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Abstract Theparabolized stability equations (PSE) are a ubiquitous tool for studying the stability and evolution
of disturbances in weakly nonparallel, convectively unstable flows. The PSE method was introduced as an
alternative to asymptotic approaches to these problems. More recently, PSE has been applied with mixed
results to a more diverse set of problems, often involving flows with multiple relevant instability modes. This
paper investigates the limits of validity of PSE via a spectral analysis of the PSE operator. We show that PSE
is capable of accurately capturing only disturbances with a single wavelength at each frequency and that other
disturbances are not necessarily damped awayor properly evolved, as often assumed.This limitation is the result
of regularization techniques that are required to suppress instabilities arising from the ill-posedness of treating
a boundary value problem as an initial value problem. These findings are valid for both incompressible and
compressible formulations of PSE and are particularly relevant for applications involving multiple modes with
different wavelengths and growth rates, such as problems involving multiple instability mechanisms, transient
growth, and acoustics. Our theoretical results are illustrated using a generic problem from acoustics and a
dual-stream jet, and the PSE solutions are compared to both global solutions of the linearized Navier–Stokes
equations and a recently developed alternative parabolization.

Keywords Parabolized stability equations · Regularization · Error analysis

1 Introduction

The parabolized stability equations (PSE) offer a simple and fast approach to analyzing the linear and nonlinear
stability of disturbances in weakly nonparallel, spatially developing flows [5,20]. The low computational cost
of PSE compared to fully nonparallel and/or nonlinear methods and its practical simplicity compared to
rigorous asymptotic approaches have made it a popular and powerful complement to classical parallel-flow
linear stability theory. It has been used fruitfully to study numerous flows, including boundary layers (e.g.,
[4,27,34]) and free shear flows (e.g., [13,16]).

PSE is designed to track the downstream response to an initial disturbance that is specified at some
streamwise location in the flow. The fundamental assumption of PSE is that the majority of the streamwise
oscillation and growth of the response at each frequency can be described by a single complex wavenumber
that is allowed to vary slowly in the streamwise direction. This assumption leads to a modified flow operator

Communicated by Vassilios Theofilis.

A. Towne (B)
University of Michigan, Ann Arbor, MI 48109, USA
E-mail: towne@umich.edu

G. Rigas · T. Colonius
California Institute of Technology, Pasadena, CA 91125, USA

http://orcid.org/0000-0002-7315-5375
http://crossmark.crossref.org/dialog/?doi=10.1007/s00162-019-00498-8&domain=pdf


360 A. Towne et al.

which is numerically integrated in the downstream direction to obtain an approximation of the downstream
response to the initial disturbance.

In traditional applications of PSE, the initial disturbance is chosen to correspond to a (convectively) unstable
eigenmode of the local linearized Navier–Stokes (LNS) operator at a given frequency. The response is then
interpreted to represent the weakly nonparallel and/or nonlinear generalization of the local mode. Accordingly,
PSE can be viewed as an alternative to earlier asymptoticmethods that constructedweakly nonparallel solutions
by stitching together a set of local eigenmodes computed at different streamwise locations [6,12,15]. By
construction, the solutions obtained from these asymptotic methods are composed entirely of a single slowly
varying local eigenmode with a single slowly varying wavenumber—other modes of the LNS operator do not
participate.

In contrast, the PSE solution can in principle contain contributions from many local LNS eigenmodes with
different wavenumbers, even when just one is selected as the initial disturbance. The reason for this is that the
PSE operator supports most of the same eigenmodes as the LNS operator (c.f., Li and Malik [26] or Sect. 2.2
below), and these modes are coupled together through both linear and nonlinear mechanisms. The streamwise
variation of the flow leads to slow changes in the LNS eigenfunctions that create a linear coupling between
the different local LNS modes at a given frequency. This coupling provides a mechanism for energy transfer
from one mode to another; each mode can both leak energy to and acquire energy from other modes as it
evolves. Additionally, nonlinear triadic interactions between different frequencies constitute a forcing of the
linear dynamics that can potentially excite any LNS mode, not just those with a particular wavenumber.

