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We introduce a new algorithm for computing resolvent modes of large systems based on
randomized singular value decomposition (RSVD) combined with a time-marching method.
The most expensive steps of the RSVD algorithm in the context of resolvent analysis, which
constitute a bottleneck in its application to large systems, are replaced by leveraging the time-
domain equations that have given rise to the resolvent operator. Specifically, the actions of the
resolvent operator and its adjoint on a vector are obtained by equivalent direct and adjoint
marching operations in the time domain. Our algorithm exploits streaming calculations to
alleviate memory issues emerging for large systems, and we develop strategies to minimize the
time-stepping cost while maintaining a desired level of accuracy. We validated our proposed
algorithm by comparing the resolvent modes and gains of a Ginzburg-Landau model problem
to those obtained from RSVD. Then, we use an axisymmetric jet and a three-dimensional
extension thereof to assess and demonstrate the accuracy, cost, and memory efficiency of our
new algorithm when applied to a high-dimensional system. In the three-dimensional case, we
achieve orders-of-magnitude reduction in both CPU and memory usage compared to a direct
application of RSVD.

I. Introduction
In the era of big data, the need for efficient dimension reduction is critically important. One important object for

analysis and model reduction of dynamical systems is the resolvent operator.1,2 The resolvent operator acts as a transfer
function between inputs and the response of the state. Within fluid mechanics, it provides a simplified framework
to study flow perturbations3,4 and has arguably become one of the most important operator-theoretic methods in the
field.5,6

The pseudo-spectral analysis of instability growth in shear flows by Trefethen et al.7 shaped the early formulation
of resolvent analysis. The input-output viewpoint was then used to study energy amplification mechanisms within a
channel flow by Jovanovic & Bamieh,8 who found that the most amplified structures obtained from resolvent analysis
correspond to structures commonly observed in experiments. Mckeon & Shrama9 suggested that the input (forcing)
be used to represent the nonlinear terms that would otherwise be discarded, clarifying its interpretation, and that of
resolvent analysis more broadly, for turbulent flows. When the forcing has no preferred direction and the resolvent
operator is low-rank, the flow can be compactly approximated using only the leading response modes. Thereafter,
various applications of resolvent analysis surged in the fluid mechanics community. Moarref et al.10 found a low-rank
model for streamwise energy intensity via resolvent analysis. Using the same framework, Luhar et al.11 developed some
guidelines for compliant walls in a turbulent flow. Towne et al.12 showed that resolvent modes are closely related to
coherent structures educed from data using spectral proper orthogonal decomposition (SPOD). In addition, Symon
et al.13 compared the energy transfer between the resolvent model and DNS across linear and nonlinear mechanisms.
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More recently, several resolvent-based models have been developed for design optimization,14 flow estimation,15,16 and
control.17,18

The optimal forcing and response modes are obtained from the singular value decomposition (SVD) of the
resolvent operator. However, both obtaining the resolvent operator, and computing its SVD are expensive operations
using traditional methods. Despite the potential of resolvent-based modeling, the computational cost has seriously
hindered the application of resolvent analysis to large systems and three-dimensional flows in particular. To address
this, novel methods and algorithms have been proposed in recent years prominently based on matrix-free time-
stepping methods,16,19 randomized linear algebra techniques,20 one-way Navier-Stokes equations,21,22 and equation-free
data-driven models.23,24

Randomized SVD (RSVD) provides large computational savings for approximating the leading modes of large
systems.25 This algorithm was initially used in the context of resolvent analysis by Moarref et al.10 in a turbulent channel
flow. A more detailed study was then published by Ribeiro et al.20 showing promising results in higher dimensional
systems while significantly reducing the computational cost. The key step is to create a low-dimensional subspace onto
which the resolvent operator is projected. Finding the SVD of the low-dimensional approximation of the resolvent
operator is less expensive than computing it for the full resolvent operator, while still yielding accurate estimates of the
leading singular values and vector. Sampling the resolvent operator and projecting it onto the low-dimensional subspace
both require computing the action of the resolvent operator on a vector, and this step constitutes the dominant cost of the
algorithm and limits its CPU cost and memory benefits of the RSVD algorithm when applied to resolvent analysis. Our
new algorithm replaces these bottlenecks with cheaper operations using direct and adjoint time marching of the linear
equations in the time domain.

Monokrousos et al.19 leveraged time marching of direct and adjoint equations in a power iteration setup to obtain
the optimal modes of a boundary layer flow on a flat plate. Each frequency for which resolvent modes are desired is
computed separately, requiring intensive effort when a range of frequencies is of interest. Brynjell-Rahkola et al.26
proposed usage of a Laplace preconditioner to accelerate the power iteration convergence limited to low Reynolds flows.
More recently, an efficient time-stepping technique was proposed by Martini et al.16 Two versions of their approach,
termed transient and steady-state response methods, were demonstrated to be cost-effective as they simultaneously
capture optimal modes for several frequencies. In this paper, we combine the steady-state response method and RSVD
to obtain an efficient and flexible algorithm for computing resolvent modes of large systems. In particular, the proposed
algorithm replaces two aforementioned expensive steps within the RSVD algorithm with direct and adjoint marching
schemes, significantly reducing its overall CPU cost and memory consumption when applied to large systems. Our
approach constitutes a generalization of the power iteration approach in Martini et al.16

To demonstrate and analyze our method, we apply it, along with RSVD and SVD when possible, to three test
problems. A Ginzburg-Landau equation is used to validate our method relative to a standard application of RSVD
and to explore the impact of parameters within RSVD and our method on solution errors. An axisymmetric jet and a
three-dimensional (3D) jet are then used to assess the method and empirically determine its CPU cost and memory
scaling with problem size. Overall, these test problems demonstrate computational cost savings of our algorithm when
applied to large systems, especially 3D ones.

II. Background

A. Resolvent analysis
In this section, the resolvent operator is defined for the linearized Navier–Stokes (NS) equations. The nonlinear

governing equations in general coordinates are expressed as
mq
mC

= N (q), (1)

where N is the compressible NS operator. Equation (1) can be linearized by applying a Reynolds decomposition to the
flow state vector q(x, C) = q̄(x) + q′(x, C), yielding

mq′

mC
= A(q̄)q′ + f′(q̄, q′), (2)

where q̄ denotes the steady mean or base flow, and q′ represents the fluctuation around the base flow, f′ is the forcing
that contains the nonlinear terms and external body forces, A ∈ C#×# is the linearized NS operator, and # is the state
dimension of the discretized system.
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Taking the Fourier transform of equation (2) and solving for the transformed state, we obtain

q̂(l) = R(l) f̂(l), (3)

where
F (x(C)) = x̂(l) =

∫ +∞

−∞
x(C)4−8lC 3C (4)

is the Fourier transform, x(C) represents any arbitrary vector, and ˆ(·), denotes the frequency counterpart of the
time-domain vector. The transfer function between the input f̂ and output q̂ in the frequency domain is the resolvent
operator

R(l) = (8lI − A)−1 ∈ C#×# . (5)

The largest energy amplification of the mapping from inputs to outputs is commonly of interest. One can obtain
these optimal solutions from the SVD of the resolvent operator,27

R = U�V∗, (6)

where (·)∗ denotes the conjugate transpose, � contains the singular values associated with the gain, and U and V are left
and right singular vectors corresponding to output and input modes, respectively.

The procedure of explicitly obtaining the resolvent operator in equation (5) and the subsequent decomposition in
equation (6) are prohibitively expensive for large systems, hindering the application of resolvent analysis to realistic
three-dimensional turbulent flows. Randomized SVD (RSVD) provides a means to efficiently approximate the leading
singular values and vectors of a matrix, and this capability provides one of the key ingredients of our algorithm.

