

Each of these subspaces plays a different role in the estimation. The subspace Fy
generates responses at the sensors but not at the target and, thus, it does not provide any
useful information that can be used to construct the estimates, instead appearing in the
problem in a similar way as does the sensor noise. On the other hand, the subspace Fy,z
generates responses at sensors and targets and, thus, the response to this forcing measured
by the sensors can be used to estimate the corresponding response of the flow at the
target locations. This is the term that is effectively used for target estimation. Finally, the
subspace Fz corresponds to forces that have responses at the target but not at the sensors.
Accordingly, the responses associated with it cannot be estimated.

This analysis has a direct relation with the concept of observable forces discussed
in previous works by Towne et al. (2020): only target components that are excited
by forcing components that also generate readings on the sensors can be estimated
and, as a consequence, controlled. Martini et al. (2020) discussed how the correlation
between difference forcing components can allow the estimation of the responses to
non-observable forcing components, and this was shown to considerably improve turbulent
flow estimation. Note that, in general, non-causal estimation/control is needed for use
of the full correlation, i.e. estimation/control of all the target components which are
correlated with the sensors. The causality constraint allows for a real-time application
at the price of deteriorating the estimation/control.

To optimize the non-causal estimation, one should seek to minimize F z and reduce the
effect of F y on the estimation of F y,z. Although causality imposes extra restrictions, which
further complicates the problem, the above discussion can provide insights into the sensor
placement problem, which is still an active topic of research.

3.5. Discussion
As previously stated, the Wiener–Hopf formalism proposed here provides large
computational savings when compared to tools based on algebraic Riccati equations
for large systems. While the latter requires solutions of algebraic Riccati equations for
matrices of size nu, the former only requires factorization of matrices of size ny and na,
and can thus be solved for large systems. The largest cost of the approach is associated with
construction of the terms that define the Wiener–Hopf problem. Our matrix-free methods
allow the construction of these terms using direct and adjoint simulations or experimental
data (as shown in § 3.3), making the proposed approach widely applicable.

When the terms are obtained numerically, the construction of control laws for different
sensor/actuator configurations is very cheap when forcing/targets are low rank. Noting that
a given control law, Γ , e.g. the causal or non-causal optimal control, can be analysed via
the sensor/target CSDs allows for a fast offline evaluation of the control strategy and, thus,
for an efficient investigation of sensor/actuator placement. The target CSDs (Sz,z) of a
system controlled with the control kernel Γ can be obtained from the uncontrolled target
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CSDs (Sz1,z1) and the terms found in the Wiener–Hopf equations. From (2.31)–(2.34),

Sz,z = Sz1,z1 + Ĥr
†Γ̂ Ĝl Γ̂

†Ĥr − Ĥr
†Γ̂ Ĝr

†Cz
† − CzĜr Γ̂

†Ĥr . (3.13)

In the next section this expression will be used to quickly estimate the control performance
for several actuator locations.

The cost of the method is dominated by the direct and adjoint runs used to construct
the matrix coefficients in the Wiener–Hopf equations, and the cost of actually solving the
Wiener–Hopf problem is comparatively negligible. This is the case because the cost of
the direct and adjoint runs scale (often linearly) with the problem dimension nu, while the
cost of the Wiener–Hopf problem is independent of the problem dimension and instead
scales with the number of sensors and actuators, which are typically small. As a point of
reference, the direct and adjoint runs for the example problem in § 4 took around one hour,
while solving the Wiener–Hopf took minutes on a laptop computer.

The costs of the current method are thus considerably smaller than the iterative method
proposed by Semeraro et al. (2013). For a case with a single sensor and actuator and
low-rank forcing and targets, they report approximately 40 iterations to converge both
estimation and control gains. With the proposed approach, only two runs are necessary,
reducing the cost by a factor of 20 while also providing sensor and actuator parametric
studies, an offline performance estimation of these configurations and the possibility of
handling complex force models.

The kernels that were obtained in § 2.5, and as will be shown in § 4, are smooth
and decay rapidly for large values of τ . This means that the convolutions required for
estimation and control can be efficiently computed with a finite number of points using
standard numerical quadrature methods, and, thus, can be used in implementations with
limited memory and computational power, as in experimental applications (Fabbiane et al.
2015; Brito et al. 2021; Maia et al. 2021).

4. Estimation and control of the flow over a backwards-facing step

In this section we illustrate the potential of the tools developed in this paper using
an amplifier flow in which the level of nonlinearity can be easily adjusted. This
allows a smooth transition between linear (linearized Navier–Stokes equations, or small
perturbation amplitude in the nonlinear system) and nonlinear (larger perturbation
amplitude in the nonlinear system) problems.

We study the two-dimensional flow over a backward-facing step with Reynolds number
Re = 500 based on the step height. In order to model disturbances coming from the
upstream channel-like flow, we consider high-rank disturbances localized upstream of the
step, a case significantly more challenging than the similar problem studied by Hervé
et al. (2012), who considered rank-1 disturbances. The flow is illustrated in figure 7,
where the region to which the disturbances are applied is illustrated. The inflow condition
is laminar Poiseuille flow, and quantities are made non-dimensional with respect to the
maximal inflow velocity and the step height. The system linearization is performed around
the steady solution of the unforced nonlinear problem. Note that for large disturbances,
mean-flow distortion can arise, which can be partially accounted for by linearizing the
system around the mean flow (Högberg, Bewley & Henningson 2003; Chevalier et al.
2006; Sipp & Lebedev 2007; Leclercq et al. 2019). However, the choice of base flow is a
generic issue for any linear method and not specific to our particular formulation, so we
do not explore this further.

The Navier–Stokes equations are solved using the spectral-element code Nek5000
(Fischer & Patera 1989; Fischer 1998), which uses nth-order Lagrangian interpolants
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Figure 7. Baseflow for the backward-facing step flow. The dashed square indicates the region where the flow
is disturbed. Sensors are located at x = −1 and y = 0.25, 0.50 and 0.75, actuators at y = 0.5 with a unit
spacing between x = −9.5 and 0.5, and target at x = 10.5 and y = −0.50, 0.00 and 0.50. They are indicated
respectively by circles, crosses and triangles.

within each element to solve a weak formulation of the incompressible Navier–Stokes
equations, upon which the method proposed here was implemented. The resulting
open-source code is available at https://github.com/eduardomartini/Nek5000_
ResolventTools. The domain was represented by 600 elements, each discretized by
fifth-order polynomials. Time integration was performed using a non-dimensional time
step of 3 × 10−2. For the nonlinear integration, used to obtain the base flow, an inflow with
a Poiseuille profile was imposed at the leftmost boundary, an outflow condition imposed
on the rightmost boundary, and no-slip conditions imposed on all other boundaries. For
the linear runs, Dirichlet boundary conditions for velocity fluctuations were used on all
boundaries. The flow is globally stable and, thus, the base flow is obtained by simple
time marching of the Navier–Stokes equations until the time derivative is smaller than
10−10. When present, external forcing is obtained by a pseudo-random number generator,
whose seed is initialized to the same value on each processing unit, making uncontrolled
and controlled runs comparable as long as the same time step and number of cores are
used. Although straightforward for the linear problem, CFL constraints rendered fixed
time steps impractical when large perturbations are present, and, thus, equivalent time
steps for different runs could not be obtained. For such cases, representative snapshots
will be presented instead.