Ideally, energy that is transferred away from the primary mode described by the PSE wavenumber and
into modes with different wavenumbers would be either (i) quickly damped away or (ii) properly evolved by
the downstream PSE march. In the first case, the solution would then consist almost exclusively of a single
slowly varying eigenmode and the solution could be interpreted as a single weakly nonparallel (and possibly
nonlinear) eigenmode. In the second case, the solution could be understood as the full downstream response
of the initial perturbation, under the assumption of zero upstream feedback.

In addition to the traditional (modal) usage of PSE described so far, the method has also been used more
broadly as a low-cost approximation for the LNS equations.Applications include sensitivity analysis to external
forcing [29], optimal spatial transient growth analysis [2,17,28,40], adjoint-based control [46], modeling
acoustic emissions [10,37], and predicting flow statistics via stochastic forcing [30]. These applications can
involve multiple modes with potentially different wavelengths and growth rates. Examples include flows with
multiple unstable modes such as hypersonic boundary layers and multi-stream shear flows, compressible flows
in which acoustics are of interest, and any flow susceptible to transient growth, which by definition involves the
superposition of multiple modes. Obtaining accurate results for these applications involving multiple modes
of interest requires accurately capturing all participating modes, and using PSE in these cases has yielded
mixed results, with some authors reporting success (e.g., [17,37]) and others noting limitations and challenges
(e.g., [10,33]).

Several alternative methods are available that naturally account for multiple modes with disparate wave-
lengths. Global methods based on the multi-dimensional LNS operator can capture any wavelength supported
by the flow, but these methods are computationally intensive, especially for three-dimensional problems. Alter-
natively, Towne and Colonius [44] recently introduced amethod called one-way Euler (OWE; [42]) or one-way
Navier–Stokes equations (OWNS; [31]) for rapidly approximating the LNS solution using a spatial marching
procedure much like that of PSE. Using ideas originally developed for constructing high-order nonreflecting
boundary conditions, the flow variables are decomposed into upstream and downstream propagating waves,
and an approximate evolution equation is derived for the downstreamwaves. The spatial integration is formally
well posed (unlike PSE, see Sect. 2.2) and can capture the downstream-traveling waves with arbitrary accuracy.
The method is typically more than an order of magnitude faster than global methods, but still slower than PSE
by a similar factor. Because of this speed advantage, PSE remains a valuable tool in cases for which it can
deliver sufficient accuracy.

With this motivation, the goal of this paper is to provide an improved understanding of the limits of
validity of PSE. In particular, we perform a spectral analysis of the PSE operator to evaluate the ability of
PSE to evolve modes whose wavelength and growth rate differ from the primary wave being tracked in the
downstream march. The main result of the paper is that, in general, only modes whose eigenvalue lies near the
primary PSE wavenumber in the complex plane are accurately evolved by PSE, but other modes present may
or may not be damped. While this result seems to already be implicitly understood by some in the community,
we make explicit the restrictions and show that they apply to all existing variants of PSE. This implies that PSE
will deliver an accurate solution only if the flow, at a given frequency, is dominated by a single wavelength and
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growth rate, suggesting that great care should be taken when applying PSE to flows in which multiple modes
may play a role in the dynamics. These results are applicable to both incompressible and compressible flows.

The remainder of the paper is organized as follows. Section 2 contains a brief introduction to PSE, its
well-known ill-posedness, and the three regularization techniques that can be used to stabilize the method.
The main theoretical results of the paper are derived and analyzed in Sect. 3. Section 4 contains two example
problems that are used to demonstrate and verify the theory. Finally, we summarize the contributions of the
paper and discuss approaches that can be used in conjunction with or in place of PSE to eliminate these errors
in Sect. 5.

