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We extend the resolvent-based estimation approach recently introduced by Towne et al.
(J. Fluid Mech., vol. 883, 2020, A17) to obtain optimal, non-causal estimates of
time-varying flow quantities from low-rank measurements. We derive optimal transfer
functions between the measurements and certain nonlinear terms that act as a forcing
on the linearised Navier–Stokes equations, and show that the resulting transfer function
to the flow state is equivalent to a multiple-input, multiple-output Wiener filter if the
colour of the forcing statistics is known. A matrix-free implementation is developed
based on integration of the direct and adjoint linearised Navier–Stokes operators, enabling
application to the large systems encountered for transitional and turbulent flows without
the need for a priori model reduction. Using a linearised Ginzburg–Landau problem,
we show that the non-casual resolvent-based method outperforms a casual Kalman filter
for general sensor configurations and recovers the Kalman filter transfer function in
specific cases, leading to causal estimates at a significantly reduced computational cost.
Additionally, our method is shown to be more accurate and robust than popular approaches
based on truncation of the resolvent operator to its leading modes. The applicability of the
method to transitional and turbulent flows is demonstrated via application to a (linearised)
transitional boundary layer and a (nonlinear) turbulent channel flow. Errors on the order of
2 % are achieved for the boundary layer, and the channel flow case highlights the need to
account for the forcing colour to achieve accurate flow estimates. In practice, our method
can be used as a post-processing tool to reconstruct unmeasured quantities from limited
experimental data, and, in cases where the transfer function can be accurately truncated
to its causal components, as a low-cost estimator for flow control.

Key words: control theory, computational methods

1. Introduction

Incomplete and noisy information about a system is frequent in the analysis of fluid
systems. Experiments typically involve partial access to flow information: hot-wire

† Email address for correspondence: emartini@ita.br

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

43
5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
v 

of
 M

ic
hi

ga
n 

La
w

 L
ib

ra
ry

, o
n 

10
 A

ug
 2

02
0 

at
 0

5:
45

:3
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://orcid.org/0000-0002-3144-5702
https://orcid.org/0000-0003-4283-0232
https://orcid.org/0000-0001-8576-5587
https://orcid.org/0000-0002-7315-5375
https://orcid.org/0000-0002-2513-4553
mailto:emartini@ita.br
https://doi.org/10.1017/jfm.2020.435
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


900 A2-2 E. Martini and others

anemometry provides high sensitivity and time resolution, but for a limited number of
spatial locations; particle image velocimetry (PIV) can provide considerably improved
spatial resolution, but generally suffers from lower signal-to-noise ratio and sampling
frequency. Stationary properties of the flow, such as the mean flow, can be obtained by
moving sensors over a region of interest, and two-point statistics can be obtained by
moving pairs of sensors. The process is tedious, time consuming and does not permit a
time-resolved estimation of the flow state. It is therefore of interest to develop methods
capable of estimating flow information from limited and noisy measurements.

Estimation has a long history. Landmark developments were obtained independently
by Wiener (1942) and Kolmogorov (1941), equivalent results being later obtained by
Kalman (1960) for problems where a system’s time evolution is known; this restriction
permits a simpler framework and is likely the reason for the more widespread use of the
Kalman filter. These methods constitute optimal linear estimators for generic error norms.
Assuming a known initial condition and an external forcing characterised by zero-mean
Gaussian statistics, the two-point correlation of the state can be obtained by solution of a
Riccati equation. Wiener and Kalman approaches can be shown to be equivalent (Gómez
2007). Specifically, the causal Wiener filter is equivalent to the Kalman filter and the
non-causal Wiener filter is equivalent to the Kalman smoother.

Within Kalman’s framework, estimation is categorised into three classes, depending on
the information available for estimation of the state at time t0. If information is available
for all t ≤ t0, estimation is referred to as a filter; if readings are available for t < t1, with
t1 > t0, estimation is referred to as data smoothing; and if t1 < t0, estimation is referred
to as a prediction. The method we develop is a smoother with an infinite time horizon:
information for −∞ < t < ∞ is assumed to be available. Note that the nomenclature used
in Wiener’s framework is different: a Wiener filter performs non-causal estimation, while
a causal Wiener filter provides causal estimation.

The greater popularity of causal estimation is explained by its utility for flow control.
Linear quadratic Gaussian (LQG) control can be implemented using Kalman-filter
estimation, coupled with a linear quadratic regulator (LQR), which calculates optimal
control based on state estimation (Hespanha 2009). Linear quadratic Gaussian control of
fluid systems has become widespread in recent years, particularly for delaying boundary
layer transition and reducing drag (see, for instance, Fabbiane et al. 2015b; Fabbiane,
Bagheri & Henningson 2015a). However, implementation is complicated by the large
dimensionality of fluid systems. Traditional LQG methods require the solution of two
Riccati equations, which is frequently too costly for direct application on flow systems
of practical interest. An alternative approach involves the use of a reduced-order model
(ROM), typically obtained by Galerkin projection of the system on a reduced basis.
Bases can be constructed using eigenmodes of the observability and controllability
Gramians, or balanced modes (Bagheri et al. 2009). Other possibilities include flow
eigenmodes (Åkervik et al. 2007), proper orthogonal decomposition (POD) modes
(Kirby, Boris & Sirovich 1990), spectral proper orthogonal decomposition (SPOD)
modes and a spectral version of balanced truncation modes (Dergham et al. 2011).
Balanced modes provide a quasi-optimal choice, having an a priori error bound
(Sipp & Schmid 2016). Eigensystem realisation algorithms (ERA) (Juang & Pappa
1985) have been shown to be equivalent to ROM based on balanced truncation (Ma,
Ahuja & Rowley 2011), and have the advantage of being less costly and of avoiding
the need to integrate adjoint systems. Matrix-free methods have been developed that
permit optimal (Semeraro et al. 2013) and robust (Bewley, Temam & Ziane 2000)
flow control via iteration of the system’s direct and adjoint equations. The ensemble

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

43
5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
v 

of
 M

ic
hi

ga
n 

La
w

 L
ib

ra
ry

, o
n 

10
 A

ug
 2

02
0 

at
 0

5:
45

:3
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.435
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Resolvent-based optimal estimation 900 A2-3

Kalman filter approximates error covariances using a reduced ensemble, and this can
be used to provide an approximation of Kalman-filter estimates (da Silva & Colonius
2018).

In a number of recent studies of turbulent flows, flow models are obtained by linearising
the Navier–Stokes equations about the time-averaged mean, and subjecting the resulting
linear operator to an external forcing that would model the effects of nonlinearity. In the
frequency domain, this problem can be formulated such that the resolvent of the linear
operator appears as a transfer function between nonlinear forcing and linear response.
Large gain separation between optimal and suboptimal resolvent force-response mode
pairs implies a system whose response will be relatively insensitive to specifics of the
forces; such a system tends to exhibit low-rank behaviour. This approach was first used by
McKeon & Sharma (2010) in the study of wall-bounded turbulence, and later extended to
non-parallel flows (Beneddine et al. 2016). Similar ideas have been used to model turbulent
jets (Towne, Schmidt & Colonius 2018; Cavalieri, Jordan & Lesshafft 2019; Lesshafft et al.
2019), to perform flow estimation with low computational cost (Beneddine et al. 2017;
Sasaki et al. 2017a), to elaborate simplified control strategies (Sasaki et al. 2016) and for
the modelling and estimation of a turbulent flow over an airfoil (Abreu, Cavalieri & Wolf
2017; Beneddine et al. 2017; Yeh & Taira 2019). In most of these studies it is assumed
that the system has rank-1 behaviour at each frequency; thus, the cross-spectral density
matrix can be approximated by considering a single resolvent mode, which corresponds to
the dominant response mode of the system. Although not optimal, the lower costs of these
approaches makes them attractive.