B. Randomized singular value decomposition
First, we show the steps of RSVD assuming that the matrix R is directly accessible. This is typically not the case for

resolvent analysis, and we address necessary modifications in the following section.
RSVD leverages random sampling in which a reduced matrix is obtained by sampling of R, i.e., multiplying a set of

random test vectors. The sketch of R28 is thus obtained by

Y = R�, (7)

where � ∈ C#×: is the random test matrix and the number of columns, : , determines the maximum number of leading
modes that could be approximated. Y is the response to a non-preferential direction forcing � and preserves the
dominant left singular vectors of R.

At this stage, an optional step is performing power iteration, which is especially useful when the singular values of
R decay slowly. This step updates the sketch in a loop,

for 8 = 1 : @
Y>;3 = Y
Y = RR∗Y>;3

(8)

and improves the approximation error exponentially.25 The number of desired power iterations is denoted by @. Power
iterations are especially helpful for improving the forcing modes, which tend to converge more slowly than the response
modes.

An orthogonal subspace Q is obtained from the sketch of R via the QR factorization

Y = QT, (9)

where T is an upper triangular matrix. The approximation of R can then be written as

R ≈ QQ∗R = QS, (10)

where
S = Q∗R. (11)
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Finding the SVD of S is inexpensive due to it reduced dimension and can be written as

S = Ũ�V∗, (12)

where Ũ and V are the left and right singular vectors of S, respectively, and � is the corresponding diagonal matrix of
singular values. V and � estimate the : leading right singular vector and corresponding singular values of R. From
equations (10) and (12), the left singular vector of R can be recovered as

R ≈ QS = (QŨ)�V∗ = U�V∗, (13)

where U = QŨ contains the estimates of the : leading left singular vectors of R.

C. Computing resolvent modes using RSVD
Direct application of the RSVD algorithm outlined above to the resolvent operator of high-dimensional systems is

impractical since R is the inverse of a large matrix and computing it quickly becomes intractable. In other words, R
is not directly accessible. A modified version of RSVD is provided by Ribeiro et al.20 to address this issue. In what
follows, the steps of RSVD that need modification are identified and a remedy to these bottlenecks is proposed.

To obtain the sketch of the resolvent operator from equation (7), first, R has to be computed from equation (5) which
is an expensive operation for large systems. So instead, the sketch of the resolvent operator can be found by solving the
linear system29,30

LY = �, (14)

where L = R−1 = 8lI − A. Similarly, S in (11) is also replaced by solving the linear system

SL = Q∗. (15)

These two modifications avoid the need to explicitly form R, but solving the linear systems in equations (14) and (15)
remain the most expensive steps in the RSVD algorithm. The cost of solving these linear systems can typically be
reduced by first computing the LU decomposition of L, which can then be used to solve by equations (14) and (15).20
The dominant cost within the RSVD algorithm then becomes finding the LU decomposition of L, which constitutes a
major bottleneck in the application of RSVD to resolvent analysis for large systems, especially 3D ones. Using this
approach, Ribeiro et al.20 achieved an order of magnitude reduction in CPU time compared to an iteratively restarted
Arnoldi method for computing resolvent modes of a flow over an airfoil, but the memory savings were more modest (less
than a factor of three). The computational time could be further reduced via parallelization, but this does not reduce the
memory usage, which becomes the primary bottleneck for large problems.

In the remainder of this paper, we will refer to this modified procedure compatible with resolvent analysis simply as
RSVD. Our proposed algorithm replaces the expensive steps of computing LU decomposition of L and solving the
linear systems with alternative steps leveraging time-stepping techniques.

D. Steady-state response method (SSRM)
As discussed above, solving linear systems whose solutions give the action of the resolvent operator on a vector are

the most expensive steps in the RSVD algorithm. Following Martini et al.,16 we leverage the fact that the resolvent
operator, unlike a more general matrix to which RSVD could be applied, is intimately connected to a linear differential
equation in the time domain. Specifically, using time-stepping of direct and adjoint linear systems, we eliminate the
expensive steps within the RSVD algorithm, as described below.

Consider the linear system with harmonic forcing

3q
3C

= Aq + v48lC , (16)

where l ∈ R is an arbitrary frequency, and v is an arbitrary forcing vector. The frequency domain counterpart of the
steady-state solution of equation (16) is equivalent to finding q̂(l) directly in Fourier space, q̂(l) = (8lI − A)−1v̂(l).
Hence, solving the direct linear system (16) in the time domain is a surrogate for finding action of R on an arbitrary
forcing vector v.
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Direct marching, however, is insufficient to find S. Re-writing S = (R∗Q)∗ suggests adjoint marching as the
equivalent time-domain approach. Consider the adjoint linear system

− 3q
3C

= A∗q + v48lC . (17)

Similar to direct marching, the frequency domain counterpart of the steady-state solution in equation (17) is equivalent
to finding q̂(l) = R∗ (l)v̂(l), where R∗ (l) = ((8lI − A)−1)∗ = (−8lI − A∗)−1. The adjoint marching is a surrogate
for the action of R∗ and it terminates the second and the last bottleneck in the RSVD algorithm. Note that both direct
and adjoint equations are the same throughout the algorithm and only the forcing varies.

FollowingSSRM introduced byMartini et al.,16 the actions ofR andR∗ can be obtained for a range of frequencies at the
same time by applying forcing vectors comprised of all harmonics31 and taking a subsequent Fourier transform to isolate
individual frequencies. Consider the desired frequency set as harmonics of l<8=, Ω = {l1, l2, ..., l#l

} = {2l<8=},
where #l is the total number of desired frequencies, 2 ∈ Z ranging from −2A to 2A , and 2A = l<0G

l<8=
is the ratio between

the minimum frequency to be resolved and the maximum frequency. We can write down the forcing as

v(C) =
#l∑
9=1

v̂ 948l 9 C + 2.2., (18)

where c.c. stands for complex conjugate. Integrating direct and adjoint equations with the forcing defined in equation (18)
enables capturing the actions of R and R∗, respectively, for all l ∈ Ω at the same time.

III. Method: combining RSVD and time-stepping
Our new algorithm combines RSVD with the SSRM time-stepping surrogates for obtaining the actions of R and R∗.

The steps of this algorithm are summarized in Algorithm 1. Note that since each step of the new algorithm functions
identically to corresponding RSVD operations, the final outcome of both algorithms is theoretically the same. The
time integration, however, must be performed numerically, leading to numerical errors (e.g. round-off error, truncation
error, etc.). Overall, our approach provides a flexible environment (via a set of user-defined parameters) and one could
achieve less accurate results at reduced cost by cutting the calculations and vice versa. These trade-offs are discussed in
Section IV.

A. Initial forcing
Obtaining a steady-state solution is necessary for SSRM and it requires the transient response to vanishes. A random

initial condition (usually set to zero) introduces a transient response into the solution of the initial value problem (IVP).
The effect of this undesirable response, however, decays as time evolves. An estimate of the transient length, i.e., the
time )C it takes for the transient to decay to some desired threshold nC , can be obtained from a one-time numerical
integration of equation

3q
3C

= Aq (19)

with a normalized random initial condition. The transient time )C increases with decreasing nC .
The initial forcing for our algorithm is constructed via

�(C) =
#l∑
9=1

�̂ 94
8l 9 C + 2.2., (20)

where �̂ 9 is taken from a normal distribution. This initial forcing contains all of the spatially random matrices, �̂ 9 (l),
associated with l ∈ Ω. Hence, the forcing is excited only at #l desired frequencies corresponding to random matrices
defined for the same frequencies for RSVD. Given �(C), the direct equation (16) can now be integrated. The length of
integration should be )C + ) , where the period of steady-state forcing is pre-determined by ) = 2c

l<8=
. The steady-state

response should preserve the excitation periodicity to resolve l<8=, thus ) = 3C × #C , where 3C is the time step, and #C
is the total number of time-steps/snapshots.
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B. Streaming Fourier sums
A )-periodic block of time data containing the steady-state response to�(C) is used for acquiring Ŷ(l) for all l ∈ Ω.