2 Parabolized stability equations

2.1 Formulation

Themathematical formulation of PSE begins with the Navier–Stokes equations, which we represent compactly
as

F (q) = 0, (1)

where q is a state vector of flow variables andF represents either the incompressible or compressible Navier–
Stokes operator, which we will treat together whenever possible. The state vector is next decomposed into a
steady base state q̄ and fluctuations q ′ about it:

q (x, y, t) = q̄ (x, y) + q ′ (x, y, t) . (2)

Here, x is the slowly varying direction and y represents any number of orthogonal dimensions. The coordinates
need not be Cartesian (PSE has been implemented for polar, cylindrical, and general curvilinear coordinates
in additions to two- and three-dimensional Cartesian coordinates). The base state is usually chosen to be a
(possibly approximate) laminar equilibrium or the mean of a turbulent flow. Inserting the decomposition into
Eq. (1) and isolating the terms that are linear in q ′ yield an equation of the form

L (q̄) q ′ = f
(
q̄, q ′) , (3)

where L = ∂F
∂q

∣
∣∣
q̄
is the linearized Navier–Stokes operator and f contains the remaining nonlinear terms.

Assuming theflow tobe statistically stationary, thefluctuationq ′ canbe further decomposed intoFouriermodes:

q ′ (x, y, t) =
∑

ω

q̂ω (x, y) e−iωt . (4)

Substituting this into Eq. (3) and Fourier decomposing the nonlinear term lead to an equation of the form

Lωq̂ω = f̂ω (5)

for each ω, where Lω is the frequency domain linearized Navier–Stokes operator. The right-hand-side term
contains the nonlinear contributions from all frequencies to the frequency ω. No approximation has been made
to this point.

As discussed in Sect. 1, the fundamental assumption of the PSE method is that the streamwise behavior
of the solution q̂ω can be decomposed into a rapidly varying wave-like component that is defined by a single
complex wavenumber and a slowly varying modulation of this wave. This is embodied by the PSE ansatz:

q̂ω (x, y) = q̃ω (x, y) ei
∫

α0,ω(x)dx . (6)

This ansatz is similar to that of classical linear stability theory, except that here both the shape function q̃ω

and wavenumber α0,ω are allowed to vary in x . It also bears resemblance to WKB and other multiple-scale
expansions of q̂ω, but PSE adopts a unique approach for computing the wavenumber and shape function.
Since streamwise variation can be absorbed by either the shape function or the exponential term, an additional
constraint must be imposed to uniquely define the solution and force the exponential term to absorb as much
of the streamwise variation as possible, thus rendering the shape function slowly varying. A common choice
that accomplishes this goal is to force the shape function to satisfy the condition [5]
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∫

y
q̃∗
ω

∂q̃ω

∂x
dy = 0, (7)

where the asterisk superscript denotes the conjugate transpose.
Applying the PSE ansatz to Eq. (5), neglecting terms involving the second streamwise derivatives of the

shape function (the effect of this step will be discussed in the next section), and solving for the first streamwise
derivative yield an equation of the form

∂q̃ω

∂x
= M̃ωq̃ω + ĝ, (8)

where ĝ is themodified nonlinear termobtained after the preceding algebra. These are the nonlinear parabolized
stability equations. Linear PSE is obtained by neglecting ĝ, which has the effect of decoupling each frequency
from the rest. Our analysis will focus on linear PSE (so we set ĝ = 0 from here on out), but the linear
errors we uncover are also relevant for nonlinear PSE, in which case errors at one frequency not only effect
the linear evolution at that frequency, but also contaminate other frequencies through nonlinear interactions.
Since linear PSE evolves each frequency independently, we drop all ω subscripts in what follows. In solving
for the streamwise derivatives, we have assumed that the matrix pre-multiplying these terms is nonsingular,
which is true when the mean streamwise velocity is nonzero and nonsonic everywhere. This assumption is
convenient for simplifying our later analysis but is not strictly necessary—the same results can be obtained
in the singular case by replacing the eigenvalues problems that appear throughout the ensuing analysis with
appropriate generalized eigenvalue problems, as discussed by Towne and Colonius [44].