All of the methods described above have advantages and disadvantages: control using
reduced-order models is not guaranteed to be optimal for the full system and the
computation of large numbers of POD or eigenmodes can be costly; the frequency
snapshot method is limited to low-rank forces, as harmonic responses for many frequencies
need to be computed for each force component; matrix-free methods require routines
to integrate the adjoint equations, they require many iterations to ensure convergence,
and they are limited to low-rank external forces; and ERA methods are useful when
external forces are low rank, but become prohibitively expensive otherwise. Low-rank
approximations based on optimal response modes are not optimal, and can, depending on
sensor placement, become unstable if a higher-rank model is used, as will be shown later.
In all of these methods, force colouring can only be accounted for via a system expansion,
in which a filter colours white-noise inputs. For an overview of estimation with coloured
forces, we refer the reader to Kailath & Geesey (1971) and Kailath (1974). One exception
is the work of Hervé et al. (2012), where a data-driven approach is elaborated based on an
autoregressive moving average (ARMAX) system identification. Force colour effects are
captured indirectly via data processing. Although effective, the approach does not provide
insight regarding the underlying physical mechanisms.

Smoothers have received considerably less attention, particularly in the fluid mechanics
community. In the Wiener framework, Bode & Shannon (1950) presented a simplified
derivation of a smoothing theory. Fraser & Potter (1969) showed that Kalman smoothing
is equivalent to the combination of two Kalman filters, one moving forward and another
backward in time. Bell (1994) proposed an iterative Gauss–Newton method for the
performance of Kalman smoothing. Pnevmatikakis et al. (2014) developed efficient
filtering and smoothing techniques that can be obtained when the covariance between
states and measurements is low rank, or permits a low-rank approximation: this can be a
consequence of low-rank forces, large measurement noise or due to the way the system
filters the forces.
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900 A2-4 E. Martini and others

While variations on the Kalman filter have been used in many studies to estimate flow
state, to the best of the authors’ knowledge, the only application of the Wiener filter
(causal and non-causal) is that of Martinelli (2009), where Wiener methods were applied
to a turbulent channel flow. The study was restricted to the use of only one sensor and
actuator, probably due to the complexity of solving higher-order Wiener–Hopf problems,
and was, furthermore, restricted to a low-dimensional problem, as for flows with more than
one inhomogeneous spatial dimension, the construction and manipulation of the system
matrices becomes prohibitive. A similar method has recently been used to improve PIV
data (Gillissen, Bouffanais & Yue 2019), but no explicit mention of Wiener’s work was
made.

In this work we explore estimation of linear systems, with an infinite time horizon:
there are no transient effects, and readings for times before and after the estimated instant
are available, i.e. in the post-processing of experimental data. Building on works by
Beneddine et al. (2016, 2017) and Towne, Lozano-Durán & Yang (2020) we derive an
expression for force estimation considering underlying force statistics and sensor noise
by looking for a stationary point of the error correlation matrix for forces and responses,
and we show that optimal state estimation is obtained from the integration of estimated
forces. The estimation kernels are obtained analytically in the frequency domain, with
a corresponding time-domain representation obtained a posteriori by an inverse Fourier
transform. When the forcing statistics are known, the method is shown to be equivalent
to a multiple-input, multiple-output Wiener filter. On the other hand, when the forcing
statistics are unknown and approximated as white, the method is equivalent to constructing
an approximate Wiener filter using estimated statistics obtained from the resolvent-based
statistical estimation method developed by Towne et al. (2020). Contrary to previous work
(Bagheri et al. 2009; Dergham et al. 2011; Sipp & Schmid 2016), no model reduction is
performed: estimation is performed using the full system, without the need of iterative
methods and subsequent integration of the estimation equations, as in Semeraro et al.
(2013).

The paper is organised as follows. In § 2 we present the derivation of optimal state
and force estimations. In § 3 we provide a comparison between causal (Kalman-filter)
and non-causal (resolvent-based) estimations of a stochastically forced, linearised
Ginzburg–Landau model. The kernels of the two approaches are compared in § 3.3. In
§ 3.4 we compare the proposed method to truncation methods reported in the literature.
The method is then applied to two fluid mechanics problems in § 4: a linearised, spatially
evolving boundary layer is considered in § 4.1; and a turbulent channel flow in § 4.2.
Conclusions are provided in § 5.

2. Resolvent-based estimation

Here we derive optimal methods for the recovery of system states and driving forces. As
in previous studies (Kalman 1960; Bagheri et al. 2009; Murray 2009), we work with the
linear time-invariant model

du
dt

(t) = Au(t) + B f (t), (2.1)

y(t) = Cu(t) + n(t), (2.2)

where A, B and C are the system evolution (nu × nu), actuation (nu × nb) and observation
(nc × nu) matrices, u and y are, respectively, the system state (nu) and observation (ny)
vectors. Vectors f and n represent, respectively, the system’s driving forces (nb) and
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FIGURE 1. Flowchart illustrating the system considered and the estimation proposed.

measurement noise (ny), which are considered as zero-mean random processes with

〈 f (t)f (t′)†〉 = F(t − t′), 〈n(t)n(t′)†〉 = N(t − t′), 〈n(t)f †(t′)〉 = 0, (2.3a–c)

where ‘†’ indicates the adjoint operator, where an unweighted inner product is assumed.
Here F(t − t′) and N(t − t′) are Hermitian positive-definite matrices. In the control
literature (2.1) is typically written using x and d to represent the system state and external
disturbances, u denoting actuation. In this study we use the nomenclature presented above,
which has become standard in fluid mechanics. Figure 1 presents a flowchart illustrating
the system and the estimation that will be presented in the next subsections. We also
assume that all variables and matrices are complex; real-valued matrices and vectors, as is
the case in the Navier–Stokes system, is a special case.

The forms used in (2.3) imply a more general framework than that of the Kalman filter,
where forces are assumed to be uncorrelated in time and space, i.e. F(t − t′) = I δ(t − t′),
similar expressions are used to describe other cross-correlations. Coloured-force methods
exist in the Kalman framework. Typically, an extended system can be obtained in which
a filter is used to colour a white-noise force prior to application; the approach we
propose handles force colour naturally. Forces and readings are assumed to be uncorrelated
throughout the paper; but expressions obtained when this correlation is non-zero are
provided in appendix A. Finally, we restrict our attention to stable systems: all eigenvalues
of A have a negative real part.

In what follows, we derive independent methods for optimal force and response
estimations based on the time history of low-rank observations, y(t).

2.1. Force estimation
Defining the instantaneous error, ef (t), between the force, f (t), and its estimation, f̃ (t), as

ef (t) = f (t) − f̃ (t), (2.4)

we seek an optimal estimation such that a stationary point of the time-averaged error
correlation matrix

〈ef e
†
f 〉 =

∫ ∞

−∞
〈ef (t)e

†
f (t)〉 dt = 1

2π

∫ ∞

−∞
〈êf (ω)ê†

f (ω)〉 dω (2.5)

is found. Note that this is a generalization of root-mean-square errors, which is given by
the trace of 〈ef e

†
f 〉. The integration limits reflect the estimation objective: to estimate f (t)
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900 A2-6 E. Martini and others

for all times. Here 〈·〉 represents an ensemble average, êf (ω) is the Fourier transform of
ef (t), defined by

êf (ω) =
∫ ∞

−∞
ef (t)eiωt dt, (2.6)

and the equivalence of the time and frequency domains in (2.5) is given by Parseval’s
theorem (Arfken, Weber & Harris 2013, p. 595). No assumption is made regarding
the underlying probability functions of forces, responses and errors. As discussed by
Kalman (1960), this provides the optimal estimation if forces are Gaussian distributed.
For other force distributions, optimal estimation is nonlinear, the method above providing
the optimal linear estimation. Note that this is analogous to a least-squares method
for fitting curves: if errors have a Gaussian distribution, the method is equivalent to a
maximum-likelihood method; however, the method is still effective for other distributions.

Formal solutions of (2.1) in time and frequency domains are obtained as

u(t) =
∫ t

−∞
eA(t−τ)B f (τ ) dτ, û(ω) = R(ω)B f̂ (ω), (2.7a,b)

where R = (−A − iωI )−1. We assume a time evolution from −∞ to ∞, where an initial
condition, u0, at time, t0, can be represented via a forcing, B f (t) = u0δ(t − t0).