The dynamics of the linearized system can be summarized as follows. Upstream of the
step the flow is Poiseuille-like and only exhibits spatially decaying waves. Once these
waves reach the shear layer downstream of the separation, they excite Kelvin–Helmholtz
instability waves, which undergo significant growth before the end of the recirculation
bubble that forms in the wake of the step.

All sensors, actuator and targets considered here have Gaussian spatial support, given
by exp(−(x − xc)

2/2σ 2
x − ( y − yc)

2/2σ 2
y ), with σx = 0.2 and σy = 0.1. All sensors and

actuators used act on the streamwise direction only. Unless explicitly stated, N̂/P is
taken as a constant identity matrix with diagonal entries corresponding to 10−2 of
the maximum value of Ĝl/Ĥ l without noise/penalty. The ability of the control law to
suppress disturbances is typically a monotonic function of sensor noise/actuator penalty,
asymptotically reaching a minimum value for small enough values of these quantities.
However, if very small values are used, numerical ill-conditioning can affect this trend.
These effects are discussed by Sasaki et al. (2018a). The values used here guarantee
effective factorization, avoiding numerical ill-conditioning of the factorization problem
(§ A.2.2). For most of the configurations studied, these values yield results that approach
the zero cost/noise limit.
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In the following sections, control on the linearized problem is first investigated, where
the role of the number and placement of sensors and actuators is studied. As we have
previously explored the non-causal estimation problem (Martini et al. 2020), we focus on
the causal control of disturbances, which depends on accurate causal estimation. Next,
the same control strategies are obtained from a numerical experiment, as proposed in
§ 3.4, showing that the method can be applied to experimental and adjoint-less scenarios.
Finally, we illustrate the application of control laws obtained for the linearized system to
the nonlinear equations.

4.1. Control of the linearized problem
We initially focus on a linearized system disturbed by high-rank external forces, designing
control strategies to minimize readings from low-rank targets. We thus perform a limited
study on the sensor placement, but a large actuator placement study. These results will be
used to inform sensors and actuators to be used on a full-rank target scenario.

4.1.1. Control with a single sensor
We first consider the use of a single sensor (middle circle in figure 7) and investigate
the placement of one actuator for control (locations indicated by crosses in figure 7).
Three control approaches are explored: non-causal control (nc), the truncated non-causal
control (tnc) and optimal-causal control (c). Truncated non-causal control corresponds to
a truncation of the optimal non-causal control to its causal part, corresponding to the
approach used in previous works (Sasaki et al. 2018b; Brito et al. 2021), which was
seen, in some cases, to be a good approximation for optimal causal control, pointing to
a wave-cancelling nature of optimal control strategies in these scenarios (Sasaki et al.
2018a). Non-causal control cannot be used in real-time applications, but it provides upper
bounds for the performance of any linear control strategy and, thus, can be useful to
evaluate different sensor and actuator placements.

As we use high-rank forcing and a low-rank target, the configuration corresponds to
scenario (ii) described in § 3.1. A total of three time-domain solutions were obtained,
corresponding to one adjoint-direct system for the sensors, from which the estimation
terms Gl and Gr are obtained, and one adjoint-direct system for the targets, from which
impulse responses from any actuator can be obtained. All the following results were
obtained via inexpensive post-processing of the resulting data.

Representative control kernels for different actuator placements are shown in figure 8.
The causal kernel is seen to converge to the non-causal kernel for large τ when the
actuator is not far upstream of the sensor. When the non-causal control law uses non-causal
information, the causal control law typically exhibits a spike at τ = 0. This behaviour can
be understood as the control law using the most recent information to compensate for
future information, which is not available. Similar behaviour was reported by Morra et al.
(2020).

To compare the different control strategies, (3.13) is used to compute the target’s
power spectral density (PSD) and expected energy, i.e. the integral of the PSD, with the
results presented in figure 9. All control strategies converge approximately to the same
PSD reduction when the actuator is located downstream of the sensor. Not surprisingly,
non-causal control provides the highest PSD reduction for all configurations, with little
dependence on the actuator placement. As the non-causal control law can be solved
independently for each frequency, the PSDs obtained with this control are lower than
that of the uncontrolled case for all frequencies. Different trends are observed for the
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Figure 8. Causal and non-causal control for different actuator placements and a sensor at (x, y) = (−1, 0).
(a) Actuator at x = −3.5. (b) Actuator at x = 0.5. (c) Actuator at x = 1.5.

causal or the truncated-non-causal (TNC) control. Comparing the target PSDs for the
causal and non-causal cases in figure 9(b), the non-causal control provides the lowest
PSD at all frequencies. The causal control increases target PSD at lower frequencies
(|ω| < 0.2), which is however compensated by the reduction for the other frequencies.
Such a compromise between PSD reduction in different frequencies is unavoidable in
causal control strategies, due to constraints imposed by causality. Figure 10 compares
the kernels in the frequency domain and shows that each approach better represents the
non-causal kernel for different frequencies. A comparison of figures 9(b) and 10 shows
that the causal control better reproduces the non-causal control for the most relevant
frequencies, i.e. those which provide a higher reduction in the target PSD, explaining its
superior performance.