The time marching of equation (16) requires #C snapshots of forcing to produce #C snapshots of steady-state solution in
the time domain but only #l Fourier modes need to be computed. Usually #C is much larger than #l to ensure stable
and accurate integration of the direct and adjoint systems. Indeed, all #C time instants could be used to calculate #l
Fourier series coefficients, but this is expensive and unnecessary. In fact, twice the number of desired frequencies is the
minimum number of snapshots required to recover the frequencies of interest without facing leakage and aliasing. Since
Ω is defined to contain both positive and negative integer factors of l<8=, #l is the minimum number of temporal
snapshots. New snapshots of size # × : are produced at every time step, yielding a total number of #C snapshots as
the steady-state response. #l out of #C snapshots are sufficient for a fast Fourier transform (FFT) to obtain Ŷ(l) for
all l ∈ Ω. This reduces the memory usage, but the number of forcing snapshots remains large. Memory challenges
motivate the idea of streaming calculations that compute the Fourier transform on the fly following the discrete Fourier
transform (DFT) formulation, eliminating the memory demand for storing #C forcing snapshots in the time domain.

The streaming procedure is conceptually similar to the streaming SPOD algorithm proposed by Schmidt & Towne.32
In both the direct_marching and adjoint_marching functions in Algorithm 1, the Fourier modes of the appropriate
forcing are passed in and the output is the response in Fourier space. Critically, neither forcing nor the responses in the
time domain are stored in memory. Instead, forcing snapshots are generated one at a time as needed during the time
marching, and the effect of the most recent steady-state response on the ensemble of Fourier modes is computed. The
procedure in both functions is similar and is illustrated as follows.

The forcing in the time domain can be reconstructed from the Fourier modes of the forcing as

f? =
#l∑
B=1

/?B f̂B , (21)

where /?B = 4G?(−2c8/#C ) (?−1) (B−1) , 1 ≤ ? ≤ #C , and B cycles through the frequencies l ∈ Ω. f̂B of size # × : × #l
denotes Fourier modes that are stored in memory and available. On the other hand, f? is the ?Cℎ time-domain snapshot
of the forcing used to obtain (? + 1)Cℎ response. The process of generating a new forcing continues in a loop of size #C
all the way through the transient and steady-state responses.

Each snapshot of the time-domain solution, via a similar approach, contributes a portion of each Fourier modes by
the partial sum [

q̂B
]
#?
=

[
q̂B

]
#?−1
+ / ′#?B

q#?
=

#?∑
;=1

/ ′;Bq; , (22)

where / ′
;B
= 4G?(−2c8/#l) (;−1) (B−1) , and 1 ≤ ;, B ≤ #l . The complete Fourier modes are recovered once the effect of

the final steady-state response is found (#? = #l). Notice that the size of the inverse DFT matrix, / , is different from
the DFT matrix, / ′, since only #l snapshots are required to achieve the response Fourier modes as explained earlier.
The streaming procedure for the adjoint equations is analogous to one described above for the direct equations, except
that the adjoint equations must be solved backward in time and the identity of the input forcing and response is reversed.

To summarize, as no time snapshots are stored in the streaming procedure, the total required memory is reduced.
The trade-off is the computational cost; the streaming DFT scales with $ (#2

l) while FFT scales with $ (#llog(#l)).
However, the cost of converting forcing and responses from/to the time domain to/from Fourier space is a small fraction
of the total time-marching cost. So, on balance, the substantial memory benefits outweigh the cost difference.

C. The complete algorithm
The steps of Algorithm 1 can now be stated as follows. The first step is to define spatially random matrices for all

l ∈ Ω (step 4). Next, the Fourier modes Ŷ are computed via streaming computation of the response to the given �̂ by
integrating the direct equation (step 5). The orthogonal subspace is immediately constructed for each individual desired
frequency by QR decomposition of the corresponding coefficient (step 8). Note that (·)Ω indicates that a function is
repeated for all l ∈ Ω. To obtain Ŝ, the adjoint equation should be solved in time for the time domain counterpart of Q̂
which is the input forcing (step 9). This process also uses the streaming calculations. The last two steps (10 and 11) are
decomposing Ŝ and recovering Û for each individual frequency. These steps in our algorithm are identical to RSVD
operations.
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In addition to the ability to choose the desired trade-off between accuracy and speed, our algorithm benefits from all
applicable improvements for stability and accuracy of RSVD such as power iteration and oversampling.33–35 Note that
power iteration as performed in (8) equivalently requires an adjoint and direct marching in a row. So, our algorithm is
capable of handling this optional step by employing time-stepping, however, this is the most time-consuming step in
Algorithm 1. The power iteration function (PI) in our approach follows the operations as written in Algorithm 2. When
: = 1 and @ > 0, the SSRM power-iteration method of Martini et al.16 is recovered as a special case.

Our algorithm is based on RSVD, however, unlike the standard RSVD, creating an explicit matrix for the inverse of
the resolvent operator, L, is unnecessary. Our approach, instead, finds the actions of R and R∗ by carrying out direct
and adjoint time integrations, respectively, providing a unique opportunity when an explicit operator for a linearized
system is unavailable. Efficient ways have been devised to obtain these actions by exercising perturbation on the NS
equations36 without the need for explicit linearization as in equation (2). In addition, our algorithm is compatible with
any time integration method. Therefore, the resolvent modes could be captured by combining the time marching results
(as a surrogate for the actions of R and R∗) with other steps defined in Algorithm 1.

Algorithm 1 Efficient randomized time domain algorithm based on SSRM
1: MS: Marching scheme (e.g. Crank–Nicolson, Backward Euler, etc.)
2: Input parameters: A, :,MS, 3C, #C , )C ,Ω, #l , @
3: procedure ⊲

4: �̂← randn(#, :, #l) ⊲ Create initial random forcing in frequency space
5: Ŷ← direct_marching(A,MS, �̂, /, / ′, 3C, #C , )C ) ⊲ Solve direct equation on-the-fly for Ŷ
6: if q > 0 then ⊲ Power iteration to improve RSVD accuracy
7: Ŷ← PI(Ω, :,MS, 3C, #C , )C , @)
8: Q̂← qrΩ (Ŷ) ⊲ Construct the low-rank orthonormal space Q̂
9: Ŝ← adjoint_marching(A∗,MS, Q̂, /, / ′, 3C, #C , )C ) ⊲ Solve adjoint equation on-the-fly for Ŝ

10: (Ũ,�,V) ← svdΩ (Ŝ) ⊲ Obtain SVD of Ŝ
11: U← Q̂Ũ ⊲ Recover U
12: Final output: U,�,V for each l ∈ Ω

Algorithm 2 Power iteration (PI) based on SSRM
1: MS: marching scheme (e.g. Crank–Nicolson, Backward Euler, etc.)
2: function PI(A, Ŷ,MS, 3C, #C , )C ,Ω, #l , @)
3: for i = 1:q do
4: Ŷ← qrΩ (Ŷ) ⊲ For stabilization purposes25
5: Ŷ← adjoint_marching(A∗,MS, Ŷ, /, / ′, 3C, #C , )C ) ⊲ Solve adjoint equation on-the-fly for Ŷ
6: Ŷ← qrΩ (Ŷ) ⊲ For stabilization purposes25
7: Ŷ← direct_marching(A,MS, Ŷ, /, / ′, 3C, #C , )C ) ⊲ Solve direct equation on-the-fly for Ŷ
8: Final output: Ŷ

D. Computational cost and memory usage
The ability to estimate the total cost of our algorithm with high confidence before running the entire algorithm is

one of its features. The main steps of the algorithm include the DFT and inverse DFT, time integration, SVD, and QR
decompositions. Among these, the most cost-demanding function for large stiff systems (>95% of total cost for most
systems we have tested) is the time integration. The following explains how to estimate the CPU cost and memory
requirements for our approach and compares it with the standard RSVD.

