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A B S T R A C T

We study the behaviors of pressure fluctuations in high Reynolds number wall-bounded flows. Pressure fluc-
tuations are small-scale quantities compared to velocity fluctuations in a wall-bounded flow (Tsuji, Marusic, &
Johansson, Int. J. Heat Fluid Flow, vol. 61, 2016, pp. 2–11.): at a given wall-normal distance y, the premultiplied
velocity spectrum peaks at a streamwise wavelength on the order of the boundary layer thickness ( = O ( )x ),
whereas the premultiplied pressure spectrum peaks at λx<O(y). The differing scales of pressure and velocity
pose a challenge to modeling, and the scaling of the pressure spectrum in wall-bounded flows remains an un-
solved issue from both a theoretical and measurement standpoint. To address this unresolved issue, we in-
corporate Kolmogorov’s theory (K41) within the framework of Townsend’s attached eddy hypothesis to account
for the small scale nature of pressure fluctuations, leading to the first derivation that is consistent with both
theories. Our main result is that at a wall-normal distance in the logarithmic layer the premultiplied pressure
power spectrum scales as +k E y[ ] ,x pp x

n n1 (3 )/4 for λx< y/tan (θ), and as k E[ ] ,x pp x
n(3 7)/4 for λx> y/tan (θ).

Here, θ is the attached-eddy inclination angle, kx is the streamwise wavenumber, the velocity spectrum follows a
k 1 scaling for 1/kx> y/tan(θ) and a k 5/3 scaling for 1/kx< y/tan (θ), and n is a Reynolds-number-dependent
constant. This result conforms to Kolmogorov’s theory of small scale turbulence, i.e., it yields a −7/3 scaling for
the small scales at high Reynolds numbers, and also yields the anticipated −1 scaling for the logarithmic layer
scales. Detailed analysis shows that pressure and spanwise velocity have differently statistical properties: while
an outer peak emerges in the premultiplied spanwise velocity spectrum at high Reynolds numbers, no outer peak
is expected in the premultiplied pressure spectrum. The derived scalings are confirmed using data from a direct
numerical simulation of a channel flow at friction Reynolds number =Re 5200.

1. Introduction

Pressure is an important flow quantity for many engineering and
environmental flow applications, including vibration and fatigue.
According to Kolmogorov’s theory of small-scale turbulence
(Kolmogorov, 1941; Obukhov, 1949; Corrsin, 1951), the pressure
power spectrum scales as E kpp

7/3 in the inertial range. Evidence of
this 7/3 scaling was later found in, e.g., Gotoh and Fukayama (2001)
and Tsuji and Ishihara (2003), in the context of isotropic turbulence at
Taylor microscale Reynolds number Reλ>600. Predicting pressure
statistics in the context of wall-bounded flows is more difficult, and the
scaling of the pressure spectrum is an unresolved issue from a theore-
tical standpoint.

Directly measuring pressure fluctuations in a laboratory experiment
is challenging (Lauchle and Daniels, 1987; Tsuji et al., 2012), as pres-
sure signals in wind tunnels are contaminated by noise from the tunnel

fan and flow in the return circuit. Tsuji et al. (2012) compared la-
boratory measurements and direct numerical simulation (DNS) data
and concluded that background noise in wind tunnels affect the pres-
sure in the boundary layer, which in turn result in pressure profiles that
are different from DNS. Having this caveat in mind, laboratory mea-
surements of Elliott (1972) and Albertson et al. (1998) suggest a 1.7
scaling and a 1.5 scaling, respectively, instead of the expected 7/3
scaling. Because the small scales are approximately isotropic at high
Reynolds numbers, in general, we expect Kolmogorov’s theory to be
valid at small scales even for flows with mean shear (Pope, 2001).

Compared to laboratory experiments (Tsuji et al., 2005; Liu and
Katz, 2006; Tsuji, 2007), getting pressure data from numerical simu-
lations, e.g., DNS, is much more straightforward. For example,
Kim (1989) and Abe et al. (2005) divided the pressure source term into
a rapid part and a slow part and found that the slow pressure fluctua-
tions are dominant in the channel except very near the wall.
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Patwardhan and Ramesh (2014) found in a DNS boundary layer flow
that the pressure spectrum follows a −1 scaling near the wall
(Bradshaw, 1967) and a −7/3 scaling in the outer region. In a recent
work, Panton et al. (2017) found that

p p ylog( / ) (1)

in the logarithmic layer, where δ is the half-channel width, ′ indicates
the fluctuation from the mean, and < · > is the ensemble average.

A similar logarithmic scaling was previously found for the stream-
wise velocity variance (Smits et al., 2011; Marusic et al., 2013), i.e.,

u u ylog( / ), (2)

whose presence in high Reynolds number wall-bounded flows was
predicted by Townsend as a result of his attached eddy hypothesis
(AEH) (Townsend, 1976; Woodcock and Marusic, 2015; Yang and
Abkar, 2018; Marusic and Monty, 2019). Despite their similar forms,
the two scalings in Eqs. (1) and (2) are due to eddies at different scales,
as pointed out by Tsuji et al. (2016). In their recent work,
Tsuji et al. (2016) divided the instantaneous pressure into a large-scale
component pL and a small scale component pS based on a cutoff length
scale λc. They examined pL

2 and pS
2 and concluded that the loga-

rithmic scaling in Eq. (1) is due to the smaller scales (λx ≪ cδ), in
contrast to the logarithmic scaling in Eq. (2), which is due to the larger
scales (λx> cδ). Here, λx is the streamwise wavelength, c is a constant
(Christensen and Adrian, 2001; Marusic and Heuer, 2007).