Considering the state ũ obtained by integration of an estimated force f̃ ,

ũ(t) =
∫ t

−∞
eA(t−τ)B f̃ (τ ) dτ, ˆ̃u(ω) = R(ω)B ˆ̃f (ω), (2.8a,b)

we seek to obtain f̃ as a linear function of the readings

f̃ (t) =
∫ ∞

−∞
Tf (t − τ) y(τ ) dτ,

ˆ̃f (ω) = T̂f (ω) ŷ(ω), (2.9a,b)

such that the estimation problem involves finding an estimation function, T̂f (ω), that
would minimise the norm of 〈êf ê

†
f 〉. Note that the estimation function in (2.9) is generally

non-causal.
The error correlation matrix is rewritten, with frequency dependencies omitted for

clarity, as

〈
êf ê

†
f

〉
=

〈(
f̂ − T̂f

(
R y f̂ + n̂

)) (
f̂ − T̂f

(
R y f̂ + n̂

))†
〉
,

=
(

I − T̂f R y

)
F̂

(
I − T̂f R y

)†
+ T̂f N̂T̂ †

f . (2.10)

The operator R y = CRB relates forces to sensor readings, and the matrices F̂(ω) and N̂(ω)

are Fourier transforms of F(t) and N(t), defined in (2.3). Typically, the forcing rank is
much larger than the number of sensors, ny � nb, and, thus, it is natural that the forcing
cannot be fully estimated. The estimation is limited to the subspace of observable forces
(Towne et al. 2020). By definition, any force that generates a non-zero sensor reading has
a non-zero projection in this subspace.
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Resolvent-based optimal estimation 900 A2-7

A connection can be made with the observability Gramian (Bagheri et al. 2009), which
is obtained through a time integral

G =
∫ ∞

0
eA†

τ C †C eAτ dτ. (2.11)

Alternatively, the observability Gramian can be written using Parseval’s theorem (Zhou,
Salomon & Wu 1999; Dergham et al. 2011)

G = 1
2π

∫ ∞

−∞
R †C †CR dω. (2.12)

At a given frequency, the observable space is spanned by the eigenvectors of R †C †CR
associated with non-zero eigenvalues. When viewed in the time domain through the
observability Gramian, each force component is weighted by its overall observability at
all frequencies. A low-rank truncation of this Gramian can be used to obtain a reduced
basis for the construction of time-domain ROMs, implicitly favouring some frequencies
over others. A similar reasoning applies to the construction of balanced modes (Bagheri
et al. 2009). In the approach presented here, we use the full observable space at each
frequency, without the aforementioned truncation.

As 〈êf ê
†
f 〉 is a matrix, it is typically necessary to specify a minimisation criterion:

minimisation of the trace, for instance, as is done in the design of Kalman filters, or
of the determinant. We will show, however, that a stationary point can be obtained
simultaneously for all matrix terms, illustrating a certain robustness of the method. We
impose d〈êf ê

†
f 〉/dT̂

†
f = 0 and d〈êf ê

†
f 〉/dT̂f = 0, where T̂

†
f and T̂f are treated as independent

variables (Ahlfors 1979, p. 79). It can be shown that both expressions lead to the same
equation, we thus focus only on the first. As both 〈êf ê

†
f 〉 and T̂

†
f are matrices, the derivative

is a fourth-order tensor, it is thus simpler to take the derivative using Einstein’s summation
convention. Equation (2.10) has the form

〈
êf ê

†
f

〉
il

= ΓijTf
†
jk + Λik, (2.13)

with

Γ = T̂f

(
R yF̂R †

y + N̂
)

− F̂R †
y , (2.14)

Λ =
(

I − T̂f R y

)
F̂. (2.15)

The derivative is given by

d〈êf ê
†
f 〉il

dT̂†
f mn

= Γijδjmδkn = Γimδkn, (2.16)

where δij is the Kronecker delta. The expression is a tensor product between two matrices,
and it is zero only if one of these is zero. As only Γ is a function of Tf , the stationary point
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900 A2-8 E. Martini and others

is found for

T̂f

(
R yF̂R †

y + N̂
)

= F̂R †
y . (2.17)

As R yF̂R †
y is semi-positive definite, R yF̂R †

y + N̂ is always invertible, and, thus,

T̂f = F̂R †
y

(
R yF̂R †

y + N̂
)−1

. (2.18)

Note that sensor noise has a similar role of Tikhonov regularization parameter, but
instead of being a regularization which is imposed on the system, it arises naturally from
the system considered.

2.2. Response estimation
Here we follow a procedure similar to that developed in the previous subsection, but with
the objective of obtaining an optimal estimation of the system response. Defining the error
as

êu = û − ˆ̃u = RB
(

f̂ − ˆ̃f
)

, (2.19)

the error cross-correlation is given by

〈
êuê†

u

〉
=

〈
RB

(
f̂ − T̂f

(
R y f̂ + n̂

)) (
f̂ − T̂f

(
R y f̂ + n̂

))†
B†R†

〉

= RB

((
I − T̂f R y

)
F̂

(
I − T̂f R y

)†
+ Tf N̂Tf

†

)
B†R †. (2.20)

The stationary point is given by

T̂f = F̂R †
y

(
R yF̂R †

y + N̂
)−1

, (2.21)

which is the same as that obtained for optimal force estimation (2.18).
The equivalence between optimal force and response estimation motivates use of the

same nomenclature for T̂f . This equivalence between force and response estimation is
expected in the Kalman framework: in optimal estimation, only components correlated
with the sensor readings are estimated. As responses are correlated with their driving
forces, estimation of the former is synonymous with estimation of the latter.

State estimation is thus obtained using (2.8) and (2.9) as

ˆ̃u = RBTf ŷ = Tu ŷ. (2.22)

The expressions (2.18) and (2.22) are related to Wiener filter estimation, commonly used
in its scalar version (Meditch 1973), but also defined in vector form (Martinelli 2009).
The Wiener filter is given by a transfer function obtained from cross-spectral densities
as S uyS−1

yy , where Suy is the cross-spectrum between state and measurement and Syy is
the measurement cross-spectral density (CSD). In the method proposed here, CSDs are
computed a priori, assumptions being made regarding the system model and the forces.
For force and sensor noise CSDs respectively given by F̂ and N̂, it is straightforward to
show that Suy = FR†

y and Syy = R yF̂R†
y + N̂.
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Resolvent-based optimal estimation 900 A2-9

As previously mentioned, classical derivations minimise the trace of the error CSD.
This suggests that optimal estimation may involve trading accuracy in one region in favour
of another, so as to obtain a global minimum. If this were the case, one could localise
the region where estimation is desired in order to improve it. Our derivation shows that
estimation is optimal everywhere.

2.3. Discussion
Insight into the estimation mechanisms is gained by analysing the terms in (2.18). For
simplicity, we assume that F̂ = I and N̂ = εI, so that (2.18) becomes T̂f = R†

y(R yR†
y +

εI)−1. The observable forcing space is spanned by the columns of R†
y and, combined with

the proper coefficients, describe the estimated force on this basis. Such coefficients are
given by the term in parenthesis multiplied by ŷ. As the number of sensors (ny) is typically
smaller than the dimension of the external forces space (nb), it is not possible to reconstruct
the full force field from these measurements. Only the observable force subspace (and
forces correlated with them, as will be discussed later) can be estimated.

The transfer function can be decomposed as

T̂f = R†
y

(
R yR †

y + εI
)−1 = VRy

(
ΣRy

(
Σ2

Ry
+ εI

)−1
)

︸ ︷︷ ︸
ΣT̂f

U†
R y

, (2.23)

where R y = URyΣRy V
†
R y

is the singular value decomposition of R y, such that ΣRy is
a diagonal matrix with elements σi, and UR y and VRy are unitary matrices describing
forcing and response spaces, respectively. The matrix Σ T̂f

is also diagonal, with elements

σi/(σ
2
i + ε). In the limit of vanishing noise,

lim
ε→0

σi

σ 2
i + ε

=
⎧⎨
⎩

1
σi

, σi /= 0,

0, σi = 0,

(2.24)

and, thus,

lim
ε→0

T̂f = pinv
(
R y

)
, lim

ε→0
T̂u = RB pinv

(
R y

)
, (2.25a,b)

recovering the method proposed by Towne et al. (2020). As the Moore–Penrose
pseudo-inverse is equivalent to a least-square solution of a linear system (Lanczos 1997,
pp. 124–127), the estimated force can be understood as the minimum-norm force that
generates a sensor reading. These results can be generalized to cases with a generic force
CSD, where

T̂f = lim
ε→0

F̂R†
y(R yF̂R†

y + εI)−1 = F̂ 1/2pinv
(

R yF̂ 1/2
)

. (2.26)

A least-square estimation, using F̂ −1 as metric, is obtained. Expected force components
are favoured by the estimation.
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900 A2-10 E. Martini and others

We illustrate the trend with a simple model, with two force components and one sensor,
and CSDs given by

R y = [
1 1

]
, F̂ =

[
1 0
0 γ

]
, and N̂ = [

ε
]
. (2.27a–c)

Taking the limit ε → 0,

T̂f = lim
ε→0

1
1 + γ + ε

[
1
γ

]
=

⎡
⎢⎢⎣

1
1 + γ

γ

1 + γ

⎤
⎥⎥⎦ . (2.28)

If the second force component is expected to be small, γ � 1, the estimated force is
dominated by the first component. In the opposite scenario, γ 	 1, the second component
dominates the estimation.