After discretizing the linearized NS equations in time, the general form of the obtained system looks like

Ax = b, (23)

where b ∈ C#×: is the forcing that varies in time. A ∈ C#×# is the temporal discretized operator and can be written as
a first-order polynomial like %(A) =A = 21I + 22A, where constants are determined based on integration scheme and

7

D
ow

nl
oa

de
d 

by
 A

ar
on

 T
ow

ne
 o

n 
Ju

ly
 2

8,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
28

96
 



time step. For instance, the Backward (implicit) Euler method results inA = I − 3CA. Direct and iterative solvers could
be used to solve equation (23) depending on conditioning of the system, desired accuracy, cost and memory allocations.

When using a direct solver, sinceA remains the same throughout the entire integration, LU decomposition leads to a
significant speedup. The nominal cost of LU decomposition ()!* ) of a dense matrix is $ (#3), while the cost of solving
LU-decomposed system ()sub) scales with$ (#2). These scalings can be much less for a sparse system depending on the
size, sparsity ratio, and sparsity pattern of the system.37 AsA is usually sparse, the cost of direct solution of equation (23)
scales theoretically like $ (#1.5) for 2D problems and $ (#2) for 3D problems using multi-frontal sparse direct solvers
according to analysis by Amestoy et al.38 The total CPU time can be written as )!* +#) ×)sub, where #) is the number
of time steps (including the transient and steady-state periods). On the other hand, cost of performing adjoint marching is
#) ×)sub, where )!* is dropped due to the fact that the conjugate transpose of the decomposed matrices are sufficient for
solvingA∗x = b. Therefore, the entire computational cost of our algorithm is roughly )!* + 2× #) ×)sub. Performing
@ power iteration, the total CPU time becomes )!* + 2× #) ×)sub + @ × 2× #) ×)sub = )!* + 2× (@ + 1) × #) ×)sub

Themost costly step in RSVD is also solving linear systems such as equations (14) and (15). Again, LU decomposition
is performed first, and the LU-decomposed system is then solved twice. The overall cost of RSVD really depends on LU
decomposition of the L for each frequency of interest, which typically differ. However, a rough CPU time estimate for
#l frequencies of interest and @ power iteration is #l × () ′!* + 2× (@ + 1) ×) ′sub). Two key differences that distinguish
our algorithm from RSVD are (i) we require the LU decomposition of a better conditioned matrix and (ii) we must
perform this LU decomposition just once, rather than once for every frequency of interest. The LU decomposition in
our algorithm is performed on a time discretized system, A, as opposed to the inverse of the resolvent operator, L.
A is usually much better conditioned than L and ill-conditioning causes a noticeable increase in the CPU time and
memory cost of the LU decomposition. Hence, for large 3D problems ) ′

!*
� )!* is expected. The second important

difference is that our algorithm requires LU decomposition once. However, RSVD requires this costliest operation
once for each frequency of interest. Therefore, even by assuming )!* ≈ ) ′!* , our algorithm is #l times faster for the
decomposition stage. Now, all computational benefit from our algorithm relies on the ratio between )!* and )sub. The
larger gap between these two would increase the computational advantage of our algorithm. )!* usually scales worse
with dimension than )sub, resulting in )!* � )sub for large problems which makes our algorithm advantageous for
high-dimensional systems.

The second option to obtain the solution of equation (23) is to use an iterative solver. Numerous studies have
developed advanced and fast iterative solvers.39,40 The condition number difference between the two linear systems
makes using an iterative solver for RSVD more challenging than applying it to equation (23). In fact, bringing down
both computational time and memory allocation at the same time when dealing with a poorly conditioned matrix
could be cumbersome. Solving equation (23) with an iterative solver eliminates the prerequisite of computing LU
decomposition matrices as in the direct solver process. This can significantly decrease the memory requirement and
CPU cost associated with both decomposition and integration, but the trade-off is the accuracy. Iterative solvers such as
generalized minimal residual method (GMRES), stabilized bi-conjugate gradient (BICGS), etc. compute the solution of
a linear system up to a specified relative residual norm. The convergence becomes more expensive as this norm is set to
lower values. The key initial step before using an iterative solver is to build a good preconditioner. The main objective
of applying a preconditioner is reducing the condition number (which accelerates the convergence rate) and many
preconditioners have been developed for various systems.41,42 Assuming )pre is the CPU cost of finding a preconditioner
and )8C is the cost of iteratively solving the linear system, the total CPU time of both direct and adjoint marching plus
@ power iterations becomes )pre + 2 × (@ + 1) × #) × )8C . Only once computing a preconditioner should be enough
when it is found via incomplete LU (iLU), decomposition since the transpose conjugate of iLU for the direct marching
provides a decent preconditioner for the adjoint marching.

The most memory-demanding step in solving linear systems is also the LU decomposition. The peak of memory
consumption depends on many factors including the sparsity pattern and the condition number of a matrix. An
ill-conditioned problem requires more memory storage than a well-conditioned system with a similar size. Therefore,
our new algorithm that deals with operators of the form A requires less memory allocation for LU decomposition.
The memory savings become larger when an iterative solver is used. The preprocessing step is finding iLU or other
preconditioners that usually involves a very sparse matrix and do not require significant memory. The expected memory
demand for each iteration, also, would not drastically deviate from the memory needed for solving an LU-decomposed
system.

The approximation of the computational wall time of our algorithm is reliable due to the fact that all steps remain
roughly the same cost throughout the integration. This, however, is not true for RSVD. The cost of LU decomposition of
the resolvent inverse matrix can vary significantly depending on the frequency of interest. Specifically, when l is small
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(close to zero), the condition number of the operator A is dominant which leads to an extensive amount of calculations.
The condition number gets closer to 1 (identity matrix condition number) as higher frequencies are desired and the LU
decomposition expenses slightly fluctuate over an average value for a sufficiently large l range.

E. Parameter selection for the new algorithm
The overall accuracy, CPU cost, and memory consumption of the proposed algorithm, specifically for high-

dimensional systems, are determined by the time integration function that carries out the direct and adjoint actions. The
optimal way of numerically integrating the linearized NS equations depends on many factors including the problem size,
geometry, discretization scheme, Reynolds number, etc. Nevertheless, some general guidelines are herein provided for
typical systems. We particularly explain the process of the time evolution of large (and usually stiff) ODEs to highlight
the cost and memory requirements.

1. Transient effects
Even under harmonic forcing, the solution of a linear IVP has a transient component if the initial condition consistent

with the harmonic response is unknown. As mentioned, the steady-state solutions of equations (16) and (17) are required
to find the actions of R and R∗, respectively. Therefore, two sources of error contaminate the steady-state response to a
given forcing; truncation error due to time-stepping and transient effects. The transient solution decays as time evolves
and the transient effect becomes less intense. A good practice for choosing the length of the transient part is to make
sure the error of the transient response is roughly the same magnitude as the truncation error since the error of the final
solution is just a sum of two sources of errors.