Here, we examine the pressure and velocity spectra at a wall-normal
distance where Eq. (1) is valid, i.e., in the logarithmic layer. This will
give us a better idea of the scales that dominate velocity and pressure
fluctuations. Fig. 1(a) shows the compensated pressure variance, i.e.,

= p p A y Berr log( / ) ,p p (3)

in a =Re 5200 channel (Lee and Moser, 2015), where =A 2.6p and
=B .24p . The DNS computational domain is 8πδ×2δ×3πδ. The grid

resolution is × × = × ×+ + +x y z 12.7 6.4 10.4 at the centerline and
is =+y 0.071 at the wall. Further details of the DNS can be found in

Kim et al. (1987), Lee and Moser (2015), and Graham et al. (2016).
According to Fig. 1(a), the variance of the pressure fluctuations follows
a logarithmic scaling near =y/ 0.1. Fig. 1(b) shows the premultiplied
velocity and pressure spectra as a function of the streamwise wave-
number at the wall-normal height. It is clear that velocity fluctuations
are most energetic at large scales whereas pressure fluctuations are
most energetic at small scales. Specifically, as will become clear in the
later sections, pressure fluctuations are most energetic at scales λx< y/
tan (θ), and velocity fluctuations are most energetic at scales y/tan (θ)
< λx (Hu et al., 2020). The differing scales of velocity and pressure
fluctuations pose challenge to modeling. Specifically, AEH, which has
been quite useful in providing scaling estimates of velocity statistics in
high Reynolds number wall-bounded flows, is a model of the large-scale
energetic motions not the small scales, and therefore, it does not di-
rectly provide scaling estimates for pressure power spectra.

In summary, the scaling of the pressure spectrum in wall-bounded
flows is an unsolved problem from both a theoretical and measurement
standpoint. The objective of this work is to address this unresolved
issue. We do this by combining AEH and K41 to model pressure and
velocity fluctuations in a unified framework. In addition to the pressure
power spectrum, we will also explore the scaling of other pressure
statistics. The rest of the paper is organized as follows. In Section 2, we
review the basics of K41 and its estimates of pressure statistics for
isotropic turbulence. In Section 3, we combine AEH and K41 and make
estimates of pressure statistics in wall-bounded flows. The data are
compared to our model in Section 4. We further extend the model in
Sections 5 and 6. Concluding remarks are presented in Section 7.

2. Background knowledge

We begin by reviewing the basics of K41 and AEH, which serve as
building blocks for the pressure model developed later in Section 3.

2.1. Kolmogorov’s theory of small scale turbulence

K41 essentially models the behavior of the small scale turbulence, at
which scales the flow is approximately homogeneous and isotropic.
Here, let us consider an isotropic turbulent “eddy”. Here and
throughout this paper, an “eddy” is not necessarily an energetic fluid
motion at a particular scale; rather, an “eddy” is a flow structure across
a range of scales. This isotropic turbulent “eddy” has a characteristic
velocity u, and an integral length scale l. The fluid viscosity is ν and the
fluid density is unit (i.e., ρ≡1). Dissipation in this eddy is

u
l

Characteristic velocity
Characteristic length

.
3 3

(4)

At high Reynolds numbers, the dissipation ϵ and the eddy size l,
equivalently the characteristic velocity u and the eddy size l, determine
the state of the eddy. Dimensional analysis gives estimates of all flow
statistics in terms of these two quantities at scales away from the
Kolmogorov length and the integral length scale. In the following, we
highlight a few of these estimates. The variance of the pressure fluc-
tuation is

p U l u[ ] ( ) ,2 4 4/3 4 (5)

where < · > is the ensemble average of the quantity in the bracket,
and [U] denotes the dimension of velocities, i.e., [m/s]. The power
spectrum of the pressure fluctuation scales as

E U L k u
l

k[ ] [ ] ,pp
4 4/3 7/3

3
7/3

(6)

where [L] denotes the dimension of lengths, i.e., [m], and k is the
wavenumber. The −7/3 law in Eq. (6) is only found at high Reynolds
numbers, i.e., Reλ>O(600) (Tsuji and Ishihara, 2003). Detailed ana-
lysis shows that

Fig. 1. (a) = p p A y Berr log( / )p p as a function of the wall-normal
distance in a =Re 5200 channel (Lee and Moser, 2015). (b) The premultiplied
velocity and pressure power spectra. The spectra are normalized with their peak
values.
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= = +E K k K k( ) ,pp p
n

p
n n n3/4 7/4 (3 )/4 (7 3 )/4 (7)

in finite Reynolds number isotropic turbulence (Tsuji and
Ishihara, 2003). Here, Kp is a constant, η is the Kolmogorov length scale,
and n is the power exponent. The exact value of n depends on the
Reynolds number, i.e., Reλ (Cao et al., 1999; Vedula and Yeung, 1999).