Figure 9(d) shows that the three approaches show different trends as the actuator is
moved upstream. While actuator placement has a negligible influence on the non-causal
control, it significantly affects the TNC control, leading to an increase in the target energy
for some configurations. Causal control, on the other hand, remains efficient even when
located upstream of the sensor, with the reduction in the PSD degraded by 50 % only when
the actuator is located approximately 4.5 step heights upstream of the sensor.
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Figure 9. Target reading PSDs and energy for different control strategies and actuator placement. In (a)–(c)
and for the solid lines in (d), P = 10−2 max(|Hl (ω)|) was used. A value of P = 10−5 max(|Hl (ω)|) was used
for dotted lines in (d). (a) Actuator at x = −9.5. (b) Actuator at x = −3.5. (c) Actuator at x = 0.5. (d) Target
energy.
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Figure 10. Difference between causal, and TNC control kernels with respect to the non-causal kernel in the
frequency domain. The configuration is the same as in figure 9(b). As the quantities are complex, the absolute
value of the difference is shown to measure how the causal and TNC approaches deviate from the non-causal
kernel.

Two different effects can explain these observations. Structures that emerge from
the upstream disturbances can have significant coherence lengths, of the order of two
convective time units, as later reported in figure 15. This coherence length allows the
sensor to partially estimate their upstream components, which can thus be cancelled by
the actuator. It is speculated that a similar mechanism is responsible for the control of a jet
(a convectively unstable flow, as the present example) using downstream sensors obtained
by Bychkov et al. (2019) and Kopiev et al. (2019). An extreme example is when the flow is
excited with a harmonic, rank-1, forcing: forces and flow response have infinite coherence
lengths, and can thus be estimated and controlled based on only a few sensor readings,
from which amplitudes and phases are extracted.
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Figure 11. Same as figure 9, but using three sensors. Results for SISO control are reproduced in the dashed
lines for reference.

Another possible mechanism is the exploration of different control approaches by
the causal control. As the flow studied here is incompressible, the actuation has an
instantaneous, although possibly small, effect throughout the flow. This response is
typically negligible for the non-causal control, which favours more effective mechanisms,
but may be the only one available for the causal control when the actuator is located far
upstream and exploited if low actuation penalties are used. This interpretation is supported
by the dotted lines in figure 9, where the actuation penalty was drastically reduced. For
upstream actuators, a significant reduction of the targets PSDs is observed for the causal
control, but a small effect is observed for the non-causal control. Actuator placements
upstream of the sensors tend to be less robust to unmodelled dynamics (Belson et al.
2013), and it is a configuration that is typically not used for amplifier flows (Schmid &
Sipp 2016). Thus, upstream actuators are not further investigated in this work.

4.1.2. Control with multiple sensors
Hervé et al. (2012) reported higher perturbation reductions for a similar control
configuration than those obtained here using a single sensor and actuator. However, the
cited work considered only rank-1 disturbances. The present work deals with a more
complex forcing scenario, with several waves exciting the Kelvin–Helmholtz instability.
The identification of such multiple waves invariably requires multiple sensors; we thus
explore this scenario. Four additional time-domain solutions were necessary for the results
presented next, corresponding to adjoint-direct systems for the added sensors, the top and
bottom circles in figure 7.

Figure 11 shows the expected target energy using the three sensors. A comparison
with results obtained using one sensor identifies two trends: (i) lower target PSDs are
observed, indicating that the additional sensors are indeed necessary to identify the
multiple incoming waves and to accurately estimate the target readings; (ii) a larger
distance between the actuator and the sensors is required for TNC to reproduce the optimal
control strategies. Comparing the kernels when using one and three sensors in figure 12,
it can be seen that non-causal control for three sensors is more ‘spread’ in τ and, thus,
has more signal content for τ < 0. It is then expected that its truncation leads to a more
significant degradation of the control.

4.1.3. Full-rank target control
From figures 9 and 11, we conclude that the actuator should be located shortly downstream
of the sensors. With sensor and actuator placements defined, control kernels for full-rank
targets are constructed. This required that the following additional time-domain solutions
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Figure 12. Control kernels using an actuator at x = −1.5 and (a) one sensor, located at y = 0.5, (b) the three
sensors indicated in figure 7. (a) Control kernels using one sensor and (b) control kernels using three sensors.
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Figure 13. Comparison between control kernels for low- and full-rank targets.

be performed: the last equation in the sensor direct-adjoint-direct problem for each of
the sensors, and the full direct-adjoint system for each actuator. In total nine additional
time-domain solutions were used.

Figure 13 compares the control kernel for a rank-1 and full-rank Cz. The close match
between the two kernels indicates that downstream of the step the problem can be well
approximated by a rank-1 model, and that the high-rank behaviour of the problem is indeed
restricted to the receptivity of the Kelvin–Helmholtz modes to channel disturbances. This
scenario is further supported by results presented in figure 14, where flow snapshots and
time series for the perturbation norm are shown for several configurations of the sensor,
actuators and targets. Control designed for full-rank targets and multiple actuators do lead
to perturbation energy reduction, but the biggest improvement is provided by the use of
multiple sensors.

4.2. Adjoint-less and empirical application
Here we illustrate a data-driven application of the proposed method. The necessary data
can be obtained from experimental set-ups, from numerical solutions of the nonlinear
problem or from the direct linearized problem disturbed by stochastic forcing. We focus
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Figure 14. Snapshots for the uncontrolled flow (a) and controlled flows using the causal control kernel (b)–(g).
The sensors and actuators used in each scenario are indicated by circles and crosses. Low-rank targets are
indicated by triangles on the figures, full-rank targets, i.e. Cz = I , were used when the figures do not contain
triangles. In (h), norms for perturbations for x > 0, with colours highlighting sensor and actuators used and
solid/dotted lines low/full target ranks.
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Figure 15. Comparison between Gl , Gr , Γ c and errors between the ‘empirical’ functions and those obtained
using the time-march method proposed. Results are presented for several time lengths used when estimating
the auto- and cross-correlations. Results with the time-march method require time integration of approximately
300 time units, indicated by the dotted line in (d). A white sensor noise was added to Ĝl to regularize its
factorization.

here on the latter scenario, with the use of a single sensor and target. The generalization to
more complex configurations, with more sensors, actuators and targets, is straightforward.
From sensor and target time series, the auto-correlation and cross-correlations are
computed in the time domain. As previously described in § 2, (3.11), the terms Ĝl and
Ĝr are equivalent to the corresponding CSDs.

Figure 15 compares estimates of Gl and Gr , obtained ‘empirically’, from the numerical
experiment with different data lengths, and ‘analytically’, obtained with time marching of
direct and adjoint equations. The resulting control kernels are also compared. Convergence
trends are shown using the error, defined as

error = ‖G̃l − Gl‖
‖Gl‖ , (4.1)

where the L2 norm is used. The terms G̃l and Gl indicate, respectively, the empirical
and analytical terms, with similar expressions for the other terms. The trends suggest
convergence rates scaling with 	T−1/2, where 	T is the time-series length used to
estimate Gl and Gr .