Finally, the defining feature of thePSEapproach is themanner inwhich the equations are solved—via spatial
marching. Specifically, Eq. (8) is solved as a spatial initial value problem in which an “initial” perturbation
is specified at some streamwise position and propagated by integrating the equations in the slowly varying x
direction. At each step in the march, the solution is iteratively adjusted to satisfy the constraint. The initial
conditions for the shape function and wavenumber are usually chosen to be an eigenfunction–eigenvalue pair
from a locally parallel linear stability analysis at the initial streamwise position and are therefore used to set
the mode that PSE will attempt to track.

2.2 Instability and ill-posedness

It was noticed soon after the introduction of PSE that its spatial march is unstable if an explicit integrator,
or an implicit integrator with a sufficiently small streamwise step size, is used [9]. It was soon after shown
that the instability is caused by upstream-traveling modes of the local linearized Navier–Stokes equations that
remain in the PSE operator, which make the equations formally ill-posed as a spatial initial value problem
[18,25,26]. The mathematical nature of the linearized Navier–Stokes equations guarantees that upstream-
traveling modes will appear in any flow with subsonic regions, even if second streamwise derivatives are
neglected [24]. For well posedness, the downstream-traveling modes should be specified at the domain inlet
and the upstream-travelingmodes should be specified at the domain outlet. If instead the problem is solved as an
initial value problem in space—by specifying allmodes at the inlet andmarching the solution downstream—the
upstream-traveling modes will cause instability in the march. Specifically, decaying upstream-traveling modes
are wrongly interpreted as growing downstream-traveling modes, leading to spurious exponential growth of
the mode as it is integrated in the positive x-direction.

The precise identity of the offending modes depends on the flow. For example, the instability in compress-
ible, external flows with subsonic far-field conditions is typical caused by continuous spectra that represent
upstream-traveling acoustic waves, while the incompressible remnants of these branches cause instability in
similar incompressible flows. In contrast, for flows that are supersonic except in limited regions, such as super-
sonic boundary layers, the instability is caused by discrete modes associated with the subsonic region near the
wall [26].

Applying the PSE ansatz to the linearized Navier–Stokes equations and neglecting second streamwise
derivatives of the shape function eliminate some of the upstream branches (particularly those related to viscous
diffusion), but do not fundamentally alter the remaining modes. In particular, the PSE ansatz has the effect of
simply shifting the remaining linearized Navier–Stokes spectrum such that the PSE wavenumber α0 lies at the
origin in the complex wavenumber plane. This is exactly true if the

1

Re

∂2q̂

∂x2
(9)



A critical assessment of the parabolized stability equations 363

Stable
Unstable

(b)

PSE

Im
[α̃
]

Re[α̃]

(a)

LNS

Im
[α
]

Re[α]

Upstream
acoustic
branch Most unstable

discrete mode

Additional
discrete mode

Downstream
acoustic
branch

Fig. 1 An example of the spectra for a the linearized Navier–Stokes equations and b the parabolized stability equations. The LNS
spectrum contains upstream and downstream acoustic branches and discrete convective modes. The PSE spectrum is identical,
but shifted so that the most unstable mode lies at the origin. The remaining upstream acoustic branch makes spatial integration
of the equations ill-posed

terms in the linearized Navier–Stokes equations are neglected (which is a slightly stronger assumption than
already invoked by PSE, i.e., that ∂2q̃/∂x2 is negligible) and is approximately true in general [26].Wewillmake
this approximation to simplify the discussion and our later analysis. This simplification reduces the difference
between the PSE and LNS operators, so our later error analysis is conservative; carrying the neglected terms
through the analysis would result in additional differences between the downstream-traveling PSE and LNS
modes in addition to those that will be identified by our simplified analysis.

Under this simplification, the linearized Navier–Stokes equations can be written

∂q̂

∂x
= M q̂ (10)

before applying the PSE ansatz [44], and the PSE operator M̃ is related to the spatial LNS operator M as

M̃ = −iα0 I + M , (11)

where I is the identity matrix of appropriate dimension. From Eq. (11), it is clear that if iα is an eigenvalue
of M , then i α̃ = iα − iα0 is an eigenvalue of M̃ . Furthermore, the eigenvectors associated with iα and i α̃
are identical. Therefore, the modes of the PSE operator are the same as the modes of the spatial LNS operator,
except that the PSE eigenvalues are shifted so that the PSE wavenumber α0 lies at the origin in the α̃-plane.
Therefore, the ill-posedness of the LNS equations as a spatial initial value problem is inherited by the PSE
operator, leading to instability in the spatial march.