2.2. Attached eddy hypothesis

AEH models high-Reynolds number boundary-layer flows as as-
semblies of self-similar wall-attached eddies. The characteristic velocity
scale of an attached eddy is

= = u
characteristic velocity scale of an attached eddy

momentum flux carried by the eddy , (8)

and all the eddies are self-similar. The size of a wall-attached eddy at a
distance y from the wall is ly∼ y, and it follows that the eddy popu-
lation density is

l y
1 1 .N
y (9)

According to AEH, a flow quantity at a wall-normal height y can be
computed by adding up contributions from wall-attached eddies above
that height (Yang et al., 2016; Yang and Abkar, 2018):

=

×

y

dy

[a flow quantity]

[contribution from a -sized eddy]

[eddy population density] .
y

(10)

3. Model

Let us now consider a y′-sized attached eddy in a high Reynolds
number wall-bounded turbulent flow. This eddy is a turbulent eddy.
According to our definition, a turbulent eddy has energy in many scales.
Velocity fluctuations are most energetic at large scales, which are
modeled by AEH, and pressure fluctuations are most energetic at small
scales, which are modeled by K41. The small scales have an integral
length scale on the order of O(y′) and a characteristic velocity scale of O
(uτ). The objective here is to make use of AEH and K41 to estimate
pressure statistics in boundary-layer flows.

3.1. Dissipation

Before considering pressure, we first estimate dissipation statistics
in a boundary layer, which will be needed later to obtain our model for
pressure. Each attached eddy dissipates some turbulent kinetic energy,
and Eq. (10) applies. We have

=

×

y y

dy

( ) [dissipation of a -sized attached eddy]

[eddy population density] .
y

(11)

AEH itself does not give an estimate of the [dissipation of a y′-sized
attached eddy]. Nevertheless, that estimate can be obtained from K41,
and Eqs. (4) and (8) give

y u
y

[dissipation of a -sized attached eddy] .
3

(12)

Plugging Eqs. (9) and (12) into Eq. (11), we have

+ +y u
y y

dy u
y

y( ) 1 , 1 .
y

3 3

(13)

Eq. (13) serves as a consistency check for Eq. (10) because
= =y P y u v dU dy u y( ) ( ) / 3 in the logarithmic layer

(Jiménez, 2012).

3.2. Pressure fluctuations

3.2.1. Pressure variance
Following the discussion in the above sections, we estimate pressure

statistics in a boundary layer. Applying Eq. (10) to estimate pressure
variance, we have

=

×

p p

y

dy

[pressure variance due to a -sized attached eddy]

[eddy population density] .
y

(14)

Pressure is most energetic at scales where E k ,uu
5/3 and AEH itself

does not provide an estimates of motions at those scales. Following the
discussion in the previous subsection, we resort to K41 for an estimates
of [pressure variance of a y′ -sized attached eddy]: Eqs. (5) and (8) give

y
u

[pressure variance of a -sized attached eddy]
,4 (15)

Plugging Eqs. (15) and (9) into Eq. (14), we have

p p u
y

dy y1 log( / ),
y

4
(16)

leading to the logarithmic scaling in Eq. (1). To the best of our
knowledge, this is the first derivation for the scaling
< p′p′ > ∼ log (δ/y) that acknowledge the fact that pressure is a small-
scale quantity and is consistent with the attached eddy hypothesis. We
make an observation: according to Eq. (15), pressure variance due to a
y′-sized eddy does not depend on y′. We will make use of this ob-
servation in Section 5.

3.2.2. Pressure spectrum
In this section, we estimate the scaling of the pressure spectrum.

First, we estimate [the premultiplied pressure and velocity spectrum
due to y′-sized attached eddies]. Following our discussion in Section 1,
we divide the energy content of an attached eddy to a large-scale part,
i.e., y/tan (θ)< λx< cδ and a small-scale part, i.e., λx< y/tan (θ), as
sketched in Fig. 2(a). Here = cx is the location of the outer peak. The
scale cutoff that separates the small and the large scales is defined based
on the eddy inclination angle. This definition naturally follows from
Townsend’s attached eddy hypothesis. For this discussion, the cutoff
should be such that the velocity spectrum follows a k 1 scaling above
the cutoff and a k 5/3 scaling below the cutoff. Like the eddy inclination
angle, this definition also allows for some arbitrariness: after all, the
transition from the −1 scaling to the −5/3 scaling does not happen at a
particular scale but across many scales. In the following section (par-
ticularly from Fig. 4), we will see that the scale cutoff could be defined
anywhere between 2y to 6y without affecting our conclusions. Velocity
fluctuations are most energetic at the large scales, and pressure fluc-
tuations are most energetic at the small scales. Hereon, for simplicity,
we neglect contributions from the small scales to the premultiplied
velocity spectrum and contributions from the large scales to the pre-
multiplied pressure spectrum. Because of the random repetitions of the
y′-size attached eddies in space, the premultiplied velocity spectrum
due to y′-sized eddies, which measures the scale-specific coherence,
spans the λx axis from y/tan (θ) to cδ, following Baars and
Marusic (2020) and the steps highlighted in Fig. 2(a, b). Similarly, [the
premultiplied pressure spectrum due to y′-sized eddies] spans the λx
axis from a λx viscous cutoff to y/tan (θ), as sketched in Fig. 2(c). In the
y-axis, the premultiplied velocity and pressure spectra span the wall-
normal distance from a viscous cutoff to y′. The y viscous cut-off is at