Although significantly more expensive, and typically less accurate than results obtained
with the use of adjoint solvers, the use of numerical experiments does extend the
applicability of the method to virtually any scenario and solver, and also to derive control
laws directly from experiments, which typically can be carried out to obtain long time
series for better convergence of the required correlations. Note that if experimental data
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are used, sensor noise is already present in the data. However, if noise levels are small,
adding a small noise may be required to better condition the factorization of Ĝl .

4.3. Estimation and control of the nonlinear system
Control laws using two different configurations for controlling the nonlinear problem are
investigated. As shown in §§ 4.1.2 and 4.1.3, the control kernels for full- and low-rank
targets provide similar results, and we thus focus on the latter. We consider two scenarios,
one using one sensor, one actuator and one target, and another using three of each.
Although including statistics of the nonlinear terms within F̂ in the nonlinear case
would likely improve the results (Amaral et al. 2021), we chose not to pursue this
so that the control law remains fixed as the forcing amplitudes increase, simplifying
comparisons.

A series of nonlinear simulations were performed using spatially and temporally white
forcing in the upstream region indicated in figure 7 with different forcing amplitudes
defined by the root-mean-square (RMS) value ε, i.e. F̂ = ε2I . For reference, ε = 10−2

leads to perturbations that reach 10–20 % of the baseflow velocity at the targets and, thus,
is well into the nonlinear regime. As the control and estimation kernels are constructed
to minimize the expected value of their respective cost functionals, a comparison should
be based on an ensemble of simulations. Here we assume ergodicity of the system, and
the ensemble averaging is replaced by time averaging. This assumption is validated using
multiple runs for some configurations. The results for the linear problem presented in this
section used an outflow condition on the rightmost domain, in order to properly compare
the linear and nonlinear systems. The estimation and control laws should be based on a
linear system that represents the nonlinear problem; however, for this problem, the impact
of the different boundary conditions used in the linear and nonlinear systems is negligible,
as reported next.

For small forcing amplitudes, the dynamics is dominated by linear mechanisms and,
thus, it is expected that the performance of the estimation and control laws will be
the same as demonstrated in the previous sections. Focusing initially on the control
problem, representative snapshots of the flow and time evolution of perturbation norms
for controlled and uncontrolled nonlinear systems are shown in figure 16. For the
lower external forcing RMS, control of the nonlinear system is similar to the control
of the linearized problem but, for larger amplitudes, it degrades. The perturbation
norm, when normalized by the forcing RMS, reduces for larger forcing amplitudes
due to nonlinear saturation. Estimation and control performances are measured as the
non-estimated/controlled target energy fraction,

Eest =

∑
i

∫
(zi(t) − zi,est(t))2 dt

∑
i

∫
(zi(t))2 dt

, Econ =

∑
i

∫
(zi,con(t))2 dt

∑
i

∫
(zi(t))2 dt

. (4.2a,b)

Figure 17 shows Eest,con as a function of ε. Performances for the linear and the nonlinear
systems are equivalent when small forcing amplitudes are used but, for the latter, it
degrades for larger forcing amplitudes. The trend is also observed in figure 18, where
time-series samples of a target for the uncontrolled problem, its causal estimation and for
the controlled problem are shown. Comparing different runs, indicated by the black dots
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Figure 16. (a–i) Snapshots of the nonlinear solutions for controlled and uncontrolled flows. Streamwise
velocity is shown with the same colour scale as figure 7. Dotted/dashed contour lines indicate velocity
excess/deficit of ±5/ε and ±10/ε from the baseflow. Circles, crosses and triangles indicate sensors, actuators
and targets used. (j) Evolution of the perturbation norms, normalized by ε.

in figure 17, it can be observed that the spread is low for the low forcing amplitudes and
increases for higher amplitudes, for which the control performance is degraded.

Control and estimation performances for the linear problems are equivalent, indicating
that all estimated perturbations are effectively controlled. A similar result is observed for
the nonlinear problem disturbed by small external forcing. Estimation deteriorates for ε ≈
10−3, while control remains effective up to ε ≈ 10−2. As the Kelvin–Helmholtz mode
amplifies upstream disturbances, small but finite disturbances are amplified and can exhibit
significant nonlinear dynamics. Such nonlinear effects, which are not accounted for by the
linear approach used, degrade estimation performance. For the controlled system, these
perturbations are cancelled before they are amplified, and, thus, the linear assumption is
valid for a larger range of external forcing amplitudes for the controlled problem.

The degraded performance of the approaches presented here when applied to the
nonlinear system disturbed with high-amplitude forcing is due to the saturation of the
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Figure 17. Control and estimation performances for the nonlinear (solid lines) and linearized (dashed)
problems as a function of forcing amplitude. Black dots correspond to extra runs, with different random seeds
for generating the external forcing. Results for the configuration shown in figure 16(i).

400 405 410 415 420 425 430 435 440 445 450
–1

–0.1

0

0.1

–0.2

0z

z

1
(×10–3)

400 405 410 415 420 425 430 435 440 445 450
t

Uncontrolled

Estimate

Controlled

(b)

(a)

Figure 18. Readings of the target located at y = 0 for the controlled problem, it’s estimate, and for the
uncontrolled problem. The controlled problem corresponds to the configuration shown in figure 16(i). Results
shown for (a) ε = 10−4 and (b) ε = 10−2.

uncontrolled flow and to the violation of the assumption that the disturbances evolve
linearly. From figure 16(j), comparing the normalized perturbation norm for the scenario
with ε = 10−2 to those with lower values of ε, it can be seen that not only the perturbation
norm for the controlled problem is larger, but also the norm of the uncontrolled problem
is smaller. Both of these factors impact Econ as in (4.2a,b). The nonlinear interactions
can be treated as additional external forcing terms in the linearized equation (McKeon
& Sharma 2010; Karban et al. 2020). In this context, the degraded performance can
be related to inadequacies of the forcing model. In particular, the nonlinear interactions
are not, in general, zero mean when the linearization is performed around a baseflow,
thus violating one of the assumptions used to construct the control laws. An alternative
is to use a linearization around the mean flow, for which the nonlinear terms are, by
definition, zero mean. In previous works (Martini et al. 2020; Amaral et al. 2021) it was
shown that a more representative modelling of these forcing terms can lead to significant
improvements in estimation, and, thus, potentially to improvements in control also for
larger disturbances. Control formulations using a linearization around the mean flow may
follow the methods in Högberg et al. (2003) or Leclercq et al. (2019), with various mean
flows used in successive linearisations of the system as control gains are progressively
increased. Integrating these approaches into the control law is beyond the scope of this
study, and will be considered in future work.
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5. Conclusions