To further illustrate these ideas and motivate the remainder of the paper, consider the hypothetical model
spectrum shown in Fig. 1. This “cartoon spectrum” is not associated with any real flow, but it illustrates features
that are typical of a compressible, external flow with a subsonic free stream, and it qualitatively contains the
essential features that underpin the ill-posedness and instability of the PSE spatial march in general.

The two continuous branches represent upstream- and downstream-traveling free-stream acoustic waves
and are given by the equation

α±(z) = ω
−M ± μ(z)

1 − M2 , (12)

where M is the free-stream Mach number (which we assume for now to be less than one), z ∈ [0, ∞] can be
thought of as a transverse wavenumber, and the function μ(z) is given by

μ(z) =
√
1 − (1 − M2)z2. (13)
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The part of each branch that lies along the imaginary axis represents acoustic waves that neutrally propagate
away from their source in all directions, while the vertical parts represent evanescent acoustic waves that decay
in the direction of propagation. Similar branches exist in incompressible subsonic flows, representing acoustic
waves in the incompressible limit, but in that case all of the waves are evanescent . Therefore, the compressible
acoustic branches considered here qualitatively contain the incompressible branches as a special case.

Our model spectrum additionally contains two downstream-traveling discrete modes. The mode with the
more negative value of αi represents themost convectively unstablemode of the flow (at the present streamwise
location). A thorough discussion of the concept of convective instability can be found, for example, in Huerre
and Monkewitz [21] and Schmid and Henningson [35]. The physical identity of the most unstable mode
depends on the flow. For example, in free shear flows it might describe the Kelvin–Helmholtz instability while
in wall-bounded flows it might describe a Tollmien–Schlichting wave. Finally, a second convectively unstable
mode is included in our model spectrum. Not all flows contain a second unstable mode, but as discussed in
Sect. 1 many flows of interest do have multiple unstable modes. We include this mode in our spectrum in order
to study its treatment by PSE.

Assuming that we wish to track the spatial evolution of the most unstable discrete mode, applying the
PSE ansatz to the model LNS spectrum results in the PSE spectrum shown in Fig. 1b. As already described,
the PSE spectrum is identical to the LNS spectrum, but shifted by the PSE wavenumber. Since we wish to
track the most unstable mode, the PSE wavenumber has been set to the value of the most unstable eigenvalue.
If we now attempt to spatially integrate the PSE equations, the upstream acoustic branch (α−) will cause
instability in the march. Functionally, this is the case because the evanescent portion of the branch (which
exists in both compressible and incompressible flows) takes on complex values with negative imaginary part,
causing exponential growth of the mode as it is integrated in the positive x-direction. Therefore, additional
regularization is required to achieve a stable spatial march.

2.3 Regularization methods

Several different regularization techniques have been proposed to stabilize the PSE march. The standard
approach numerically damps the unstable upstream acoustic waves by using implicit Euler integration to
advance Eq. (8) with a restriction on theminimum streamwise step size [25,26]. This is illustrated in Fig. 2 for
our model spectrum. The gray region in each plot is the stability region of the implicit Euler integration, while
the inner circle is the unstable region. The unstable region is centered at

(
0,−Δx−1

)
in the complex α̃-plane,

and its radius is equal to the inverse step size Δx−1. If a sufficiently large step size is used, the upstream
acoustic branch falls entirely within the region of stability, as shown in Fig. 2a. Therefore, the PSE equations
can be stably integrated despite their ill-posedness. However, if the step size is made to be too small, part of the
upstream branch enters the unstable region, as shown in Fig. 2b, and the streamwise march becomes unstable.