+y 100uviscous cutoff, (Perry and Chong, 1982; Nickels et al., 2005; Hu
et al., 2020). The λx viscous cutoff of the pressure is approximately at

=y y( ) ( / ) ,x p, viscous cutoff,
3 1/4 1/4 (17)

following from Eq. (13). In the above equation, λx, viscous cutoff, p is the
Kolmogorov length. A more often used viscous cutoff is the local Taylor
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micro length

y y Re y( ) ( ) ,x p y, viscous cutoff,
1/4 1/2 (18)

where =Re yu /y is the local Reynolds number. Note that from both
Eqs. (17) and (18), the λx viscous cutoff is an increasing function of y,
which is all we need to proceed.

Formally, if one invokes Eq. (7), then

× +

+

y
y

y

[premultiplied pressure spectrum due to
-sized attached eddies]

[Dissipation due to a -sized eddy]
,

x
n n

x
n n

1 (3 )/4

1 (3 )/4 (19)

where [Dissipation due to a y′-sized eddy] u y/3 follows from Eq. (12).
Second, we add up [pressure and velocity spectrum due to y′-sized

attached eddies] for all y′. Fig. 3 sketches the basic steps. Eq. (10) still
applies. Eqs. (9), (10), and (19) lead to

=

×
+ +

k E

y dy

y dy y

[premultiplied pressure spectrum due to

-sized attached eddies] ,

.

x pp y

y

y x
n n

x
n n

1

1 (7 )/4 1 (3 )/4
(20)

Eq. (20) is valid for λx< y/tan (θ). For λx> y/tan (θ), it follows from
Fig. 3 that kxEpp is not a function of y and that

= =k E k E .x pp y x pp y, , tan( )x x x (21)

By imposing continuity at =y tan( ),x Eqs. (20) and (21) together
imply that

+k E .x pp y x
n

x
n

x
n

,
1 (3 )/4 (3 7)/4

x (22)

In conclusion, re-writing Eq. (20) leads to

y k E y[ ] ( / ) ,n
x pp x

n(3 7)/4 1 (23)

for λx/y<1/tan (θ), and re-writing Eq. (22) leads to

y k E y[ ] ( / ) ,n
x pp x

n(3 7)/4 (3 7)/4 (24)

for λx/y>1/tan (θ). Eqs. (23) and (24) are our main conclusions.
Observe that the long anticipated scaling of E kpp x

1 in the logarithmic
range, which corresponds to λx/y>1/tan (θ), is only valid when

=n 7/3, which is only true at very high Reynolds numbers. Also, be-
cause Eq. (24) is a direct consequence of K41, it is also valid in the wake
layer, as we will show in the next section.

4. Comparison with data

4.1. Pressure spectra

We compare Eqs. (23) and (24) to DNS data from a =Re 5200
channel (Lee and Moser, 2015). Fig. 4(a, b) show the re-scaled pre-
multiplied pressure spectrum y k E[ ]n

x pp
(3 7)/4 as a function of λx/y.

Data from =+y 130 to =y/ 0.4 are shown, and the logarithmic layer
extends from +y 300 Samie et al. (2018) to =y/ 0.2. The data in
Fig. 4 include the logarithmic layer, and a wall-normal location at

=+y 130, which is in the viscous layer, and a wall-normal location at
=y/ 0.4, which is in the wake layer. The minimum and maximum

values of λx present in the data are determined by the grid resolution
(Δx≈10) and the domain length ( =L 8x ), respectively. The ex-
ponent n depends on the Reynolds number (Tsuji et al., 2007). The best
fit of the present channel flow data at =Re 5200 yields =n 1.9 (up to
two significant digits), which is consistent with previous measurements
(Tsuji and Ishihara, 2003).

In Fig. 4(a, b), we see that the data follow Eqs. (23) and (24).
Eq. (23) is valid in the inertial range with the large scale cut off at
λx≈ y/tan (θ). This range is larger away from the wall, leading to
better agreement with the data in the wake layer. On the other hand,
Eq. (24) is valid between λx≈ y/tan (θ) to λx≈ cδ, which range is
larger closer to the wall (while still in the logarithmic layer). Fig. 5(a, b)
show the compensated plots. In Fig. 5(a, b), we find plateaus at all wall-
normal locations in the logarithmic layer, except for =+y 130 and

=y/ 0.4, which are outside of the logarithmic layer.
Next, we compare the sketch in Fig. 3(d) to data. It directly follows

from Eq. (23) that for λx/y<1/tan (θ), the contour lines scale as

Fig. 2. (a) A sketch of y′-sized wall-attached eddies. (b, c) A sketch of the
premultiplied velocity and pressure energy spectra due to y′-sized wall-attached
eddies. The two axes are in logarithmic scale.
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=+y Const,x
n n1 (3 )/4 (25)

i.e.,

+
y n

n
xlog( ) 1

(3 )/4
log( )