Causal resolvent-based estimation and control methods based on the Wiener–Hopf
framework have been presented. The approach is an extension of the non-casual
resolvent-based estimation methods developed by Towne et al. (2020) and Martini et al.
(2020) to causal estimation and control, and is obtained by combining three different
tools: the Wiener-regulator framework (Martinelli 2009), matrix-free methods to obtain
the action of the resolvent operator (Martini et al. 2020, 2021) and numerical methods to
solve matrix Wiener–Hopf problems (Daniele & Lombardi 2007). The resulting method
is directly applicable to large systems without model reduction or simplified forcing
assumptions, requiring only low-rank sensor and actuator set-ups, which is the case in any
practical configuration. Computational costs are orders-of-magnitude lower than previous
approaches for full-rank systems (Semeraro et al. 2013). If low-rank forcing/targets are
used, inexpensive exploration of virtually any sensor/actuator configuration using only
data post-processing can be obtained, allowing the optimization of sensor and actuator
placements. Control of systems with high-rank forcing and targets is obtained. The ability
to deal with high-rank targets avoids a possible bias of the control law towards the specific
location of a given low-rank target; instead, fluctuations across the domain of interest may
be minimized.

Using an open-source implementation of the proposed method, control of the flow over
a backward-facing step is investigated. The flow is disturbed by high-rank forcing, making
this test case considerably more challenging than a previous study that focused on rank-1
forcing (Hervé et al. 2012). Downstream of the step the flow is low rank, dominated by a
Kelvin–Helmholtz instability wave, which is reflected in the fact that a control strategy is
only slightly altered if targets are rank-1, rank-3 or full rank, and if one or multiple actuators
are used. Considerable gains were obtained using multiple sensors, which is explained by
the presence of several modes from the upstream Poiseuille-like flow and that excite the
downstream Kelvin–Helmholtz waves.

Obtaining optimal controllers without model reduction circumvents possible
performance losses of ROM-derived controllers when applied to the full system (Åström
& Murray 2010, p. 349). Moreover, the present method handles naturally complex,
coloured forcing in space and time, as the forcing CSD, F̂ , can be arbitrarily specified
for each frequency. This is likely crucial for the control of turbulent flows, as the
behaviour of coherent structures depends strongly on how these are forced (Chevalier
et al. 2006; Towne, Schmidt & Colonius 2018; Martini et al. 2020; Morra et al. 2021;
Nogueira et al. 2021), but the difficulties involved in estimating and using coloured
forcing models for control have hindered their use in previous applications. The method
presented here, and forcing estimation methods presented in previous work (Martini et al.
2020), bridge these difficulties, allowing affordable full-rank, full-coloured controllers to
be used.

This work also sheds light on the wave-cancellation behaviour of optimal control of
shear flows (Sasaki et al. 2018a), which is equivalent to the TNC control presented here.
The approach is optimal whenever the non-causal control kernels do not rely on future
information, i.e. while not designed to be causal, they are causal. This is the case for flows
dominated by downstream-travelling modes, such as jets and boundary layers, provided
that there is proper spacing between sensors, actuators and targets. Reducing the distance
between these, which may enhance control, generates non-causal components in the
control kernel, and deteriorates the TNC approach, particularly if several sensors/actuators
are used. This effect can be considerably reduced with the optimal causal control strategy
developed here.
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Appendix A. Wiener–Hopf problems

Analysing linear differential equations in the Fourier domain has the advantage of
decoupling different frequencies for which solutions can be obtained independently. This
property has been exploited in a previous study (Martini et al. 2020) to achieve optimal
non-causal estimation, i.e. estimation based on both past and future sensor readings.
Imposing causality, however, couples different frequencies, which must then be solved
for simultaneously. The resulting equations frequently lead to Wiener–Hopf problems. We
here provide a brief introduction to this class of problems and a numerical method to solve
them.

A.1. Introduction
Wiener–Hopf equations appear when solving problems with restrictions applied on
half-domains. One example is the inversion of the half-convolution, given by∫ ∞

0
Hl(t − τ)W +(τ ) dτ = Hr(t), t > 0, (A1)

with W +(τ ) ∈ Cna×nz considered as the unknown matrix function to be determined. The
terms Hl(t) ∈ Cna×na and Hr(t) ∈ Cna×nz are known matrix functions. In § 2, na and nz
corresponded, respectively, to the number of actuators and targets used for control, Hl
and Hr are related to the actuator transfer functions and W+ ∈ Cna×ny to the optimal
full-knowledge control. Solving (A1) allows for the construction of full-knowledge control
laws, as will be demonstrated later.

The frequency-domain representation of (A1) is obtained by first constructing an
equation valid for t < 0. Extending (A1) for negative times will in general break the
equality of the equation. An a priori unknown term W− ∈ Cna×nz is thus added to preserve
the equality, as ∫ ∞

0
Hl(t − τ)W +(τ ) dτ = W −(t) + Hr(t), t < 0. (A2)

The integral can be extended to −∞ by requiring W+(t < 0) = 0. Similarly, requiring
W −(t > 0) = 0 allows (A1) and (A2) to be added, leading to∫ ∞

−∞
Hl(t − τ)W +(τ ) dτ = W −(t) + Hr(t), (A3)

which can be expressed in the frequency domain as

Ĥ l(ω)Ŵ +(ω) = Ŵ−(ω) + Ĥr(ω), (A4)

937 A19-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-3144-5702
https://orcid.org/0000-0002-3144-5702
https://orcid.org/0000-0003-0962-3127
https://orcid.org/0000-0003-0962-3127
https://orcid.org/0000-0003-4283-0232
https://orcid.org/0000-0003-4283-0232
https://orcid.org/0000-0001-8576-5587
https://orcid.org/0000-0001-8576-5587
https://orcid.org/0000-0002-7315-5375
https://orcid.org/0000-0002-7315-5375
https://doi.org/10.1017/jfm.2022.102


Optimal causal resolvent-based estimation and control

where

Ĥr(ω) =
∫ ∞

−∞
Hr(t)eiωt dt, (A5)

with similar expressions for the other variables. Although this is a single equation for two
variables (W − and W +), the restriction that these variables be zero on different temporal
half-domains ensures that the problem is well posed.