As discussed in Section III.A, to find an approximation of how transient effects decay in time, the linear system (19)
can be integrated once (transient run). The input is a normalized random initial condition with no exogenous forcing.
This preprocessing step is a low-cost operation compared to running the entire algorithm. The solution could be found
only for one test vector, but adding a few more (∼3) provides a better estimate.

To further decrease the cost associated with removing the transient, we propose to divide the transient time into
several sections, or levels, that are each integrated with time steps of different sizes. The idea here is to exploit the fact
that the transient solution does not need to be accurately resolved and our algorithm only needs to remove its effect up to
a specific threshold. Accordingly, the transient can be passed more quickly with larger time steps. A large time step can
effectively remove the transient as time evolves until the truncation error due to time-stepping becomes dominant. Then
switching to a smaller time step will continue removing the transient. This process repeats and is illustrated as follows.

Assume ) is the duration of the steady-state solution to resolve all frequencies and )C is the transient duration to
remove the transient solution up to some desired threshold nC . The original version of our algorithm requires ()C +))/3CB
operations, where 3CB is the small enough to reach nC . Our multilevel idea suggests splitting the transient part into smaller
levels with different time steps sizes to reduce the number of operations and achieve computational savings. At each
level, 3C; will be used for some duration ); and the final solution will be passed to the next level. The initial condition
from one level to the other generates a transient solution since the time step has been changed. After integrating for long
enough such that the transient error is smaller than the truncation error, the solution will be passed to the next level.
The period of integration at each level depends on the time step of two successive levels and the decay rate of the least
damped eigenvalue of A. As shown in figure 1, repeating this process, the transient duration can be partitioned into <
smaller levels )1, )2, ..., )< associated with 3C1, 3C2, ..., 3C< where 3C1 = 3CB. The modified number of operations is
now )</3C< + )<−1/3C<−1 + ... + )1/3C1 + )/3CB .

At the end of each level, the final time instance is passed as an initial condition to the next level with an updated time
step. To minimize the effect of the transient solution associated with a wrong initial condition, the forcing and the initial
condition must be synchronized, i.e. the initial condition and the forcing have to be on the same time point. This can
be easily achieved by assuming 3C8 = =83CB where =8 is an integer. Other arbitrary values for 3C8 are possible in case
synchronization is taken care of. Another note here is that passing the whole transient using a very large time step and
directly jumping to steady-state time period is not effective since the truncation error becomes dominant. The best
practice is to integrate long enough such that the transient effect become close to the truncation error at each level.

One can see that this idea only affects the transient part and the steady solution is intact. The maximum ratio of cost
reduction is always less than )/()C + )) (when ideally the transient cost completely fades away). As a result, systems
with slow transients (when )C � )) will benefit more from this idea.
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dtm dtm-1 dt1dtm-2 dts

Tm Tm-1 Tm-2 TsT1

dts

Tt

time

Fig. 1 A schematic of the multilevel idea. The number of operations required to pass through the transient
time )C is reduced by segmenting it into < levels with large time steps at the beginning of the transient time that
are progressively reduced to the desired time step 3CB in the steady-state region.

2. Integration scheme and time step
The first choice to be made when selecting parameters for the new algorithm is the numerical integration scheme.

Many numerical schemes are available and categorized as explicit, implicit, or a combination of both.43 Some classic
methods include one-step methods such as forward/backward Euler, multistage methods such as the Runge-Kutta family,
and linear multistep methods (LMM) such as the backward differentiation formula (BDF) family.44

For the stiff systems typical of the linear NS equations, implicit LMMs offer an attractive combination of stability
and accuracy using time steps of reasonable size. We also found LMMs straightforward to implement without requiring
extra effort to incorporate the streaming calculations in the direct and adjoint functions. For LMMs, the zero-frequency
(steady) response has zero truncation error, regardless of the linear system. The error caused by time marching is mainly
due to transient effects for low frequencies and due to truncation error for higher frequencies. All classic marching
methods are consistent and, if stable, converge to the exact solution with $ (ℎ?), where ℎ is the time step and ? is the
order of the numerical scheme.

3. Effect of time integration error on the accuracy of the new algorithm
The accuracy of the estimated singular values and singular vectors from the RSVD method are sensitive to the

properties of R and RSVD parameters such as : and @. Our algorithm only substitutes direct and adjoint actions and
approximates RSVD outcome with some noise that time integration incorporates into the RSVD. The ultimate goal,
however, is to approximate the optimal modes of the true SVD of the resolvent operator. The accuracy of our approach
could be bounded by one of these two sources of error. The first one is the error of RSVD as it approximately captures
the optimal modes through a randomized process. The upper bound of the computed modes from RSVD has been
theoretically found by Halko et al.25 The second source is due to time-stepping. This source of error could be dominant
when the time-stepping error becomes larger than the RSVD approximation. This is true especially when power iteration
is used.

Based on the SVD perturbation theory of Weyl,45 the singular values of a matrix are bounded by

|f̂8 − f8 | ≤ | |E| |2, (24)

where E is the (matrix) perturbation to R. Therefore, the absolute error between the computed singular values from
our approach has an upper bound, but usually the computed modes (and specifically the optimal mode) are far more
accurate than this upper bound. Better error bounds can be found for systems with large gain separations.46

Perturbation expansion also could be useful especially when E approaches zero.45 Let f ≠ 0 be a simple singular
value of R with left singular vector u and right singular vector v. Then as E approaches zero, there is a unique singular
value f̂ of the perturbed matrix R + E such that

f̂ = f + u)Ev +$
(
| |E| |2

)
. (25)
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The perturbation theory for singular vectors is more complicated since singular vectors corresponding to close
singular values can be sensitive. We will instead use an a posteriori measure of the error between two corresponding
singular vectors of RSVD and the new algorithm, namely the cosine similarity

4D = 1 − 〈uRSVD, u) 〉, (26)

where 〈·, ·〉 denotes the inner product between two vectors. The subscripts ) stands for our approach.

IV. Results
In this section, we analyze and demonstrate our algorithm by applying it to three example problems. First, we

validate the method using a linearized Ginzburg-Landau problem via comparisons to results obtained from RVSD and
a fully converged Arnoldi-based SVD routine. Then, we investigate the CPU cost and memory requirements of the
method using axisymmetric and 3D jets.

A. Complex Ginzburg-Landau equation
The complex Ginzburg-Landau (GL) equation provides complex dynamics that mimic real flow behavior. In

particular, the evolving spatial instabilities have made GL a benchmark problem for developing tools and assessing
linear stability models.47–51 The GL equation can be written in the form of equation (2) with

A = −a m
mG
+ W m

2

mG2 + `(G), (27)

where `(G) = (`0 − 22
`) +

`2
2 G

2. The free model parameters are set to identical values as used by Towne et al.,12
where a = 2 + 0.28, W = 1 − 8, `0 = 0.23, 2` = 0.2, and `2 = −0.01. These values ensure a globally stable model and
provide a large gain separation between the leading resolvent mode and the second mode at their peak frequencies. The
computational domain G ∈ [−85, 85] is extended enough to mimic infinite boundaries. The spatial discretization uses
central finite difference method. The dimension of our mesh, # , is 500 and the set of desired frequencies Ω consists of
values between -4 and 4 with a resolution of Δl = 0.05. In the following, we evaluate the effect of various parameters
on our proposed approach and validate our algorithm.