(26)

The model proposes that: first, the peak of kxEpp is located at λx< y/
tan (θ); second, the pressure spectrum decays for λx> y/tan (θ); and
third, the contour lines scale as Eq. (26). Fig. 6 shows the premultiplied
velocity and pressure spectra in a =Re 5200 channel. The data is from

=+y 300 (i.e., +y 4 5200 ) to =y/ 1 (i.e., =+y 5200). Comparing
Figs. 6 and 3 (d), the model works qualitatively well. From a quanti-
tative standpoint: first, the peak of kxEpp is located at a scale to the left
of y/tan (θ), and second, kxEpp decays for λx> y/tan (θ). This validates
the model and shows unambiguously that pressure fluctuations are
most energetic at small scales. Lastly, for λx< y/tan (θ), the scalings of
the pressure contour lines follow Eq. (26) closely.

4.2. Finite Reynolds number and the −7/3 scaling

The scaling exponent n depends on the Reynolds number. Fig. 7(a)
shows the scaling n as a function of the Taylor micro length scale

Reynolds number Reλ in isotropic homogeneous turbulence. Details of
the data can be found in Tsuji and Ishihara (2003) and the references
cited therein. The scaling n is about 1.9 at =Re 200, and is 7/3 for
Reλ>600. To make use of Fig. 7(a), we compute the Taylor micro
length scale Reynolds number Reλ of a λx-sized eddy. First, the Reynolds
number of a λx-sized eddy is

Re U ,c x
(27)

where Uc is the characteristic velocity length scale

= = =U u
y

u u( )
tan( )

2.4 .c x x
1/3

3 1/3 3 1/3

(28)

Here, a λx-sized eddy is an eddy of height =y tan( )x ; and at
=y tan( ),x the dissipation equals the production and is u y/3 .

Plugging Eq. (28) into Eq. (27), the local Reynolds number is

= = +Re u y2.4 / 13.6x (29)

which translate to a Taylor micro length scale Reynolds number

= +Re Re y10 11.7 . (30)

Fig. 3. (a) A sketch of the boundary layer. An eddy has both large scales and small scales. (b, c) The large scales, i.e., y/tan (θ)< λx< cδ, contribute to the
premultiplied velocity spectrum. The small scales, i.e., λx< y/tan (θ) contribute to the premultiplied pressure spectrum. (d) Contour lines of the premultiplied
velocity and pressure spectra.

Fig. 4. (a) Re-scaled and premultiplied pressure spectrum y k E[ ]n
x pp

(3 7)/4 as a function of λx/y at =y/ 0.025, 0.05, 0.1, 0.2, and 0.4 in a =Re 5200 channel. The
thin blue solid line shows the slope n 1. The thin black solid line is at λx/tan (θ). (b) Re-scaled and premultiplied pressure spectrum y k E[ ]n

x pp
(3 7)/4 as a function of

λx/y at =y/ 0.025, 0.05, 0.1, 0.2, and 0.4 in a =Re 5200 channel. The thin red solid line shows the slope of n(3 7). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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The logarithmic layer is approximately from =+y Re4 to =y/ 0.2.
At =+y Re4 , =Re Re23.4 ,1/4 and at =y/ 0.2, =Re Re5.23 1/2. Fig. 7
shows the Taylor micro length scale Reynolds number Reλ at

=+y Re4 and at =y/ 0.2 as a function of the friction Reynolds
number Reτ. For a =Re 5200 channel, Reλ is O (200 300) in the
logarithmic layer, and it follows from Fig. 7(a) that n≈1.9. According
to Fig. 7(b), we expect the pressure spectrum in the logarithmic layer
follows the -7/3 scaling at Reτ>4.3× 105. In Appendix A, we will
further discuss the Reynolds number effects.

5. Hierarchical random additive process

In Section 3.2.1, we concluded that [pressure variance of a y′-sized
attached eddy] u 4 is not a function of y′. This suggests that pressure
fluctuations due to attached eddies are self-similar, which in turn sug-
gests that we could model pressure fluctuations in a wall-bounded flow
as a hierarchical random additive process (HRAP) following
Yang et al. (2016), and Yang and Abkar (2018). Doing this will leads to
additional scaling predictions, which can be compared with data to
further validate our model.

The HRAP model for pressure reads

=
=

p b N y, log( / ),
i

N

i y
1

y

(31)

where the addend bi is pressure fluctuation due to a yi-sized eddy, and bi
are statistically identical and independent variables. The number of
addend depends on the wall-normal distance. For instance, at =y ,
only one hierarchy of attached eddies contribute, and therefore =N 1y
at =y ; at =y /2, two hierarchies of attached eddies contribute, and

therefore =N 2y at =y /2; at =y /4, three hierarchies of attached
eddies contribute, and therefore =N 3y at =y /4. Generally, at

= +y /2 ,n 1 n hierarchies of attached eddies contribute, and =N ny at
= +y /2 ,n 1 or, Ny∼ log (δ/y). Eq. (31) is essentially Eq. (10), but

compared to Eq. (10), using Eq. (31) to compute pressure statistics is

Fig. 5. (a) Compensated plot of Fig. 4(a). (b) Compensated plot of Fig. 4(b).