Provided W + is bounded for t → ∞, the requirement that W+(t < 0) = 0 is equivalent
to restricting Ŵ +(ω) to be regular in the upper half of the complex plane. This equivalence
can be observed from its inverse Fourier transform,

W +(t) = 1
2π

∫ ∞

−∞
Ŵ +(ω) e−iωt dω, (A6)

which can be computed for t < 0 by closing the contour around the upper half-plane and
using the residue theorem. As e−iωt → 0 for |ω| → ∞ if t < 0 and �(ω) > 0, the integral
on the upper contour closure is zero and, as neither Ŵ +(ω) nor the exponential function
have poles in the top half-plane, the integral is null for all t < 0. A similar argument holds
for W − and t > 0, with the contour being closed from below. Henceforth, plus and minus
subscripts are used to label functions that are regular in the upper and lower halves of the
complex frequency plane, respectively. Both frequency- and time-domain representations
of functions will be used interchangeably for convenience or clarity.

Other related Wiener–Hopf problems read as

Ŵ +(ω)Ĝl(ω) = Ŵ −(ω) + Ĝr(ω), (A7)

and
Ĥ l(ω)Ŵ +(ω)Ĝl(ω) = Ŵ −(ω) + Ĥr(ω)Ĝr(ω), (A8)

where Ĝl ∈ Cny×ny and Ĝr ∈ Cnz×ny .

A.2. Solving Wiener–Hopf problems
To obtain optimal causal estimation and partial-knowledge control, the Wiener–Hopf
problems (2.22) and (2.40) need to be solved. In what follows, formal solutions for these
equations are presented. These solutions are based on the factorization of the kernels into
plus and minus components. As analytical factorization is known only for special cases, a
numerical method to factorize matrix functions, tailored for functions that are known only
numerically, is presented.

Before proceeding, we define the two types of factorizations that will be used: additive
and multiplicative. Multiplicative factorization of a matrix function D̂ reads as

D̂(ω) = D̂−(ω)D̂+(ω), (A9)

while an additive factorization reads as

D̂(ω) = (D̂(ω))−+(D̂(ω))+, (A10)

where all factors have the same size as the original matrix, and multiplicative factorizations
are only defined for square matrices. To differentiate these two types of factorizations,
multiplicative factors will have the subscripts applied directly to them, as in (A9), and
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additive factors will be presented with the subscripts applied outside the parenthesis, as in
(A10).

These factorizations are not unique. For a multiplicative factorization as in (A9), a valid
factorization is constructed as Ĥ l−J and J−1Hl+ , for any constant and invertible matrix J.
Likewise, new additive factorizations are obtained by respectively adding and subtracting
a constant to the plus and minus factors.

Any multiplicative factorization can be used to solve Wiener–Hopf problems with the
methods presented in this work, and, thus, we do not impose any extra condition to make
it unique. However, we restrict additive factorizations to standard factorizations (Noble
1959; Daniele & Zich 2014), that is,

(D̂(ω))± → 0, for ω → ±∞. (A11)

Note that the multiplicative factorization is also known as spectral factorization
(Claerbout 1976) in the signal processing community and is frequently expressed in terms
of the Z, instead of the Fourier, transform. Typical methods to obtain this factorization
are the root method, which provides an analytical factorization if the poles of the
kernel are known, and the Levinson algorithm, which is based on recursion to solve a
deconvolution problem. Any of these methods can in principle be used for the solution of
the Wiener–Hopf problems presented here. In this work we use the strategy proposed by
Daniele & Lombardi (2007).

A.2.1. Formal solution
To obtain a solution for (A4), a multiplicative factorization of the kernel Ĥ l ,

Ĥ l(ω) = Ĥ l−(ω)Ĥ l+(ω), (A12)

is used. After manipulation, (A4) becomes

Ĥ l+(ω)Ŵ +(ω) = Ĥ l
−1
− (ω)Ŵ −(ω) + Ĥ l

−1
− (ω)Ĥr(ω). (A13)

Using an additive factorization of Ĥ l
−1
− (ω)Ĥr(ω), (A13) is rewritten as

Ĥ l+(ω)Ŵ +(ω) − (Ĥ l
−1
− (ω)Ĥr(ω))+ = Ĥ l

−1
− (ω)Ŵ −(ω) + (Ĥ l

−1
− (ω)Ĥr(ω))−. (A14)

Equation (A14) is in Wiener–Hopf form, with only plus (minus) functions on the
left(right)-hand side. Thus, the left- and right-hand sides are analytical functions in the
lower and upper complex half-planes for ω, respectively. Solution of the Wiener–Hopf
equation amounts to stating that the left- and right-hand sides are analytical continuations
of each other, which allows us to define a single function of ω that is analytical everywhere.

That each side of the equation contains only plus or minus terms suggests that each
side can be solved independently, as, loosely speaking, each side is an equation for
positive/negative times only. To formalize this idea, we make use of the following
assumptions:

(i) Ĥ l(ω) is bounded and positive definite,
(ii) Ĥ l(ω) has no poles on the real line,

(iii) Ĥr(±∞) → 0,

and define

L(ω) = Ĥ l+(ω)Ŵ +(ω) − (Ĥ l
−1
− (ω)Ĥr(ω))+ = Ĥ l

−1
− (ω)Ŵ −(ω) + (Ĥ l

−1
− (ω)Ĥr(ω))−.

(A15)
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Assumption (i) guarantees that Ĥ l± is invertible, and that Ĥ l
−1
− does not create any

poles on the right-hand side of (A14). Assumption (ii) guarantees that (A14) is valid on
a strip around the real axis, −ε < �(ω) < ε. As the left-/right-hand side of (A14) are the
analytical continuation of this strip in the upper/lower half-plane, these two functions and
L(ω) are regular everywhere. Since they are bounded, by Liouville’s theorem, they are
also constant. Finally, assumption (iii) and the use of a standard additive factorization in
(A14), guarantees that the left-hand side of (A14) goes to zero for ω → ∞, and, thus, that
L(ω) = 0.

The solution of (A4) is obtained as

Ŵ +(ω) = Ĥ l
−1
+ (ω)(Ĥ l

−1
− (ω)Ĥr(ω))+, (A16)

Ŵ −(ω) = Ĥ l− (ω)(Ĥ l
−1
− (ω)Ĥr(ω))−. (A17)

In this work, assumptions (i)–(iii) are satisfied by construction. The kernels are
constructed from a Hermitian quadratic form of the resolvent operator, to which a constant
and Hermitian positive-definite matrix is added, thus guaranteeing assumption (i). The
restriction to stable systems guarantees that the resolvent operator has no poles in the real
line and, thus, neither do the kernels, guaranteeing assumption (ii). Finally, as the term Ĥ l
is a linear function of the resolvent operator, and since R ∝ 1/ω for ω → ∞, assumption
(iii) is also guaranteed.