For non-zero noise, ε > 0, a reduction in the estimation efficiency is expected. For
the same readings, larger ε leads to smaller estimated force components, as is seen by
inspection of ΣRy . Separating sensor readings into a noiseless component ( y0) and a
noise component (n) such that ŷ = ŷ0 + n̂, the sensor CSD (Ŷ = 〈 ŷ ŷ†〉) can be written as
Ŷ = Ŷ0 + ε̂I. The CSD of the estimated sensor reading is given by

ˆ̃Y = CT̂uŶT†
uC †,

= R yR†
y

(
R yR †

y + εI
)−1

(
Ŷ0 + εI

) (
R yR †

y + εI
)−1

R yR†
y. (2.29)

By inspection it can be seen that the noiseless reading is only recovered for ε → 0. Using
F̂ = I, the expected sensor CSD is given by Ŷ0 = R yR†

y = URyΣ
2
R y

U†
R y

, and (2.29) becomes

ˆ̃Y = R yR†
y

(
R yR †

y + εI
)−1

R yR†
y = URyΣ

4
Ry

(
Σ2

Ry
+ εI

)−1
U†

R y
, (2.30)

showing that for finite-noise levels the sensor CSD is underestimated.

2.4. Matrix-free approach
The simplest method for obtaining the resolvent-based estimator described above involves
matrix inversion, followed by direct application of (2.18) and (2.22). The approach thus
becomes prohibitively expensive for large matrices. Matrix inversion can be avoided by
solution of the linear system

(−iωI − A)û = Bf̂ , (2.31)

as done by Schmidt et al. (2018). Although less demanding, computational cost typically
limits this approach to two-dimensional problems. Time-marching schemes have been
used by Tam & Pastouchenko (2002), in which individual rows of R y are obtained
via integration of harmonically forced adjoint equations; the approach is applicable for
much larger systems. Repeating the procedure for different frequencies and sensors,
an estimation based on (2.9), (2.21) and (2.22) can be obtained. Here we propose a
method that significantly further reduces computational cost, providing solutions for all
frequencies with a single time-march. This is achieved by integration of the direct and
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Resolvent-based optimal estimation 900 A2-11

adjoint equations, similar to what is done in other matrix-free approaches (Semeraro et al.
2013).

For simplicity, we assume that F(t) = I δ(t), B = I and N(t) = εI δ(t).
Consider the system

− dwi

dt
= A†wi + C†

i δ(t), (2.32)

with a null terminal condition, and where A† corresponds to the adjoint linearised
Navier–Stokes operator and C†

i is the ith column of the adjoint of C. The impulse
response of (2.32) can be replaced by a terminal condition, wi(0) = C†

i . Taking the Fourier
transform of (2.32) leads to

(iωI − A†)ŵi = C†
i (2.33a)

and, thus,

ŵi = R †C†
i . (2.33b)

The ith component of R†
y, given by R †C†

i , is the Fourier transform of the response of (2.32).
The resolvent can thus be constructed row-by-row as

R̂ y(ω) =

⎡
⎢⎣− ŵ†

1(ω) −
− ŵ†

2(ω) −
...

⎤
⎥⎦ . (2.34)

The values of wi(−t) are the sensitivities of the ith measurement at time t = 0 to forces at
the instant −t; in the frequency domain the same information is contained in ŵi(ω).

From solutions of the equation

dqi

dt
= Aqi + wi(t), (2.35)

which has frequency domain representation

(−iωI − A)q̂i = ŵi (2.36a)

and, thus,
q̂i = R ŵi, (2.36b)

the operator RR†
y can be constructed from Fourier transforms of the solutions as

RR†
y(ω) = R

⎡
⎣ | |

ŵ1(ω) ŵ2(ω) · · ·
| |

⎤
⎦ =

⎡
⎣ | |

q̂1(ω) q̂2(ω) · · ·
| |

⎤
⎦ . (2.37)

As
R yR†

y = CRR†
y, (2.38)

this term can be obtained from observations of the system ŷi = Cq̂i. State and force
estimation functions,

T̂u = RR †
y

(
R yR †

y + εI
)−1

, T̂f = R †
y

(
R yR †

y + εI
)−1

, (2.39a,b)

can then be constructed.
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900 A2-12 E. Martini and others

The procedure can be summarised in the following steps.

(i) Adjoint run: (2.32) is integrated for each sensor. Snapshots are saved on disk for later
use.

(ii) Direct run: (2.35) is integrated for each sensor, with snapshots from the adjoint run
loaded and interpolated at each time step, to provide the force term. The readings
at the sensors and some other points of interest are calculated at each time step and
saved separately.

Although the term R yR†
y from (2.37) and (2.38) can be computed from flow snapshots

of the direct run, saving sensor readings at each simulation time step is computationally
cheap, and provides extra accuracy with negligible extra cost. Generalisation for any B and
F is obtained by multiplying ŵi by BF̂B† prior to the integration of (2.35).

3. Comparison between causal and non-causal estimation

3.1. Model problem
We compare resolvent-based estimation (non-causal) and Kalman-filter estimation
(causal) on a complex-valued linearised Ginzburg–Landau (GL) model, which is
frequently used as a simple model that qualitatively mimics the behaviour of complex
flows (Chomaz, Huerre & Redekopp 1991; Couairon & Chomaz 1999; Bagheri et al. 2009;
Cavalieri et al. 2019; Towne et al. 2020), and, thus, constitutes a convenient benchmark.
The comparison provides insights on advantages of using non-causal estimation tools
when the necessary information for such is available.

The model takes the form

∂u(x, t)
∂t

= Au(x, t) + f (x, t), A = −U
∂

∂x
+ μ(x) + γ

∂2

∂x2
, (3.1a,b)

and we use the parameters: U = 6, γ = 1 − i and μ(x) = βμc(1 − x/20), where μc =
U2 Re(γ )/|γ |2 is the critical value for onset of absolute instability (Bagheri et al. 2009).
The parameters are similar to those used by Lesshafft (2018). The terms in A correspond
to advection, growth/decay and diffusion, respectively. Dirichlet boundary conditions are
considered at x = 0 and 40, u(0, t) = u(40, t) = 0, and the initial condition u(x, 0) = 0 is
used. We consider a system with β = 0.1, leading to a moderate gain separation between
optimal and suboptimal modes.

System observations are given by

y(t) = Cu(x, t), (3.2)

where the operator C imposes Gaussian-shaped sensors: C is defined such that the ith entry
of y(t) is

yi(t) = 1√
2πσ 2

c

∫
exp(−(x − xi)

2/2σ 2
c )u(x, t) dx, (3.3)

with σc = 0.5. The number and positions of sensors (xi) will be indicated for each case we
consider.

The spatial domain is discretised using a second-order upwind differentiation scheme
at points evenly distributed between x = 0 and 40, with Δx = 0.1, and the system is
time integrated from t = 0 to t = 500 with a Crank–Nicolson scheme with time step,
Δt = 10−2.
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FIGURE 2. Sample of the response of the GL model under white noise forcing. Colour scale
corresponds to responses real part. The growth of perturbations for x < 20, their decay for
x > 20, and the convection behaviour of the model can be observed.
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FIGURE 3. Gains on the GL model.