1. Resolvent modes obtained from the new algorithm
Before assessing the sensitivity of results obtained from our algorithm to parameter selection, we examine the

resolvent modes of GL. The results in figure 2 compare the first three leading modes of SVD and our approach for
various values of @ and : = 10. We set the integration parameters as 3C = 0.1, numerical scheme to 4Cℎ order backward
difference formula (BDF4), and )C = 80. The only change is the number of power iterations. The error between the
gains improves by a few orders of magnitude when power iteration is performed once. The improvement is greater at
frequencies for which the gain separation is larger. Since the relative error between SVD and our approach becomes
much smaller from @ = 0 to @ = 1 without changing the integration parameters, it suggests that the error of direct and
adjoint marching within our approach is smaller than the error of RSVD approximations when @ = 0.

The optimal mode obtained from RSVD usually has the smallest error, especially when the gain separation is large.
This is evident in figure 2 (c), where the error gap between the optimal and suboptimal gains is larger at the peak
frequency. Plot (d) also shows a similar trend but it seems the optimal gain error is limited by integration error as
opposed to suboptimal gains. This happens when the RSVD approximation is so accurate that errors introduced by the
direct and adjoint marching become dominant. Further comparison between the relative error between our approach and
RSVD provides more information to interpret the dominant error.

2. Effect of numerical integration scheme and time step
Two purposes are pursued here. The first purpose is to explain the relative error between RSVD and our algorithm

due to the truncation error, which depends on the integration scheme and time step. The second objective is to validate
our algorithm by showing that the relative error between our approach and RSVD can be reduced to machine precision.

Three sets of parameters are considered for these purposes. The common parameters between RSVD and our
algorithm are : = 10 and @ = 0. The transient duration, )C = 280, is long enough such that the effect of the transient
vanishes up to machine precision. The time integration-related parameters include (8) BDF2 and 3C = 0.1, (88) BDF4
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Fig. 2 The gains of the first three optimal modes of SVD and our algorithm and the relative error between
them are shown in the first and second rows, respectively. The left and right columns correspond to @ = 0 and
@ = 1, respectively. The parameters of time marching are the same in both simulations. The subscript ) stands
for our approach.

and 3C = 0.01, and (888) BDF6 and 3C = 0.001. The initial random forcing is identical for both algorithms and all three
cases. One extra set with BDF6 and 3C = 0.0005 is also considered to demonstrate our validation is independent of
chosen parameters.

Figure 3 shows the relative error of the first three optimal gains compared to SVD (top row) and RSVD (bottom row).
The first row results show almost identical plots, which is expected since the second row error plots show smaller relative
errors between RSVD and our approach. The time-stepping error is not dominant even for the least accurate set (8). A
comparison between the second row error plots indicates that the integration error can be made as small as desired. Plot
(f) reaches close to machine precision. In fact, it is slightly higher than the true machine precision $ (10−16) due to the
accumulation of roundoff errors. Moreover, no noticeable change in the results corresponding to the extra set with finest
3C = 5 × 10−4 is observed (results not shown), which shows the results are independent of the chosen parameters. These
results imply that our proposed algorithm is capable of reproducing the exact outcome of RSVD for a careful set of
time-stepping parameters, validating our algorithm. Also, they suggest that a very accurate integration is unnecessary
and would not change the accuracy of the obtained resolvent modes when the RSVD approximation bears more error.

One observation here is that machine precision error is observed for l = 0, and larger errors are obtained for higher
frequencies. As explained earlier, the low frequency error is dominant by transient effects (which are small since the
time allowed for the transient to decay is long), and high frequency error is mainly due to the truncation error, which
changes significantly for the different sets of parameters considered here. This observation is further evaluated in the
next section.
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Fig. 3 Error in gains computed using our algorithm relative to SVD (top row) and RSVD (bottom row).
Columns from left to right correspond to parameter sets (8), (88), and (888), as defined in the text.

3. Effect of the transient
Transient effects are defined as the response of the IVP to initialization when the initial condition consistent with the

steady-state response is unknown. This is part of the error of direct and adjoint marching. We consider three new sets of
parameters to assess the effect of the transient. The common parameters between RSVD and our algorithm are the same
as in the last section. For the time integration-related parameters, BDF4 and 3C = 0.01 are fixed and only the transient
duration varies as (8E))C = 40, (E))C = 100, and (E8))C = 280. Note that the last set has exactly the same parameters as
set (88) in the previous section.

The transient disappears at different rates, depending on the position of the least damped eigenvalues of A. In
figure 4, plot (b) demonstrates that transient error can become larger than the truncation error even for higher frequencies.
The transient error decays almost at the same rate for all modes for the GL system. This could vary from one system
to another. Similar to the previous section, the first row results remain unchanged as the integration error is small
enough. The second row error plots show that the error is dominated by the truncation error for higher frequencies and
is determined by the transient effects for lower frequencies (close to l = 0). This is not a feature of the linear system,
but instead, it is a feature of LMM scheme. In light of the competition between transient and truncation error, the
efficiency of the algorithm in maximized when these two errors have similar magnitudes.

B. Axisymmetric jet
In this section, we consider one of the jet cases described by Schmidt et al.52 In brief, a large-eddy simulation

(LES) of a turbulent jet with Mach number " = *
0
= 0.4 and Reynolds number '4 = *�

a
= 106 was performed on an

unstructured grid using the ‘Charles’ solver developed by Cascade Technologies.53 Here, 0 is the ambient speed of
sound, a is the kinematic viscosity at the nozzle exit,* is the centerline jet velocity, and � is the diameter of the nozzle.
Temporal data was interpolated onto a cylindrical grid with 656× 138× 128 points in G ∈ [0, 30], A ∈ [0, 6], \ ∈ [0, 2c],
respectively. The frequency is reported in terms of the Strouhal number (C = l�

2c* . For details on LES and numerical
setup please refer to Brès et al.54

Since the jet is round, the mean flow is axisymmetric, depending only on streamwise and radial coordinates. The
region of interest in this study is G × A ∈ [0, 10] × [0, 3] surrounded by a sponge region. The full domain is spatially
discretized using fourth-order central finite differences with 632× 285 grid points in the streamwise and radial directions,
respectively. The Reynolds number within the linearized system is reduced to '4 = 10, 000 to account for un-modeled
Reynolds stresses.55
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Fig. 4 Error in gains computed using our algorithm relative to SVD (top row) and RSVD (bottom row).
Columns from left to right correspond to parameter sets (8E), (E), and (E8), as defined in the text.

The input-output system is derived by finding the Fourier-domain counterpart of the linearized NS equation (2). We
write the equations in terms of specific volume, three components of velocity, and pressure, yielding the state vector
q(x, C) = (b, DG , DA , D\ , ?)) (G, A, \, C). The jet is statistically stationary and is periodic in the azimuthal direction, so,
Fourier modes in azimuthal direction and time can be written as

q′(G, A, \, C) =
∑
<,l

q̂<,l (G, A)48<\48lC , (28)

where < denotes azimuthal wavenumber and l is the angular frequency. For a chosen < and l, the relation between
inputs and outputs is governed by

q̂<,l = R<,l f̂<,l , (29)

where
R<,l = C(−8lI − A<)−1B, (30)

and B and C matrices are spatial filters that determine the region of interest for output and input states, respectively. The
sponge region is filtered out using appropriate B and C.