Fig. 6. Contours of the premultiplied velocity spectrum (black bold solid lines)
and the premultiplied pressure spectrum (color contours, darker colors denote
larger contour values). The thin blue line corresponds to Eq. (25). The thin red
line corresponds to = y/tan( ),x and the scaling indicated by the thin blue line
should only be observed to the left of the thin red line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. (a) The scaling exponent of the pressure spectrum n in isotropic
homogeneous turbulence as a function of the Taylor micro length scale
Reynolds number Reλ. Details of the measurements can be found in Tsuji and
Ishihara (2003) and the references cited therein. The two dashed lines are at

=n 7/3 and =Re 600. (b) The Taylor micro length scale Reynolds number as a
function of the friction Reynolds number at =+y Re4 and =y/ 0.2. The two
dashed lines are at =Re 5200, and =Re 600.
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much more straight-forward. For example, squaring both sides of
Eq. (31) and averaging, we get

=
=

p p b N b ylog( / )
i

N

i y
1

2 2
y

(32)

which is Eq. (1).
In the following, we make use of Eq. (31) and study the statistical

behavior of pressure in wall-bounded flows. Per Eq. (32), p′p′ is a sum of
b ,i

2 which are identically independent distributed random variables.
Following Meneveau and Marusic (2013) and invoking the central limit
theorem, we get

= +p A y Blog( / ) ,m m
m p m p

2 1/
, , (33)

where =A m A[(2 1) !!]m p
m

p,
1/

1, . The above derivation has not been
presented before, but the presence of the logarithmic scalings in
Eq. (33) was previously observed by Mehrez et al. (2019), where con-
ditional sampling of the flow fields shows that positive pressure fluc-
tuations locate between the legs of hairpin eddies and negative pressure
fluctuations near the heads of the hairpin eddies within vortical cores.
Next, we compute the pressure moment generating functions (MGFs),
i.e., < exp (qp′) > . From Eq. (31), we have

=
=

=qp qb
qb y

exp( ) exp( )
exp( ) ( / ) .

i
N

i
N qb

1
log exp( )

y

y (34)

leading to a power-law, where q is a “dialing” parameter, and we have
used the identity =ln ln for the last “∼ ”. If b is Gaussian, then

=q qb Cq( ) log exp( ) .2 (35)

From the MGFs, one can compute the variance of the pressure fluc-
tuations

=
=

p d qp
dq

exp( ) .m
n

m
q 0 (36)

Plugging Eqs. (34) and (35) in Eq. (36), we have

= +p p C y2 log( / ) Const, (37)

and therefore =A C2p1, . Eq. (34) is a “strong” scaling and is valid only
in the logarithmic layer. The following is a weak form of the scaling in
Eq. (34)

qp q pexp( ) exp( ) ,o
q q( , )o (38)

where qo is a constant, Φ is the exponent. This weak form is known as
the extended self-similarity (ESS) (De Silva et al., 2017; Krug et al.,
2017). While Eq. (34) is only possible if the addends in Eq. (31) are
identically independently distributed, < exp (qp′) > is a power law of
< exp (qop′) > as long as the addends are independent. This property is
particularly useful at finite Reynolds numbers, where the extent of the
log layer is limited. The above scalings in Eqs. (33), (34), and (38) are
consequences of our model. In the following, we will test our model by
comparing these scalings to data.

6. Further comparison with data

In this section, we compare the scalings to the =Re 5200 channel
flow DNS (Lee and Moser, 2015). Fig. 8 shows < p′2m>1/m as a
function of the wall-normal distance for =m 1, 2, 3, and 4. The data
shows wiggles for =m 3 and 4. Nonetheless, the logarithmic scaling in
Eq. (33) can be found in the logarithmic layer, i.e., from =+y Re4 to

=y/ 0.2, and even beyond the logarithmic layer, i.e., from =+y 150 to
=y/ 0.4, for =m 1, 2, 3, and 4. Fitting the data in the logarithmic layer

to Eq. (33) yields =A 2.5,p1, =A A/ 2.6,p p2, 1, =A A/ 6.2,p p3, 1, and
=A A/ 12.8p p3, 1, . The numerical value of A1,p is very close to that of A1,u.

This may just be a coincidence. To the best of our knowledge, there has
not been a theory that directly relates pressure variance and velocity

variance. The data shows super-Gaussian behaviors, i.e.,
>A A/ 3 ,p p2, 1, A3,p/A1,p>(3×5)1/3, and A3,p/A1,p>(3×5×7)1/4.

This suggests that pressure fluctuations are more intermittent than
streamwise velocity fluctuations, which are sub-Gaussian
(Meneveau and Marusic, 2013).