For application to a turbulent flow, the force term, f (x, t), would represent nonlinear
interactions contained in the nonlinear advection term of the Navier–Stokes equations
(McKeon & Sharma 2010). Various assumptions will be made regarding the statistics
of this term. We first consider f (x, t) to be spatially and temporally white. With the
parameters cited above, A is globally stable; it is locally convectively unstable in the first
part of the domain (x < 20), and locally convectively stable in the second part (x > 20).
A realisation of the system response to spatiotemporally white forcing is shown in figure 2.

System gains are shown in figure 3. Optimal force and response modes for the full-rank
system are shown in figure 4. The force modes observable by two sensors, and their
corresponding responses, are shown in figure 5. We note that forces observable by different
sensors, although linearly independent, can be quite similar: this is typically the case when
the system has large gain separations. In this scenario, the extra information that can be
obtained by adding a given sensor is more clearly visualised by plotting an orthogonal
basis for the observable space: i.e. the component of the newly added observable force
that is orthogonal to the previous observable space.

Figure 6 compares Kalman-filter and resolvent-based estimations for u(10, t) and
u(30, t) using one sensor at x = 20. Force estimation from the Kalman filter were
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FIGURE 4. Ginzburg–Landau response (a) and force (b) modes. From top to bottom are the
optimal and first two suboptimal modes. Solid lines correspond to the amplitude envelope and
dashed lines show the real part.
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FIGURE 5. Observable forces (R†
yC † and their corresponding excited responses RR†

yC †)
for two Gaussian sensors at x = 10 (blue) and 30 (red). Solid and dotted lines correspond to
the amplitude envelope and real part, the dashed back lines indicate sensor positions. On the
right, observable forces and responses are made orthogonal.

obtained using the estimated state in (2.1). Alternatively, they can be estimated using
the frequency-domain counterpart of (2.1); in that case, it is necessary to account for
windowing effects. This can be accomplished by multiplying (2.1) by a window function
w(t) and manipulation of the terms, leading to

d(wu)

dt
(t) = A(wu)(t) + B(wf )(t) + dw

dt
(t)u(t), (3.4)

with frequency-domain representation given by

u(ω) = R
(
B f (ω) + u′(ω)

)
, (3.5)

where

u(ω) =
∫ ∞

−∞
w(t)u(t)eiωt dt, u′(ω) =

∫ ∞

−∞

dw
dt

(t)u(t)eiωt dt (3.6a,b)
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FIGURE 7. Comparison between resolvent and Kalman-filter methods for states estimation with
one, three and five sensors, indicated by vertical dotted lines. The dashed black line represents
state r.m.s. on each position. Root-mean-square errors on each point are normalized by the global
error r.m.s.

are respectively the estimation of û(ω) using a window w(t), and an associated force
correction term that must be included to account for the window function. The method
is described in detail by Martini et al. (2019), with a discussion of the impact of window
choice on the accuracy for a given sampling rate.

The Kalman-filter and resolvent-based estimations provide identical results for the
downstream position, but only the resolvent-based estimation can estimate the upstream
position, x = 10. Figure 7 compares root-mean-square (r.m.s.) errors of both methods
for different sensor configurations. Both methods show the same error downstream of
the last sensor, with the resolvent method consistently showing smaller errors in other
regions.

Two-point state correlations were constructed from the original and estimated systems.
As seen in figure 8, the resolvent-based estimation requires a smaller number of sensors for
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FIGURE 8. Response and force two-point correlations for zero time-lag, obtained using the
raw data (left most), Kalman-filter and resolvent-based estimations. Colour scale indicates the
absolute level, normalized by the maximum value found on the raw data. White markers indicate
the sensor position. (a) Response two-point correlations. (b) Force two-point correlations.

an accurate estimation of two-point state statistics. Being smoother, responses are easier
to estimate than forces, which, being white in space, are difficult to represent with a small
number of force modes.

Cross-spectral density estimates were obtained for both forcing and state via the Welch
(1967) method, with a window length of 40 % and 80 % overlap. Comparison of CSDs
obtained with the original signal and results from Kalman-filter and resolvent-based
estimations are shown in figure 9. Results again show that the resolvent-based approach
leads to a more accurate CSD estimation for a given number of sensors. For cases
with small numbers of sensors, it becomes clear that measurements may be used to
estimate upstream information, which is not possible using a Kalman filter. Furthermore,
the resolvent-based approach provides a faster convergence of both force and response
estimations.
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FIGURE 9. Same as figure 8 for CSD at ω = 1. (a) Response CSD. (b) Force CSD.

3.2. Estimation of a system driven by coloured forcing
To assess the robustness of resolvent-based estimation when exact knowledge of force
statistics is not available a priori, we construct resolvent-based and Kalman-filter
estimators based on an assumption of spatiotemporally white forcing, and use these to
estimate a system driven by coloured forces. We consider a forcing cross-spectral density
model given by

〈
f̂ (x1, ω)f̂ (x2, ω)

〉
= eikh(x2−x1)e−((x1−x2)

2/L2
c )e−((x1−xc(ω))2/L2)e−((x2−xc(ω))2/L2) + c.c., (3.7)

where 〈·〉 represents an ensemble average. The first term creates wave-like behaviour, the
second imposes a coherence length and the two final terms define an amplitude envelope
(Cavalieri et al. 2019). The following parameters were used: kh = 0.42, L = 4, Lc = 5 and
xc(ω) = 25 − 5|ω|.
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FIGURE 10. Same as figure 8 for frequency-dependent CSDs. Estimation for ω = 1.
(a) Response CSD. (b) Force CSD.

Estimation is performed under the assumption that F(t) = I δ(t). Results for vanishing
sensor noise are presented in figures 10 and 11. The method is capable of distinguishing
the CSD for different frequencies, despite the underlying assumption of white forcing.

If, on the other hand, information is available concerning the force statistics, this can be
used to improve the estimation performance. We illustrate this case using a rank-2 force
CSD, constructed as

〈 f̂ (x1, ω)f̂ (x2, ω)〉 = f 1 f †
1 + f 2 f †

2, (3.8)

f 1(x) = e−(x−5)2 + e−(x−35)2
, (3.9)

f 2(x) = e−(x−15)2 + e−(x−25)2
. (3.10)

This produces forces at x = 5 that are perfectly correlated with forces at x = 35, and
likewise for positions 15 and 25. Figure 12 compares resolvent-based estimations obtained
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FIGURE 11. Same as figure 8 for frequency-dependent CSDs. Estimation for ω = 3.
(a) Response CSD. (b) Force CSD.

using the white force assumption to those obtained using the real force CSD. Use of the
correct force CSD leads to a substantial improvement in the estimation of both response
and force when a single sensor is used, and an exact estimation when two sensors are used,
as a result of the very low rank of the force considered.

Although observable forces for this system are always upstream of the sensors,
downstream forces are correlated with observable forces: these forces, and their responses
are thus correctly estimated.

3.3. Resolvent-based estimation as an alternative to the Kalman filter
Towne et al. (2020) suggested that resolvent-based estimation can provide a departure
point for the control of complex turbulent flows. But real-time control requires causal
estimation. We therefore consider a truncation of the kernel of the resolvent-based
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FIGURE 12. Same as figure 8, comparing estimation with the assumption of white-noise
forcing, and using the correct underlining force CSDs. Estimation for ω = 3. (a) Response CSD.
(b) Force CSD.

estimator to is causal component (Sasaki et al. 2016), and we compare this to kernels
obtained using the standard Kalman filter.

The comparisons of figure 6 suggest that Kalman-filter and resolvent-based estimators
may be equivalent at positions downstream of the sensor. This is an interesting possibility,
as the Kalman filter is a central feature of LQG control methods. If the methods are indeed
equivalent when the resolvent-based estimator is truncated to its causal component, then
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its low cost would enable extension of LQG methods to large systems. We proceed by
comparing the kernels obtained for the two methods.