Therefore, there exists a minimum stable step size. Specifically,Δx must be large enough that no upstream-
travelingmodes residewithin the unstable circle. Based on the geometry of the stability region, this requirement
is formalized by the stability criterion

Δx > Δx0 (14)

with

Δx0 = max

(
−2 Im [αu − α0]

|αu − α0|2
)

, (15)

where the maximum is taken over every upstream-traveling LNS mode αu . When the mode that maximizes
the expression is part of the upstream-traveling acoustic branch, as in our model spectrum, Eq. (15) becomes

Δx0 = 1
∣
∣∣
∣Re [α0] + ωM2

1 − M2

∣
∣∣
∣

. (16)

Setting M = 0 recovers the more commonly quoted incompressible step-size restriction [25,26]

Δx0 = 1

Re [α0]
. (17)

These same conditions hold if the PSE wavenumber is set so as to track the second convectively unstable
discrete mode, as shown in Fig. 2d. A noteworthy feature of this plot is that the most unstable mode in this
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(b)(a)

(d)(c)

Fig. 2 Stabilization of the PSE march using the implicit Euler regularization technique. The shaded regions show the stability
region of the implicit Euler integrator. a Using a sufficiently large step size numerically stabilizes the upstream acoustic branch
(red line). b If the step size is reduced too much, the upstream acoustic branch again destabilizes the march. c Therefore, there
exists a minimum step-size restriction for stability. d A similar step-size restriction exists if the PSE wavenumber is set to track
other downstream modes (color figure online)

cases lies within the unstable region of the implicit Euler integrator. This is not necessarily a problem for the
stability of the march, though, since this mode should grow more rapidly than the second mode that is being
tracked. However, we will see in Sect. 3 that this situation can prevent the second mode from being accurately
tracked.

Although this regularization technique successfully stabilizes the PSE march, the minimum step-size
restriction makes it impossible to numerically converge the solution. This is clearly an undesirable trait for
any method, and the step-size restriction is especially problematic for nonlinear versions of PSE in which
implicitly discretized nonlinear terms must be iteratively converged at each step in the march. In this case, the
large step size may cause the solution at one step to no longer be a sufficiently accurate guess for the solution
at the next step, causing the iteration to fail. This issue led to the conception of two alternative regularization
techniques meant to alleviate or eliminate the step-size restriction while still maintaining stability.

The first alternative regularization technique consists of neglecting the streamwise derivative of the pressure
component of the shape function [9,18,25]. It should be noted that this is not the same as setting the streamwise
derivative of the pressure to zero. This approximation has the effect of distorting the upstream acoustic branch
and in particular moving it away from the usual location of unstable convective modes, thus reducing the
minimum stable step size [25].
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The second alternative method stabilizes the PSE march by explicitly adding a damping term to the PSE
operator [1]. Specifically, Eq. (8) is replaced by the modified equation

∂q̃

∂x
= M̃ q̃ + sM̃

∂q̃

∂x
, (18)

where s is a parameter that controls the magnitude of the new damping term (and ĝ has again been set to zero
per our focus on linear PSE). The condition for the stability of implicit Euler integration of this equation can
be shown to be [1]

Δx > Δx0 − 2s, (19)

where Δx0 is given by Eq. (15) (or by Eq. (16) or (17) when applicable). As a result, the step-size restriction
can be eliminated by setting s = Δx0/2.

3 Analysis of the regularization methods

The three regularization techniques described in the previous section allow the PSE operator to be stably
integrated in the slowly varying streamwise direction despite the inherent ill-posedness of themethod. Our goal
in this section is to analyze the impact of the regularization on the PSE solution and in particular on downstream-
travelingLNSmodes forwhichα �= α0. To do so,wewill derive an expression for each regularization technique
that describes the PSE propagation of each LNS mode and compare them with the correct LNS propagator.