Two other Wiener–Hopf problems, (A7) and (A8), are used in this study. The first, which
appears when solving for the full-knowledge control kernel in Appendix B, reads as

Ŵ +(ω)Ĝl(ω) = Ŵ −(ω) + Ĝr(ω), (A18)

where Ĝl ∈ Cny×ny, Ĝr ∈ Cnz×ny and Ŵ± ∈ Cnz×ny are matrix functions. Making similar
assumptions for Ĝl and Ĝr as the ones made for Ĥ l and Ĥr , solutions are obtained as

Ŵ +(ω) = (Ĝr(ω)Ĝl
−1
− (ω))+Ĝl

−1
+ (ω), (A19)

where Ĝl(ω) has a multiplicative factorisation with different convention from Ĥ l(ω), given
by

Ĝl(ω) = Ĝl+(ω)Ĝl−(ω). (A20)

The second problem, which appears when solving for the partial-knowledge optimal
control kernel in § 2.3, reads as

Ĥ l(ω)Ŵ +(ω)Ĝl(ω) = Ŵ −(ω) + Ĥr(ω)Ĝr(ω), (A21)

where now Ŵ ± ∈ Cna×ny . With the same assumption as before, solutions are given by

Ŵ +(ω) = Ĥ l
−1
+ (ω)(Ĥ l

−1
− (ω)Ĥr(ω)Ĝr(ω)Ĝl

−1
− (ω))+Ĝl

−1
+ (ω). (A22)

A.2.2. Numerical Wiener–Hopf factorizations
An analytical expression for additive factorization reads as (Noble 1959)

(Ŵ (ω))± = ±1
2πi

∫
Ŵ (ω′)
ω − ω′ dω′, (A23)

with integration contours indented below or above the pole at ω for + and − functions,
respectively. However, when the factors are desired numerically, additive factorizations
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can be easily obtained using Fourier transforms. Applying an inverse transform, the
time-domain representation of the function is obtained. This representation is then
split into its plus (minus) component by multiplication with a Heaviside-step function,
i.e. setting to zero all values for t > 0(t < 0). A Fourier transform is then used to recover
the frequency-domain representation. The function thus obtained constitutes a standard
factorization: if the original function is smooth, i.e. its spectral content goes to zero for
high enough frequencies, so will the factors calculated with the procedure just described.

Multiplicative factorization for scalar problems can be reduced to an additive
factorization using a logarithm function to convert multiplication into addition (Noble
1959; Peake 2004), with the factorization reading as

Ĥ l±(ω) = exp

(
±1
2πi

∫
ln(Ĥ l(ω

′))
ω − ω′ dω′

)
. (A24)

This procedure, however, requires that the quantities commute, which is not generally
the case when Ĥ l is a matrix. Analytical Wiener–Hopf factorizations are only known for
special classes of matrices (Daniele 1978), and an analytical method for the factorization
of general matrices is still unknown.

In this work we use a method similar to that described by Daniele & Lombardi (2007) to
obtain multiplicative matrix factorizations for kernels that are known numerically, rather
than analytically.

The multiplicative factorization, satisfying (A12), can be obtained from na independent
solutions of

Ĥ l(ω)ŵi,+(ω) = ŵi,−(ω), (A25)

as

Ĥ l−(ω) = [
ŵ1,−(ω)ŵ2,−(ω) · · · ŵn,−(ω)

]
, (A26)

Ĥ l+(ω) = [
ŵ1,+(ω)ŵ2,+(ω) · · · ŵn,+(ω)

]−1
, (A27)

where na is the size of the square matrix Ĥ l . That is, matrices Ĥ l− and Ĥ l
−1
+ have vectors

ŵi,∓ as columns, respectively.
To obtain solutions of (A25), we divide it by ω − ω0, with �(ω0) < 0, and integrate

along a line that crosses the real axis and closes around the lower half-plane. Defining x̂i =
ŵi,+/(ω − ω0), (A25) becomes a Fredholm integral equation of the second kind (Daniele
& Lombardi 2007),

x̂i(ω) + 1
2πi

∫ ∞

−∞
Ĥ l

−1(ω)Ĥ l(u) − 1
u − ω

x̂i(u) du = Ĥ l
−1(ω)

ŵi,−(ω0)

ω − ω0
. (A28)

Note that (A28) has only one unknown, x̂, while (A25) has two, ŵi,− and ŵi,+.
The integration of the unknown term ŵi,−(ω) is carried out with the residue theorem,
leading to ŵi,−(ω0), which is constant and can be arbitrarily specified. Choosing it as the
canonical basis (ŵi,−(ω0) = ei) is an obvious choice. The parameter ω0 can be arbitrarily
chosen, although different values can change convergence requirements for the numerical
solution of the equation. As discussed by Daniele & Lombardi (2007), ω0 introduces an
apparent singularity in the equation that, while not impacting the analytical solutions,
can lead to numerical instabilities for approximate, numerical, solutions. Values close to
the real axis lead to a right-hand side that has sharp variations and, thus, requires finer
frequency discretization to be resolved, whereas values excessively far from the real axis
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cause the left-hand side to have significant values on a larger domain, thus requiring the
discretization of a larger frequency range. Daniele & Lombardi (2007) suggest choosing
ω0 such that it corresponds to singularities of the physical problem under study, but in the
context of the problem studied here the choice is not obvious. It is thus necessary to check
convergence using different values of ω0 and/or different frequency discretizations.

Daniele & Lombardi (2007) discretized (A28) to construct a matrix representing its
right-hand side. The numerical solution was obtained by solving the resulting linear
problem. Deformation of the integration path into the complex ω plane was used to
improve the convergence rate of the solutions whenever the kernel had poles close to
the real line. Similarly, Atkinson & Shampine (2008) used different integration weights
and collocations points to deal with such singularities. Throughout this work, we focus
on kernels that are obtained numerically and, thus, only available on the real frequency
line. Deformation of the integration path is thus unfeasible, and convergence is obtained
by refining the frequency discretization.