The resolvent-based kernel is obtained by converting the resolvent-based estimation
function to the time domain by inverse Fourier transform of (2.22). A state estimation
is then obtained via convolution of the kernel, Tu, and readings, y(t), i.e.

u(t) =
∫ ∞

−∞
Tu(τ ) y(t − τ) dτ, (3.11)

where Tu(t) = F−1
(

T̂u(ω)
)

(Sasaki et al. 2016). The Kalman-filter estimation is obtained

via integration of
dũ
dt

= Aũ + L( y − Cũ), (3.12)

where L is the Kalman gain. A formal solution is

ũ(t) =
∫ t

−∞
e(A−LC)(t−τ)L y(τ ) dτ =

∫ ∞

−∞
T kal

u (τ ) y(t − τ) dτ, (3.13)

where

T kal
u (t) =

{
e(A−LC)tL, t ≥ 0,

0, t < 0,
(3.14)

is the Kalman-filter kernel.
The kernels, Tu and T kal

u , are compared using different sensor configurations. Three
probes, at locations x = 5, 20 and 35, referred to as z1, z2 and z3, are used. Figure 13
shows kernels constructed using one sensor. The Kalman-filter kernel for probe z3 exactly
reproduces the resolvent-based kernel for all values of sensor noise, and the causal part of
the resolvent-based kernel closely approximates that of the Kalman filter for the probe
z2. While the Kalman filter makes no estimation on the probe z1, the resolvent-based
estimation provides a non-causal estimation.

The match between the causal component of the resolvent-based kernel and that of the
Kalman filter reinforces the idea that the latter can be obtained via a truncation of the
resolvent-based kernel. This is in accordance with the results obtained by Fraser & Potter
(1969): an optimal non-causal (smoothing) estimation is equivalent to the combination of
a pair of Kalman filters, one moving forward and the other backward in time; in systems
where no information can be gained from the backward-directed filter, the optimal causal
and non-causal estimates coincide.

Figure 14 shows the kernels obtained with inclusion of an additional upstream sensor.
The kernels are similar for probes z2 and z3. However, the resolvent-based kernel for probe
z1 has causal contributions from sensor y1 and non-causal contributions from sensor y2;
and, as suggested by the foregoing argument, resolvent-based and Kalman-filter kernels
do not match. Addition of a further downstream sensor leads to kernels that differ for all
probe locations, as shown in figure 15.

When the methods are not equivalent, we note that the resolvent-based kernel is
consistently lower than those of the Kalman filter. Truncation of the former to its causal
components will thus lead to an underestimation. This can also be interpreted in terms
of the results of Fraser & Potter (1969): as the non-causal estimation is the average of
the forward- and backward-moving Kalman filters, truncating the resolvent-based kernel
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FIGURE 13. Comparison between resolvent estimation (solid lines) and Kalman-filter
estimation (dashed lines) kernels using one sensor for different values of sensor noise ε. Blue,
red and yellow lines indicate kernels for probes z1, z2 and z3, respectively. Sensor and probes
locations are shown on the bottom. In the legend, Tu,yi,zj , corresponds to the transfer function
term to be convoluted with the ith sensor for obtaining estimates at the jth probe.
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FIGURE 14. Same as figure 13 using two sensors, with sensor noise of ε = 10−2.

to its causal part corresponds to a zeroing of the backward-directed filter, leading to an
underestimation.

The dominance of the downstream-travelling mode in the present model makes it easy
to identify sensor locations which will produce predominantly causal resolvent-based
kernels, and from which Kalman-filter estimation can be obtained. Many fluid flows of
interest are dominated by downstream-travelling modes (incompressible boundary layers
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FIGURE 15. Same as figure 13 using three sensors, with sensor noise of ε = 10−2.

and jets, see Beneddine et al. (2017); Sasaki et al. (2017b) for examples) and may therefore
be amenable to the obtention of a Kalman-filter estimator, using the resolvent-based
approach we describe, at substantially lower computational cost and without requiring the
construction of a reduced-order model. In more complex systems, where upstream- and
downstream-travelling modes may be relevant, the procedure is not necessarily simple,
or possible. In such cases optimal non-causal kernels can be converted to optimal causal
kernels by solving associated Wiener–Hopf equations (Martinelli 2009). Such equations
are, however, not easily solved if more than one sensor is used.

3.4. Comparison with truncated response-mode estimation
The recognition that large resolvent gain separation implies that the response of a system
may be relatively insensitive to the specific details of its underlying driving forces
(McKeon & Sharma 2010) has motivated several studies (Gomez Carrasco et al. 2014;
Beneddine et al. 2017; Symon et al. 2017) in which the system response is estimated using
the dominant response modes. We refer to such approaches as truncated response-mode
estimation (TRME). Response-mode amplitudes and phases are obtained by fitting them
to available flow data. Parabolized stability equations (PSE) have also been used with the
same underlying idea (Sasaki et al. 2017b): these track the fastest growing perturbation,
which often approximates the optimal resolvent response mode (Towne, Rigas & Colonius
2019), and can therefore be understood as a rank-1 truncated response-mode estimation.

Beneddine et al. (2017) showed that sensors for a jet need to be located in regions
where the optimal modes have significant amplitude; with this choice of sensor location,
flow quantities downstream were estimated. Although successful, the approach lacks a
rigorous justification: it is not expected that such a basis will be optimal for any choice of
sensors. The authors argue that sensors should be located around the peak of the response
mode, which should lead to better signal-to-noise ratios. Our results suggest that such
locations are indeed desirable, but with a slightly different interpretation: the observable
force subspace for sensors at these locations has a larger projection of the optimal force
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FIGURE 16. Comparisons between r.m.s. errors of resolvent-based estimations and TRME.
All curves are normalised by the global r.m.s. error.

mode. A rank-1 TRME was also used to improve a data assimilation of the flow around
an airfoil by Symon (2018), but to the best of our knowledge higher-rank estimations were
not attempted. In what follows we show that higher-order TRMEs are not suitable for
estimation, and we provide an explanation as to why this is the case.

The orthogonality of the response-mode basis suggests that this constitutes an efficient
basis if the projection is made using an L2 inner product. This norm can be emulated
using many sensors uniformly distributed throughout the flow. Figure 16 compares errors
associated with resolvent-based and truncated response-mode estimations when uniformly
spaced sensors are used. For the latter, the number of response modes corresponds to the
number of sensors. Response-truncation errors are always larger than the resolvent-based
estimation, but the results are similar.

A different picture emerges when sensors are not uniformly spaced, but concentrated
in the upstream region of the domain. Figure 17 shows that TRME errors are orders of
magnitude larger than the proposed method. This is a consequence of an ill-posed fit of
the optimal response mode basis to the collocation points used. From figure 4 we see that
only the optimal force mode is biased towards the upstream flow region, suboptimal force
modes being spread throughout the domain. As a sensor in a convection-dominated system
can only observe forces upstream of its location, the use of upstream sensors to obtain
forces spread throughout the domain leads to an ill-posed fitting. The resolvent-based
estimation, on the other hand, focuses on the observable force subspace, thus providing
a naturally stable method.

We illustrate the origin of the TRME ill-posed fitting with a simpler problem: curve
fitting using polynomials, as shown in figure 18. Fittings were obtained using uniformly
spaced collocation points, Gauss–Lobatto collocation points and collocation points located
on a small domain. Even though all fits use the same basis, fit performances vary
considerably: Gauss–Lobatto points provide uniform, exponential convergence (Trefethen
2000); equispaced points provide non-uniform convergence; and localised collocation
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FIGURE 17. Comparisons between r.m.s. errors of resolvent-based and TRME methods with
sensors located at an upstream region. All curves are normalised by the global r.m.s. error.
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FIGURE 18. Fitting of a Gaussian curve using polynomials of orders 4 and 15, markers indicate
the collocation points used. Collocation points are (a) uniformly spaced on the first half of the
domain, (b) uniformly spaced throughout the domain, (c) on Gauss–Lobatto points.

points lead to large errors, which increase with the polynomial order. This situation can be
understood as analogous to that which underpins the results of figure 17, once it is realised
that the procedure is implicitly trying to represent the systems forces with a particular
choice of basis: force modes in the case of TRME and observable forces in the case of the
resolvent-based method.