We make two assumptions in these analyses. The first is that the term in Eq. (8) is negligible so that
the relationship between M and M̃ given in Eq. (11) holds. As previously discussed, the purpose of this
simplification is to reduce the difference between the LNS and PSE operators and therefore makes our analyses
conservative. Second, we assume that the slow streamwise variation of the LNS and PSE operators can be
neglected over the distance of one step in the streamwise march. This assumption is justified by the slow
streamwise variation of the underlying baseflow, is in line with the basic assumptions of PSE, and has also
been made within previous mathematical analyses of PSE [1,18,19,25,26]. The purpose of this simplification
is to enable mathematical analysis that will provide insight into the nature of the PSE method. The PSE errors
identified under this approximation are expected to be illustrative of the kinds and magnitude of errors to be
expected in nonparallel flows, but they are not necessarily a quantitative prediction of them. It is also implied
throughout the analysis that the PSE wavenumber α0 has been chosen such that the constraint given in Eq. (7)
is satisfied. This is not an assumption, since it must be the case before the PSE solution can be advanced.

To provide a point of comparison, we begin by determining expressions for the correct propagation of
upstream- and downstream-traveling LNS modes over an arbitrary interval xk < x < xk +Δx as governed by
the linearized Navier–Stokes equations. Under the locally parallel approximation described above, the solution
in this interval can be written

q̂LNS (x, y) =
∑

j

v
j
k (y) ψ̂ j (x), (20)

where each (iα j
k , v

j
k ) is an eigenvalue–eigenvector pair of the LNS operator M at x = xk and ψ̂ j is a scalar

expansion coefficient that defines the streamwise evolution of the amplitude and phase of the mode. The
summation index j spans all of the eigenmodes admitted by the operator. Since Eq. (8) is linear and can be
treated as spatially homogeneous over theΔx interval, each eigenmode can be treated independently. Therefore,
we drop the j-superscript and k-subscript and consider an arbitrary mode with eigenvalue iα, eigenvector v,
and expansion coefficient ψ̂ . Within the locally parallel framework, only the expansion coefficient explicitly
depends on the streamwise coordinate x . Inserting this local solution into Eq. (5) gives an evolution equation
for the expansion coefficient:

dψ̂

dx
= iαψ̂ (21)

which can be integrated over the interval Δx to give

ψ̂k+1 = eiαΔx ψ̂k . (22)

Equation (22) defines the propagation of energy from ψk to ψk+1 for each downstream-traveling mode and
from ψk+1 to ψk for each upstream-traveling mode.



A critical assessment of the parabolized stability equations 367

3.1 Implicit Euler numerical damping

Our strategy for analyzing the PSE solution under the standard implicit Euler regularization technique is to
derive an expression analogous to Eq. (22) that describes the evolution of the LNS modes within the PSE
approximation.

Since the PSE operator M̃ admits the same eigenfunctions as the LNS operator M (see Sect. 2.2), the
PSE shape function in the interval xk < x < xk + Δx can be written as a sum of LNS eigenfunctions, but
with different coefficients since the PSE solution may differ from the LNS solution:

q̃ (x, y) =
∑

j

v
j
k (y) ψ̃ j (x) . (23)

Again, we drop the superscripts and subscripts and consider an arbitrary downstream-traveling mode with
eigenvalue iα, eigenvector v, and expansion coefficient ψ̃ . As in Eq. (20), we have neglected the streamwise
variation of v over the intervalΔx using a locally parallel approximation in order tomake the analysis tractable.
Inserting this local solution into Eq. (8) gives the following evolution equation for the expansion coefficient:

dψ̃

dx
= (iα − iα0) ψ̃ = i α̃ψ̃ . (24)

Here and in what follows, α0 is understood to represent α0 (xk).
For well posedness, this equation should be integrated from xk to xk +Δx for downstream-traveling modes

and from xk + Δx to xk for upstream-traveling modes. Instead, PSE integrates all modes in the downstream
direction, and stability is achieved, for the current regularization method, using an implicit Euler integrator:

ψ̃k+1 − ψ̃k

Δx
= i α̃ψ̃k+1, (25)

which can be rearranged to give

ψ̃k+1 = 1

1 − i α̃ Δx
ψ̃k . (26)