Fig. 9 (a) shows the pressure probability density function (PDF). The
pressure fluctuations are negatively skewed, i.e., it is more likely to
encounter a large negative pressure fluctuation than a large positive
pressure fluctuation. This makes negative pressure fluctuations statis-
tically more important than positive pressure fluctuations in de-
termining high-order statistics. Fig. 9(b, c) show the premultiplied
pressure PDFs, i.e., p2× PDF and p4× PDF. If one knows the PDF of,
e.g., a random variable ϕ, < f(ϕ)> could be computed from ∫ [PDF
of ϕ]f(ϕ′)dϕ′, where the integrand is the premultiplied PDF. Thus,
premultiplied PDFs are useful tools when studying the statistical con-
vergence of statistical objectives. Here, from Fig. 9(b, c), we see that
positive pressure fluctuations lead to a higher peak than the negative
pressure fluctuations in the low order statistics < p′p′ > and negative
pressure fluctuations lead to a higher peak than the positive pressure
fluctuations in the high order statistics < p′4> . Comparing the PDFs
at =+y 300 (i.e., =+y Re4 4 ) and =y/ 0.2, we see from Fig. 9(a) that
it is more likely to encounter large fluctuations near the wall than away
from the wall in the logarithmic layer. This makes large fluctuations
statistically more significant near the wall than away from the wall.
Lastly, from Fig. 9(b, c), we could also conclude that the data is sta-
tistically converged for =m 1 and 2.

Fig. 10 (a) shows the MGFs < exp (qp′) > as a function of the wall-
normal distance for =q 0.2, 0.3, and 0.4. The power law scaling in
Eq. (34) could be found in the logarithmic layer and slightly beyond the
logarithmic layer, i.e., from =+y 150 to =y/ 0.4 for =q 0.2, 0.3, and
0.4. Fig. 10(b, c) shows the premultiplied pressure PDFs, i.e., exp (0.1
p′) × PDF and exp (0.1p′) × PDF. Again, we conclude from Fig. 10(b,
c) the data is converged for both =q 0.1 and 0.4. The MGF < exp (
qp′) > emphasizes large pressure fluctuations that have the same sign
as q. This is particularly the case for large valued |q|. Comparing
Fig. 10(b, c), we see that the positive pressure fluctuations play a more
important role for < exp (0.4p′) > than for < exp (0.1p′) > . Com-
paring the premultiplied PDFs at =+y 300 and =y/ 0.2, we could also
see that the large fluctuations are statistically more important near the
wall than away from the wall.

Fig. 11 shows the power-law exponents as a function of q obtained
by fitting the data in Fig. 10(a) to Eq. (34). In the beginning of the

Fig. 8. (a) < p′2m>1/m as a function of the wall-normal distance for =m 1, 2,
3, and 4. The thin solid lines are at =+y 150, Re4 , and =y/ 0.2, 0.4. Fitting
the data to Eq. (33) yields =A 2.5,p1, =A 6.6,p2, =A 15.5,p3, and =A 32.3p4, .
The pressure data are normalized by the friction velocity.
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section, we conclude that if the addends in Eq. (31) are Gaussian, the
power-law exponent is quadratic. According to Fig. 11, Gaussianality
provides a good approximation for τ(q) near =q 0. Considering that the
small-valued |p′| dominate < exp (qp′) > for q near 0, the fact that
τ(q)∼ q2 near =q 0 suggests that the small valued pressure fluctua-
tions are approximately Gaussian. Fitting τ(q) near =q 0 yields

= q1.3·q
2. Earlier in this section, we conclude that =A C2p1, . This

bears out in data since =A 2.6p1, and =C 1.3. For q values away from

=q 0, we see that the data follows =q q( ) 1.3 2 well on the positive side
but not on the negative side. Considering that < exp (qp′) > empha-
sizes pressure fluctuations that have the same sign as q, this suggests
that negative pressure fluctuations are less Gaussian than positive
pressure fluctuations, which is consistent with Fig. 9(a).

Last, Fig. 12 shows < exp (qp′)> as a function of < exp (q0p′)>

Fig. 9. (a) Pressure probability density function (PDF). (b, c) Premultiplied
pressure PDF. The data are normalized.

Fig. 10. (a) MGFs < exp (qp′)> as a function of the wall-normal distance for
=q 0.2, 0.3 and 0.4. The solid lines at constant y locations are =+y Re150, 4 ,

and =y/ 0.2, 0.4. Fits of the data to Eq. (34) are also shown for reference. The
slopes of the fits are shown in Fig. 11 and are not repeated here for brevity. (b,
c) Premultiplied pressure PDFs.
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for =q 0.40 and =q 0.3, 0.5. The power law scaling in Eq. (38) are
found in the logarithmic layer, which corresponds to 1.4< <exp (
q0p′) > <1.8, and slightly beyond the logarithmic layer from =+y 150
to =y/ 0.4, which corresponds to 1.2< <exp (q0p′)> <2.1. (Note
that < exp (q0p′) > is a decreasing function of the wall-normal dis-
tance.)