For estimation purposes, the instability of TRME may be worked around by using more
sensors than response modes, leading to a least-square minimisation of the sensor errors,
as was done by Gomez Carrasco et al. (2014). The sensors should be weighted in order to
reproduce an inner product for which the response modes are orthogonal. This approach,
however, discards sensor information, which could be used for higher accuracy. It can be
justified if resolvent modes are readily available, but if they need to be constructed by
traditional methods, this would be more demanding than using the method we propose.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

43
5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
v 

of
 M

ic
hi

ga
n 

La
w

 L
ib

ra
ry

, o
n 

10
 A

ug
 2

02
0 

at
 0

5:
45

:3
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.435
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


900 A2-26 E. Martini and others

0

2

4

6

8

10

12

y

14

16

18

20

x
0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FIGURE 19. Boundary layer base flow. Colour contours indicate the streamwise velocity
component, dotted and dashed lines indicate the boundary layer thickness (δ0.99) and
displacement thickness (δ∗). White markers correspond to the locations of perturbation sensors
used for estimation and green markers show the control positions used in figures 22 and 23.

4. Application in transitional and turbulent flows

4.1. Transitional flat-plate boundary layer
We perform state-estimation in a two-dimensional spatially evolving transitional boundary
layer, with Reynolds number Re = 1000 based on the displacement thickness at the
beginning of the domain. The free stream velocity is taken as the reference value for
non-dimensional quantities. The base flow, obtained from a Blasius boundary layer
solution, is shown together with sensors and probes used in figure 19. The linearised
Navier–Stokes equations are solved using the spectral-element code Nek5000 (Fischer &
Patera 1989; Fischer 1998), which uses nth-order Lagrangian interpolants within each
element to solve a weak formulation of the incompressible Navier–Stokes equations.

The computational domain is a box of size 1000 × 20, discretised with 250 ×
25 elements using sixth-order polynomials, ninth-order polynomials being used for
de-aliasing. Time integration was performed using a time step of 10−1. Convergence with
mesh and time step were checked. Dirichlet boundary conditions for velocity fluctuations
were used on all boundaries. At positions x = 0 and x = 1000 the boundary conditions
create a viscous boundary which is not well resolved by the mesh. Outflow conditions
can alternatively be obtained using extended domains together with sponge regions, as
described by Bodony (2006), but such treatment was not necessary here, as the regions
around the boundary are stable with the numerical methods used here, and associated
errors are both small and localised.

The flow is forced with a spatiotemporally white noise for y < 5. The distributed forcing
excites, in addition to unstable Tollmien–Schlichting waves, many other stable modes,
leading to a more challenging case for estimation in comparison to forcing in a limited
upstream region, which is often considered in flow-control problems (Bagheri et al. 2009;
Belson et al. 2013; Sasaki et al. 2018).

Readings from control sensors at x = 150, 500 and 850 were saved during the direct
run, defined in § 2.4. Estimation for these positions is obtained via the transfer function

T̂z = CzT̂u = CzRR†
y

(
R yR†

y + εI
)
, (4.1)
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FIGURE 21. Same as figure 20, with forces and responses on the right made orthogonal to the
ones on the left.

which can be directly evaluated from the available direct-run readings. The observable
force and response modes for each sensor are shown in figure 20. In figure 21 the modes
observable by the second sensor are made orthogonal to those observable by the first,
as was previously done for the Ginzburg–Landau model (cf. figure 5). Figure 22 shows
estimations at these points using only one sensor at x = 300, and using sensors at x =
300 and 700. The estimates are especially accurate for the two downstream positions,
and inclusion of the second sensor reduces the error for both. For the upstream point,
x = 150, a reasonable accuracy is obtained. The kernels are shown in figure 23. As in the
Ginzburg–Landau model, estimation is causal for positions downstream of the last sensor;
this suggests that resolvent-based estimation is equivalent to Kalman-filter estimation for
these locations.

Appendix B shows how to estimate a flow snapshot in a memory efficient manner.
Snapshots of the flow and its estimation, and their error, are seen in figure 24; the fields
are virtually indistinguishable at downstream locations, slight differences being observed
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FIGURE 22. Boundary layer time series estimation at x = 150 (a), 500 (b) and 850 (c).
Reconstructions using one (red line) and two (blue line) sensors are shown along with the
simulation signal at these position (dashed line).

upstream: this region is not dominated by Tollmien–Schlichting waves, which here have
low amplitudes; the flow here thus has higher rank, and the presence of multiple modes
makes this region harder to estimate using downstream sensors. Nonetheless, the method
provides a good overall estimation given that the upstream region contains less energy.
The ratio between error energy, defined as

eerr = 1
2

∫ (
(u(x, y) − ũ(x, y))2 + (v(x, y) − ṽ(x, y))2) dv (4.2)

and the flow energy is 2.3 %.

4.2. Turbulent channel flow
We now consider a turbulent channel flow with friction Reynolds number Reτ = 180.
We use data obtained via direct numerical simulation (DNS) to compute the flow and
nonlinear forcing statistic, both of which were previously documented by Morra (2020)
and Morra et al. (2020), to compare with our estimation results. Inner (viscous) units can
be defined in terms of a friction velocity uτ = √

τw/ρ, where τw is the mean wall shear
and ρ the fluid density. These are denoted using the superscript ‘+’.

A direct numerical solution of the nonlinear Navier–Stokes equations was obtained
using the channelflow code (Gibson, Halcrow & Cvitanović 2008; Gibson 2012) version
2.0. Fourier bases are used for streamwise (x) and spanwise (z) directions, Chebyshev
polynomials being used in the wall-normal (y) direction. De-aliasing is performed in the
x and z directions. A box of size 4π × 2 × 2π with 288 × 129 × 288 grid points was
used. The simulation was started with a random initial condition and run until transient
effects vanished and stationary turbulence was obtained; only data after this time was
used. A snapshot of the flow is shown in figure 25, and flow statistics (mean flow and
r.m.s. profiles) are presented in figure 26. Comparison with previous DNS results from
Del Alamo & Jiménez (2003) validates the database.

The nonlinear terms, considered as external forces of the linear operator as
discussed earlier, were computed using Fourier and Chebyshev differentiation matrices
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FIGURE 23. Resolvent-based kernels for probes z1, z2 and z3, at three positions (x = 150, 500
and 850). Blue and red lines correspond to the term to be convoluted with y1 and y2, respectively.
(a) Kernel using only the upstream sensor, y1. (b) Kernel using both sensors, y1 and y2.

(Weideman & Reddy 2000) saved along with the responses. A total number of 2000
snapshots were saved every Δt = 0.5 in outer units (Δt+ = 5.7). Force and response
statistics were computed, CSDs being obtained using the Welch method with a Hanning
window, 256 samples per block, and with a 75 % overlap. Force CSDs are denoted by
F̂ ′(ω), while the symbol F̂(ω) is reserved for the CSD model used to construct the
estimator. Windowing effects were corrected using the method developed by Martini
et al. (2019) and described in § 3.1; Nogueira et al. (2020) showed that the correction
is fundamental for the correspondence of force and response modes in turbulent flows.

The Navier–Stokes equations, linearised around the mean, are homogeneous in the x and
z directions. Applying a Fourier transform in the homogeneous directions, the streamwise
perturbation velocity component, u(x, y, z, t), can be written as u′(α, y, β, t). For brevity,
the wavenumbers α and β will be omitted in what follows.

It is well known that near-wall structures are dominated by (2π/α+, 2π/β+) =
(λ+

x , λ+
z ) = (1000, 100) (Del Alamo & Jiménez 2003), and we thus focus on this
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(2003).

wavenumber. Two Fourier-mode sensors are used, each measuring streamwise and
spamwise components of the wall shear stress. For these wavenumbers, the linearised
Navier–Stokes operator depends only on y and can thus be explicitly constructed and
inverted to obtain the resolvent operator. Here we consider the standard linearised
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Navier–Stokes operator with terms nonlinear in fluctuations considered as forcing
(McKeon & Sharma 2010).

Non-causal resolvent-based estimation was performed using (2.18) and (2.22), using the
following four different models for the force CSD.

(i) White. Spatiotemporally white forcing: F̂(ω) = I.
(ii) White in time. White-noise in time, with spatial correlation given by the two-point

correlation of the DNS: F̂(ω) = F ′(0).
(iii) Estimated colour. Force statistics estimated from the CSD of streamwise and

wall-normal velocity components.
(iv) True colour. Force statistics calculated from the DNS: F̂(ω) = F̂ ′(ω).