Following Schmidt et al.,30 a modified (weighted) resolvent operator is defined as

R̃<,l =W1/2
H C(−8lI − A<)−1BW−1/2

5
, (31)

whereWH andW 5 are weight matrices that define the inner products for the output and input spaces and also account
for numerical quadrature such that the inner product in the discretized system can be written as 〈qH , q′H〉 = q∗HWHq′H .
For simplicity, we use the weight matrices to account for quadrature weights but do not consider special weighting of
different flow variables; this has no impact on our study since our aim is to compare algorithms rather than elucidate
physics or build a model.

The resolvent operator in equation (31) is slightly different than the resolvent defined in equation (5). The
(−8lI − A<)−1 term is still associated with time marching, however, the caveat here is to apply BW−1/2

5
to the given

forcing in the frequency domain and W1/2
H C to the Fourier counterpart of the time-stepping output. For instance, a

single step of the streaming direct marching (step 5 in Algorithm 1) becomes three steps:
1) Q̂← BW−1/2

5
Q̂
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2) Ŝ← direct_marching(A,MS, �̂, /, / ′, 3C, #C , )C )
3) Ŝ← W1/2

H CŜ
These modifications can be used to restrict the input or output or define arbitrary inner products for any linear system

(not just the jet considered here). The only modification in Algorithm 1 is to update the input (forcing) with weight and
filter matrices before passing it into the time marching function and also update the output (response) of the the same
function with appropriate matrices, both in the Fourier space, as explained above. The cost of the first and third steps
are negligible compared to the second step as long as weight and input/output matrices are sparse (they are typically
diagonal in practice).

1. Resolvent modes obtained by RSVD and the new algorithm
The linearized NS system for the jet is stiff, so we choose the time integration scheme to be one step Adams–Moulton

(AM1), which is the most accurate second order �-stable LMM. A transient run suggested a )C = 500 transient
duration, and to reduce the cost of transient, the multilevel method is used with 3C = [16, 8, 4, 2, 1] × 0.05 with
)C = [500, 20, 20, 20, 20]. This reduces the transient number of operations from 500/0.05 = 10, 000 to 500/(16 ×
0.05) + 20/(8 × 0.05) + 20/(4 × 0.05) + 20/(2 × 0.05) + 20/(1 × 0.05) = 1, 375. This is a 86.25% reduction which
means that we pass the transient almost 7 times faster. Ω consists of (C ∈ [−2, 2] with a resolution of Δ(C = 0.05. The
iterative solver is conjugate gradients squared (CGS) with iLU preconditioner with drop tolerance of 10−3. The residual
norm for CGS is set to 10−4. The RSVD parameters are : = 6 and @ = 1.

The integration scheme has LMM form, so the error of zero frequency depends only on the transient effects. The
slowest decaying mode for this problem has zero frequency; all modes associated with higher frequencies decay much
faster for the same transient duration, so the dominant error at these frequencies is due to truncation. The error plots in
figure 5 between singular vectors and singular values confirm that the truncation error has similar magnitude as the
transient error. Further extension of the transient run (> 500) only affects the error of low frequencies (−0.2 ≤ (C ≤ 0.2).
The captured gains and singular vectors from our algorithm maintain a relatively low error compared to the RSVD
outcome for all frequencies and all modes.

Excellent visual agreement is observed between the modes obtained using our algorithm and RSVD in figure 6
which shows the real part of the pressure for the first three modes. Other states such as streamwise and radial velocities
obtained from our approach are also very close to RSVD outcome. The results could be further improved by decreasing
the time step until the accuracy is limited by the RSVD approximation. This will indeed increase the computational cost
but the memory usage remains the same.

2. Computational cost and memory scaling
The CPU cost and memory requirements for various functions within the RSVD and new algorithms are computed

for a range of problem dimension # to better demonstrate their scaling. The base state dimension is #� = 5×#G ×#A =
5 × 200 × 90, which might not be resolved enough to capture the resolvent modes properly. However, the purpose of this
section is to estimate the computational expenses for mid-size and larger problems. Finer discretizations are used to
create larger systems of size # = � × #� = 5 × (

√
� × #G) × (

√
� × #A ), where � varies between 1 and 25. All other

parameters are held constant.
LU decomposition is performed using a nonsymmetric pivoting strategy and permutation (exchanging rows and

columns) is allowed for faster calculation, increasing numerical stability and obtaining sparser L and U with minimum
fill-ins. All the functions are well suited for multithreaded computations, however, the number of processors on our
high-memory workstation is restricted to one to measure the wall time. This ensures an even comparison between
all the operations. To further reduce the uncertainties associated with wall time measurements, the elapsed times are
reported based on averages taken over 2-50 repetitions of a function. Since we are using a single processor, wall time is
a surrogate for counting the FLOPS. The quantitative times could vary for other processors, but scalings are expected to
be preserve.

Comparing the results of figure 7 (a) and (c), the computational cost and memory usage of LU decomposition follow
similar trends. The CPU cost scales like $ (#2.5) and memory like $ (#1.8) when (C = 0, worse than all the other
functions as expected. The LU decomposition cost scaling varies between $ (#1.8) to $ (#1.4) for higher frequencies
and for the decomposition of A, respectively. The corresponding memory scalings are $ (#1.3) and $ (#1.0).

After LU is done, computing the solution of the LU decomposed linear system becomes much faster and the
scalings are between $ (#1.2) to $ (#1.7), where (C = 0 again has the highest slope. This happens due to the denser LU
matrices obtained for the poorly-conditioned system. Adding up the cost of these functions, the total cost for RSVD
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Fig. 5 Axisymmetric jet results: (a) singular values of both algorithms within the desired frequency range; (b)
relative error between singular values for the first three leading modes; (c) and (d) cosine similarity between the
optimal response and forcing modes, respectively, captured using RSVD and our approach.

when #l = 82, : = 10 is less than our approach when a direct solver is used and #) = 10, 000. We assumed all the
frequencies of interest cost roughly the same as (C = 0.5, and only added the cost of (C = 0 once even though other low
frequencies are closer to the scalings of (C = 0. In our approach, 3C = 0.05 and #) ∼ $ (104) covers a fairly long time
duration. The multilevel time-stepping is also avoided in our comparisons. The total time scales with $ (#2) for RSVD
and $ (#) for our algorithm over the range of # considered. The overall CPU cost scalings are calculated based on the
first four points (due to memory restriction for the RSVD calculation). As # is further increased, the LU and iLU costs
will dominate, causing the overall cost of each method to scale with the highest powers observed in 7 (a).

The iterative solver speeds up our approach significantly. The most costly step is finding an effective preconditioner.
To this end, we used iLU with a 10−3 drop tolerance. To reduce the cost of obtaining the preconditioner, we compute the
iLU of a permuted form of A, P1AP2, rather than A itself, where P1 and P2 can be obtained using one of several
available pre-ordering methods that have been developed for this purpose.56 After finding a preconditioner, the cost
of the iterative solver scales like $ (#1.2), but since the iLU parameters are kept the same, this is not the best scaling
that could be obtained. A close connection exists between the preconditioner and the performance of iterative solvers,
and one must tune these together for a specific system in order to optimize the cost. The total cost is calculated for the
same number of snapshots as the direct solver and scales with $ (#1.2). In terms of the total CPU cost, our approach
scales better with the problem size and for larger systems, outperforms RSVD. The memory quickly becomes the main
bottleneck for large systems even if the CPU cost is tractable. Our approach is devised in a way that reduces the peak
memory requirement by a few orders of magnitude, especially if an iterative solver is employed.
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Fig. 6 The first three optimal modes of pressure from top to bottom are displayed in the region of interest for
(C = 0.5. The real part of eigen functions are shown.