To solve (A28), a linear problem with size n2
anω has to be solved, where nω is the number

of frequency points used, and na the size of the square matrix Ĥ l . This approach becomes
unpractical for the frequency discretization required for convergence of the results in this
study. Instead, we rewrite (A28) as

x̂i(ω) + 1
2i
H(x̂i)(ω) − 1

2i
Ĥ l

−1(ω)H(Ĥ l x̂i)(ω) = Ĥ l
−1(ω)

ŵi,−(ω0)

ω − ω0
, (A29)

where

H(x̂) = P.V.
1
π

∫ ∞

−∞
1

ω − u
x̂(u) du, (A30)

is the Hilbert transform of x̂(ω). Hilbert transforms can be efficiently computed
numerically using fast-Fourier transforms (Todoran, Holonec & IAKAB 2008), and, thus,
the left-hand side of (A29) can be obtained without the construction of the matrix that
represents it. The problem is thus well suited for solutions via iterative methods, such as
GMRES (generalized minimal residual), used here.

As mentioned by Zhou et al. (2009), using Fourier transforms to compute Hilbert
transforms can lead to significant errors at the extremities of the signal, due to the implicit
assumption of periodicity. The signals need thus to be zero padded to avoid such errors.
Due to the slow decay of the term 1/(ω − u), large paddings can be necessary. Padding of
20 times the time signal has been used throughout this study.

Using na linearly independent solutions, Ĥ l±(ω) can be obtained from

ŵ+,i(ω) = x̂i(ω)(ω − ω0), (A31)

ŵi,−(ω) = Ĥ l(ω)ŵi,+(ω), (A32)

as in (A26) and (A27).
A factorization with the order of plus and minus functions exchanged, i.e. Ĝl(ω) =

Ĝl+(ω)Ĝl−(ω), can be obtained via the same method using an auxiliary matrix
Ĝl

′(ω) = Ĝl
∗(ω), where ∗ represents complex conjugation. From a factorization of Ĝl

′(ω),
the desired factorization is obtained as Ĝl+(ω) = Ĝl

′∗−(ω) and Ĝl−(ω) = Ĝl
′∗+(ω).
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Figure 19. Trends for errors and cost of the Wiener–Hopf factorization for a sensor located at X = 5 and a
target at x = 35. The solid(dashed) line corresponds to an actuator located at x = 15(7). (a) Error scaling with
sampling rate. (b) Error scaling with T for the largest sampling rate.

A.2.3. Convergence
To access the convergence of the method, we compare the control kernels obtained for the
Ginzburg–Landau system described in § 2.5. A normalized error is defined as

√√√√√√√
∫ ∞

0
|Γ ′

c(τ ) − Γ ′
lqg(τ )|2 dτ∫ ∞

0
|Γ ′

lqg(τ )| dτ

, (A33)

where Γ ′
c is the kernel computed using the Wiener–Hopf approach and Γ ′

lqg is obtained as
in (2.53). A time interval [−T, T] was discretized with points spaced by 	t, corresponding
to a sampling frequency ωs = 2π	t and a frequency resolution of 	ω = 2π/T .

The normalized error is shown in figure 19 for different values of T and 	t. The
factorization scales linearly with the number of points in the frequency discretization.
The linear convergence of the kernel with 	t is a consequence of its discontinuity at
τ = 0: this is the convergence rate of a Fourier series for discontinuous functions. Note that
when actuators are close to the sensor, the discontinuity is stronger, leading to the larger
errors seen when the actuator is at x = 7. The converge trend is nevertheless unaffected.
Convergence with respect to the domain size T is very fast and, thus, has a small impact
on the overall cost.

The effect of having multiple sensors and actuators on the factorization is explored in
figure 20. Adding sensor/actuators leads to an increase in the required T and 	t for a
given accuracy, but does not significantly affect the convergence trends. It is also seen that
the cost scales linearly with the number of points used for time/frequency discretization.
The increase with na and ny is due to the need to perform matrix multiplication, which
scales with the square of its size. In all scenarios, good accuracy is obtained within a few
minutes on a standard notebook. Note also that this cost does not scale with the size of
the system, and, thus, remains roughly the same for any system. When applied to complex
flows, factorization is thus orders of magnitude less costly than the time-domain solutions
of the direct and adjoint problems described in § 3.1.
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Figure 20. Same as figure 19 with sensors located at x = 5, 10, 15, actuators at x = 7, 12, 17 and targets at
z = 30, 35, 37. On the left, solid, dashed and solid lines correspond to the configuration where only the first,
the first and second, and all sensors, actuators and targets are used. The wall time to perform the factorizations
is shown on the right. (a) Error scaling with sampling rate. (b) Factorization wall time.

Appendix B. The full-knowledge control problem

Complementing the optimal estimation (§ 2.2) and partial-knowledge control (§ 2.3), we
here present the derivation of the optimal full-knowledge control.

Analogous to the procedure used in § 2.2, optimal control is obtained by minimizing a
cost functional given by

J =
∫ ∞

−∞
(z†(t)z(t) + a†(t)Pa(t)) dt =

∫ ∞

−∞
(ẑ†(ω)ẑ(ω) + â†(ω)Pâ(ω)) dω. (B1)

Full system knowledge control implies the system state for the current time is known,
from which z1 can be computed. If external forcing is present, z1 need to be updated at
each time instant. An actuation, anc(t), that minimizes the cost functional can be obtained
in terms of z1 alone. Expanding terms in (B1) gives

J =
∫ ∞

−∞
((ẑ1(t) + ẑ2(t))†(ẑ1(t) + ẑ2(t)) + â†

nc(t)Pânc(t)) dω

=
∫ ∞

−∞
((ẑ1(ω) + Rza(ω)ânc(ω))†(ẑ1(ω) + Rzaânc(ω)) + â†

nc(ω)Pânc(ω)) dω, (B2)

and differentiation with respect to â†
nc(ω) leads to

Ĥ l(ω)ânc(ω) = Ĥr(ω)ẑ1(ω), (B3)

where
Ĥ l(ω) = R†

za(ω)Rza(ω) + P, Ĥr(ω) = −R†
za(ω). (B4a,b)

As in the estimation problem, causality, i.e. ac(t < 0) = 0, can be enforced with
Lagrange multipliers. Taking the derivative of the modified cost functional given by

J′ =
∫ ∞

−∞
(ẑ†(t)ẑ(t) + a†

c(t)Pac(t) + Λ−(t)ac(t) + Λ
†
−(t)a†

c(t)) dt, (B5)

with respect to a†
c yields the Wiener–Hopf problem

Ĥ l(ω)âc(ω) + Λ̂−(ω) = Ĥr(ω)ẑ(ω), (B6)

which has the structure of (A4) and solution given by (A16).
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