Force-statistic estimation (iii) was performed using the CSD of an auxiliary set
of sensors, referred to as y′, that consisted of streamwise and wall-normal velocity
perturbations at y+ = 5, 10, 15, 20, 35 and 40. The force CSD was estimated as

F̂ = T̂ ′
f Ŷ ′T̂ ′

f , (4.3)

where Ŷ ′ is the CSD of the auxiliary sensor set: Ŷ ′ = 〈 ŷ′ ŷ′†〉, and T̂ ′
f is the equivalent

of (2.18) constructed for the auxiliary set of sensors y′. This is similar to the procedure
in Towne et al. (2020), with the difference that here the estimated force CSD is used to
improve estimation using a different set of measurements. Note that Ŷ ′ can be constructed
in experiments using only two sensors. The auxiliary sensors are not used in the flow
estimation described next. The choice of sensors was motivated by Nogueira et al. (2020),
where correlations between wall-normal velocities and streamwise forces is shown to be
important for the flow dynamics. Force CSDs for λ+

t = 100, where λ+
t = 2π/ω+ denotes

the period in inner units, obtained directly from the DNS and estimated using the auxiliary
sensors are shown in figure 27. The estimated colour has considerable differences when
compared to the true colour. Nevertheless, as will be shown next, it contains the necessary
information for an accurate state estimation.

A comparison of power spectral densities (PSD) obtained from the DNS and estimation
at y+ = 12, where the PSD of the streamwise velocity component peaks, is presented in
figure 28. The PSD for λ+

t = 100 at different wall-normal positions is show in figure 29,
and a time-series comparison is provided in figure 30. The largest velocity fluctuations
are in the streamwise direction, and it is therefore the component for which estimation
performance is best.

The assumption of white-noise force in time and space does not provide a satisfactory
flow estimation, as previously observed by Chevalier et al. (2006). Studying the structure
of the nonlinear force terms, Nogueira et al. (2020) showed that streaks generated by
the lift-up mechanism have their amplitudes reduced by streamwise forces. This effect
is not present if forces are assumed to be spatiotemporally white, leading to the overshoot
observed in figure 28.

Chevalier et al. (2006) explored spatial colouring of the forces, which were nonetheless
simplified as white noise in time, probably due to the complexity of including full
colour information in a Kalman-filter estimation. To the best of the authors’ knowledge,
no previous study has included full force colour. With the resolvent-based estimation
procedure we propose, estimation of relevant force components and their use for response
estimation is straightforward.

The use of spatiotemporal forcing colour provides significant improvements in
estimation performance. Low-rank forcing models can easily be obtained from
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FIGURE 27. Force CSDs (F̂ ) for λ+t = 100 obtained directly form DNS data (Morra 2020) (a)
and estimated using the extra sensor set (b). Colour scale is saturated for the F̂fx ,fx component,
which is an order of magnitude greater than the others as to make cross-correlations clearer.
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FIGURE 28. Turbulent-channel power-spectral densities for λ+t = 100 of u, v and w from DNS
and estimation using a different assumption of force statistics.

experimental set-ups from sensor CSDs and the resolvent operator, and can thus be a useful
tool to estimate full flow states in experimental set-ups, where one is typically limited to
low-rank observations of the system.

5. Conclusions

We have presented an optimal method for the estimation of unsteady flow dynamics
from sparse measurements. The approach is a generalization of the work of Towne et al.
(2020) and includes both force colour and sensor noise. Due to the explicit appearance of
the resolvent operator, we refer to the method as resolvent-based estimation.
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FIGURE 29. Turbulent-channel power-spectral densities of u at y+ = 12 obtained from the
DNS and estimation using a different assumption of force statistics.
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FIGURE 30. Turbulent-channel streamwise velocity perturbation time series obtained from the
DNS and estimation using a different assumption of force statistics. Estimation at y+ = 12.

The method is suitable for application in transitional and turbulent flows. In the
latter case the inhomogeneous linearised Navier–Stokes system is considered, nonlinear
interactions being treated by means of an external forcing (McKeon & Sharma 2010).
Comparison with Kalman-filter estimation shows the resolvent-based approach to provide
equal or better performance. A matrix-free procedure, involving the integration of one
direct and one adjoint equation for each sensor, is elaborated that makes the method
suitable for application in complex flows. Higher accuracy, lower computational cost
and a simpler implementation renders the method attractive for the post-processing of
experimental data.

When the resolvent-based estimator is truncated to its causal component it is shown
to be equivalent to Kalman-filter estimation in certain scenarios. The approach may thus
provide a viable means by which to perform real-time estimation and control of large
systems without requiring the construction of reduced-order models.

In addition to clear computational benefits, the method provides a framework for
interpretation of the mechanics of estimation. The foundation of this is resolvent analysis,
which recent studies have shown to be a promising tool for the study and modelling
of turbulent flows (McKeon & Sharma 2010; Abreu et al. 2017; Beneddine et al. 2017;
Schmidt et al. 2018; Yeh & Taira 2019; Nogueira et al. 2020; Towne et al. 2020).
Thanks to this framework, the resolvent-based estimation can be understood in terms
of an observable forcing subspace associated with the sparse measurements. Estimation
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900 A2-34 E. Martini and others

accuracy depends on the extent to which the key forcing activity is observable by the
sensors. Furthermore, we have shown that with limited knowledge of underlying force
correlations, or a model of these, information from unobservable regions of the force space
can be leveraged for estimation thanks to their correlation with the observable subspace.
We show, using a turbulent channel flow, how modelling of the force statistics is necessary
for accurate estimation.
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Appendix A. Expressions for sensor noises correlated with forces

Given the system

du
dt

(t) = Au(t) + Bf (t), (A 1)

y(t) = Cu(t) + n(t), (A 2)

with

〈f (t)f (t′)†〉 = F(t − t′), 〈n(t)n(t′)†〉 = N(t − t′), 〈n(t)f (t′)†〉 = M(t − t′).
(A 3a–c)

Optimal force and state estimations, following an analogous derivation as presented in § 2,
are stationary points of

〈êuê†
u〉 = 〈RB

(
f̂ − T̂f

(
R y f̂ + n̂

)) (
f̂ − T̂f

(
R y f̂ + n̂

))†
B†R†〉 (A 4)

= RBΘB†R†, (A 5)

where

Θ =
(

I − T̂f R y

)
F̂

(
I − T̂f R y

)†
+ T̂f N̂T̂ †

f −
(

I − T̂f R y

)
M†T̂ †

f

− MT̂f

(
I − T̂f R y

)†
(A 6)

for state estimation, and of〈
êf ê

†
f

〉
=

〈(
f̂ − T̂f

(
R y f̂ + n̂

)) (
f̂ − T̂f

(
R y f̂ + n̂

))†
〉

= Θ (A 7)

for force estimation. Both stationary points are given by

T̂f =
(

F̂R†
y + M†

) (
R yF̂R †

y + N̂ + R yM† + MR †
y

)−1
. (A 8)
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Appendix B. Memory efficient estimation of flow snapshots

The estimation expression in (2.39) reads as

ˆ̃u = RR†
y(R yR†

y + εI)−1 ŷ. (B 1)

From § 2.4, the terms R yR†
y and RR†

y can be obtained from integration of the direct and
adjoint equations as

RR†
y = q̂ and R yR†

y = Cq̂, (B 2a,b)

where q̂ contains the Fourier transform of the direct systems response. In order to estimate
one snapshot of the flow, the large convolutions can be avoided using the following
strategy: constructing Ĝ = (R yR†

y + εI)−1ẑ, which can be calculated using only sensor
readings from the direct run and from the flow to be estimated. Estimations can be obtained
as

ˆ̃u(ω) = q̂(ω)Ĝ(ω), (B 3)

which in the time domain is expressed as

ũ(t) =
∫ ∞

−∞
q(τ )G(t − τ) dτ, (B 4)

which amounts to a single integral to construct one estimated flow snapshot. Thus, the
only large data operation is the weighted sums of snapshots of the direct run, and only
requires storing one snapshot in memory at a time.
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