Fig. 7 Cost scaling for the axisymmetric jet problem: (a) wall time for LU or iLU decomposition; (b) wall time
for solving the LU decomposed or iLU preconditioned linear system; (c) peak memory usage for the complete
algorithm; (d) total wall time for the complete algorithm. All calculations were performed on a single core so
that wall time serves as a surrogate for FLOPS.
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C. Three-dimensional jet
This section further motivates our study for high-dimensional systems. The 3D jet is obtained by interpolating the

axisymmetric LESmean flow data onto a 3DCartesian grid. The region of interest is G ∈ [0, 10], H×I ∈ [−4, 4]× [−4, 4]
and is surrounded by a sponge region for BCs. The domain is spatially discretized by 200 × 60 × 60 grid points in G, H,
and I, respectively. Appropriate weight and spatial filter matrices have been used in the 3D setup. The same set of five
variables is of interest, however, the Fourier modes are obtained only in time as

q′(G, H, I, C) =
∑
l

q̂l (G, H, I)48lC . (32)

Given the underlying axisymmetry of the mean flow, we still expect that each optimal mode will correspond to a
particular azimuthal mode,57 but this is not explicitly enforced in order to obtain a 3D system. While solving an
axisymmetric problem in 3D Cartesian coordinated would not be a sensible strategy in practice, doing so here provides
a useful test case for our algorithm.

1. Resolvent modes obtained by our algorithm
As discussed in Section IV.C.2, RSVD requires a prohibitively high amount of memory preventing us from computing

resolvent modes of large 3D problems. In contrast, by leveraging a CGS iterative solver with iLU preconditioner in our
algorithm, we are able to obtain the : = 6 leading modes of the resolvent operator for the 3D turbulent jet. Similar
to the axisymmetric jet case, Ω consists of (C between -2 and 2 with a resolution of Δ(C = 0.05. The stiffness of the
problem again motivates the use of the same AM1 integration scheme. As no basis is available for error analysis
(RSVD requires more than the 791 GB of RAM available on our workstation), we choose a short transient )C = 50 that
chiefly affects the low (C range. The objective here is to make sure that our algorithm is capable of capturing physically
meaningful resolvent modes in a reasonable amount of time without exceeding the available memory. One power
iteration is performed to increase the accuracy. The resolvent mode for (C = 0.5 is shown in figure 8. The isosurface
and 2D slice of pressure show that the optimal mode corresponds to < = 1 azimuthal wavenumber.

(a) (b)

Fig. 8 The real part of pressure for the optimal mode for (C = 0.5 computed using our algorithm: (a) H = 0
plane; (b) isosurface.

2. Computational cost and memory scaling
The last section of this paper looks into the scalings of various functions similar to Section IV.B.2, but this time

for the 3D setup. The base state dimension is #� = 5 × #G × #H × #I = 5 × 25 × 20 × 20 for region of interest of
G ∈ [0, 10], H× I ∈ [−3, 3] × [−3, 3]. This is seriously under-resolved for this problem, but such small grids are needed to
obtain cost scalings forRSVD. Finer grids are then constructedwith# = �×#� = 5×( 3√

�×#G)×( 3√
�×#H)×( 3√

�×#I),
where � varies between 1 and 8. The rest of the parameters remain the same. The calculations are performed in exactly
the same manner as for the axisymmetric jet, so we skip directly to results.

All of the plots in figure 9 show similar trends to those observed in figure 7. The main difference is that all
slopes for the 3D problem have been increased with respect to the corresponding slopes for the axisymmetric jet. The
LU decomposition CPU time scales like $ (#2.9) for RSVD when (C = 0. This is worse scaling than $ (#2.4) and
$ (#2.3) when our approach is taken with direct and iterative solvers, respectively. Besides better scaling, the iLU CPU
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cost is lower by a few orders of magnitudes. A similar gap is observed between the computational cost of solving
the LU-decomposed system (in either RSVD and our algorithm) versus iteratively solving equation (23) within our
algorithm. The scaling for the iterative solver is $ (#1.2), better than $ (#1.8) −$ (#2.0) for the rest. The overall CPU
time is calculated for four data points for which the memory allowed us to compute the LU decomposition. Then the
best fit line for those 4 points is extrapolated to cover all dimensions considered (up to � = 8) in this section. The total
computational costs scale like $ (#2.5), $ (#1.8) and $ (#1.2) for RSVD, our approach with a direct solver, and our
approach with an iterative solver, respectively. As seen in figure 9 (d), the total cost is less for the iterative scenario for
all values of # .

The limiting factor in this problem is actually the memory consumption. The total memory quickly hits the maximum
value available on our workstation when computing the LU decomposition even though the grids under consideration in
this section are exceedingly coarse for the considered region of interest. The memory scalings observed in figure 9
(c) are $ (#1.7) and $ (#2.2) when decomposing A and L, respectively. Although our approach is helpful, memory
usage still remains the primary challenge for 3D problems using direct solvers. The remedy for memory is to use an
iterative solver to avoid computing LU decomposition under any circumstances. In this problem, the iterative solver not
only overcomes memory issues, but also provides the fastest way to obtain the resolvent modes of the 3D turbulent jet.
Finally, we note that even the finest mesh considered in this analysis is still under-resolved. For a more realistic choice
of # = 5 × 300 × 100 × 100, the scalings in figure 9 suggest that our time-domain approach with an iterative solver
would reduce the CPU cost and memory requirements relative to RSVD by factors of 6 × 103 and 6 × 104, respectively.

Fig. 9 Cost scaling for the 3D jet problem: (a) wall time for LU or iLU decomposition; (b) wall time for solving
the LU decomposed or iLU preconditioned linear system; (c) peak memory usage for the complete algorithm;
(d) total wall time for the complete algorithm. All calculations were performed on a single core so that wall time
serves as a surrogate for FLOPS.
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V. Conclusions
We have presented a new algorithm based on RSVD20,25 in conjunction with efficient time-stepping methods.16

Our algorithm is best suited for large problems when straightforward application of the RSVD algorithm becomes
intractable. Direct and adjoint time marching schemes enable improved scalability of our proposed algorithm that
facilitates resolvent analysis for 3D turbulent flows or other high-dimensional dynamical systems.

The total memory usage, which is arguably the main roadblock to the application of resolvent analysis to large
systems in general and 3D problems in particular, is reduced in comparison to RSVD and exhibits better scaling with
problem size. An iterative solver can reduce the memory consumption by a few orders of magnitude mainly due to the
fact that it never computes an LU decomposition. The total CPU cost of our algorithm also scales better with dimension
than RSVD, resulting in computational savings for high-dimensional systems. Applying iterative solvers directly in the
frequency domain was found to be substantially less effective due to the inferior conditioning of the associated linear
system.

The error of our algorithm compared to RSVD can be driven to machine precision, or can be set to a higher tolerance
to further reduce costs. Since the streaming calculations avoid any unnecessary data storage, longer simulations to reach
smaller error thresholds do not affect the memory requirement. This flexibility is a consequence of the time-marching
approach embedded in our algorithm. The sources of error are transient effects due to initializing the IVP and truncation
error due to time-stepping. The CPU cost to obtain a certain accuracy for a range of frequencies is optimized when
these two sources of error are of similar magnitude.

An important advantage of the new algorithm is simultaneously computing the leading resolvent modes for a range
of frequencies while adding higher harmonics requires a little extra effort due to the nature of time marching. Our
algorithm also imposes no restriction on the way one can integrate the linear system of interest. Furthermore, unlike
RSVD, which needs access to the explicit inverse of the resolvent operator, our approach captures the resolvent modes
for systems where no explicit resolvent operator is defined, e.g., it can be easily incorporated within existing simulation
codes with linear direct and adjoint capabilities.
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