7. Conclusion

In this work, we invoke Kolmogorov’s theory of small-scale turbu-
lence and Townsend’s attached eddy hypothesis to model pressure
fluctuations in high Reynolds number wall-bounded flows. Our deri-
vation that acknowledges the fact that pressure is a small-scale quantity
and is also consistent with the attached eddy hypothesis. Specifically,
our model relies on Eq. (7), a direct consequence of K41, and Eq. (10), a
direct consequence of AEH, and no additional modeling assumptions
are introduced. The model yields

<y k E y y[ ] ( / ) for / 1/tan( ).n
x pp x

n
x

(3 7)/4 1

and

>y k E y y[ ] ( / ) for / 1/tan( ),n
x pp x

n
x

(3 7)/4 (3 7)/4

where θ≈10∘ is the attached eddy inclination angle, the Reynolds
number dependent power-law exponent n takes the value 7/3 at high
Reynolds numbers ( =Re O (10 )5 ) and 1.9 in =Re 5200 channel. The
data collapse without explicitly accounting for shear and flow aniso-
tropy as a function of the wall-normal distance. In addition, we extend
the model to a hierarchical random additive one, i.e.,

=
=

p b N y, log( / ),
i

N

i y
1

y

where bi’s are identically, independently, distributed random addends.
The above formulation admits logarithmic scalings of even order cen-
tral moments as well as the power-law scalings of the moment gen-
erating functions, both of which are found in data.
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Appendix A. Viscous cutoff and finite Reynolds number effects

The discussion in Section 3 is only valid at scales where neither the flow geometry (scale δ) nor the viscosity (scale ν/uτ or (ν3/ϵ)1/4) has an effect.
In the wall-normal direction, this limits the discussion in Section 3 to the logarithmic layer, i.e., away from the “inner peak”. Fig. A.13(a) shows the
premultiplied streamwise velocity spectrum of channel flow at =Re 1000, 2000, and 5200. The inner peak (marked by a × symbol) is located at

+ 800,x,innerpeak =+y 13. Following Baars and Marusic (2018), +y 100 is sufficiently away from the inner peak, above which viscous effects are
negligible. Plot two lines at + 800x,innerpeak and at +y 100. The premultiplied velocity spectrum at + 800x,innerpeak and +y 100 is 0.36 of the
inner peak value. If we follow the above discussion and define the wall-normal height at which the premultiplied spectrum is 0.36 of its peak value to
be the height above which the viscous effects are negligible, we can find the heights at which Townsend’s attached eddy hypothesis works for kxEpp
and kxEww. Fig. A.13(b, c) shows the premultiplied pressure and spanwise velocity spectra. The inner peaks of the premultiplied pressure and
spanwise velocity spectra locate at the streamwise wavelengths =+ 272x,innerpeak and 306, and the wall-normal heights =+y 23 and 39, respectively.
The premultiplied pressure and spanwise velocity spectra is 0.36 of their peak values at =+y 210 and 615, above which viscous effects are negligible.
Requiring one decade of scales from the viscous cutoff to =y 0.4 in kxEuu, kxEpp, and kxEww, the Reynolds number must be greater than Reτ≈2500,
Reτ≈5000, and Reτ≈15000, respectively. Hence, to be able to explain the statistical behaviors of the spanwise velocity fluctuations in the fra-
mework of Townsend’s attached eddy hypothesis, one needs to be at a Reynolds number Reτ ≫ 5200.

To make this point clearer, we look at Fig. A.14, where we show the premultiplied spanwise velocity spectra in a =Re 5200 channel and a

Fig. 11. Power-law exponent of the MGFs as a function of q. =q q( ) 1.3 2 is the
best fit of the data near =q 0.

Fig. 12. ESS scalings for =q 0.4,0 and =q 0.3, 0.5. The vertical lines are at
constant < exp (q0p′) > values 1.2, 1.4, 1.8 and 2.1, respectively.
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=Re 10000 boundary layer (Baidya et al., 2012). The second peak in Eww, which should be present at high Reynolds numbers and is present in the
=Re 10000 boundary layer, could not be found in the =Re 5200 channel. Also, the contour lines, which should follow λx∼ y and follow λx∼ y in

the =Re 10000 boundary layer, do not follow λx∼ y in the =Re 5200 channel. In conclusion, at =Re 5200, the spanwise velocity is subjected to
non-negligible finite Reynolds number effect, and one needs to exercise extra caution if Townsend’s attached eddy is invoked to interpret the
spanwise velocity data, particularly when drawing an analogy between pressure fluctuations and spanwise velocity fluctuations (Jimenez and
Hoyas, 2008).

Fig. A13. (a) Premultiplied streamwise velocity spectra in channel flow at =Re 1000 (Graham et al., 2016), =Re 2000 (Hoyas and Jiménez, 2006), and =Re 5200
(Lee and Moser, 2015). The two dashed lines are at =+y 100 and =+ 816,x respectively. The cross symbol indicates the inner peak. (b) Premultiplied pressure spectra
in channel flow at =Re 1000, =Re 2000, and =Re 5200. The two dashed lines are at =+y 210 and =+ 272x . The cross symbol indicates the inner peak. (c)
Premultiplied spanwise spectra in channel flow at =Re 1000, =Re 2000, and =Re 5200. The two dashed lines are at =+y 615 and =+ 306x . The cross symbol
indicates the inner peak.

Fig. A14. Premultiplied spanwise velocity spectra in a =Re 5200 channel and a =Re 10000 boundary layer. The thin solid line shows λx∼ y.
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