The final PSE approximation of q̂ is recovered from q̃ according to Eq. (6). Therefore, the PSE solution
in the interval xk < x < xk + Δx can be written in the form of Eq. (20) with each ψ̂ replaced by a different
expansion coefficient

ψ̂PSE (x) = ψ̃ j (x) eiα0(x−xk ). (27)

Equation (26) can therefore be written in terms of ψPSE as

ψ̂PSE
k+1 = 1

1 − i α̃ Δx
eiα0Δx ψ̂PSE

k . (28)

To compare this result to the LNS solution, it is helpful to define a new eigenvalue αe such that Eq. (28)
can be written in a form equivalent to Eq. (22):

ψ̂PSE
k+1 = eiαeΔx ψ̂PSE

k . (29)

Then αe is determined by equating the propagators in Eqs. (28) and (29):

eiαeΔx = 1

1 − i α̃ Δx
eiα0Δx . (30)

Solving for αe gives

αe = α0 + i

Δx
log (1 − (iα − iα0)Δx). (31)

Noting the correspondence between Eqs. (22) and (29), we see that iαe completely describes the PSE evolution
of the LNS mode within the interval xk < x < xk + Δx under standard implicit Euler regularization in the
same way that iα governs the proper LNS evolution of the same modes. Therefore, we call iαe the equivalent
PSE eigenvalue for the LNS mode with eigenvalue iα.
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Fig. 3 Absolute value of the eigenvalue error (|α − α0|Δx0) caused by the implicit Euler PSE regularization. The error is small
only for small values of the complex parameter (α − α0) Δx0, i.e., for LNS modes for which α ≈ α0

The difference between αe and α quantifies the error in the PSE treatment of a mode with eigenvalue iα.
Precisely, we have

δαe � αe − α = − (α − α0) + i

Δx
log (1 − (iα − iα0)Δx). (32)

As Δx → 0, the error δαe goes to zero for all α, but this limit cannot be approached because of the PSE
step-size restriction. At a finite Δx , the error in the PSE treatment of each mode depends only on its location
in the complex plane relative to the primary mode α0 and the step size. This result is completely generic
and applies to any flow for which the two assumptions outlined at the beginning of Sect. 3 are valid, i.e., to
weakly nonparallel flows. The error is minimized by setting the step size to its minimum stable value, so we
set Δx = Δx0 for the remainder of this section.

The magnitude of the error is depicted in Fig. 3 as a function of the position of an LNS eigenvalue α relative
to the PSE wavenumber α0. Both the axes and the error have been scaled by Δx0. The form of the propagators
in Eqs. (22) and (29) makes the step size a natural scaling for the error. (This will be further clarified shortly.)
The contour levels are distributed logarithmically between 10−3 and 1 and are saturated beyond these values.
The error is small for small values of |α − α0|Δx0. From Eq. (32), we see that the error is in fact zero for
α = α0, independent of step size. Moving away from |α − α0|Δx0 = 0, the error quickly becomes large; the
radii of the regions where the error is less than 10−1 and 10−2 are approximately 0.46 and 0.14, respectively.
We will see shortly that an error of 10−2 is already quite large. Therefore, the error |αe − α|Δx0 is small only
for small values of |α − α0|Δx0.

The nature of the error can be better understood by considering its real and imaginary parts separately,
each of which has a distinct meaning within the context of the equivalent PSE propagator from Eq. (29). First,
consider the exact LNS propagator from Eq. (22). The amplitude and phase of this propagator represent the
change in the amplitude and phase of the local LNS mode with eigenvalue iα over the step Δx = Δx0 and are
given by

|eiαΔx0 | = e− Im[α]Δx0 , (33a)

�
(
eiαΔx0

)
= Re [α]Δx0. (33b)

The real and imaginary parts of αΔx therefore determine the change in phase and amplitude, respectively, of
the mode over one step. Properly scaled, the phase can also be interpreted as the inverse of the local wavelength
or phase speed of the mode described by the eigenvalue iα.

Similarly, the amplitude and phase of the equivalent PSE propagator from Eq. (29) are

|eiαeΔx0 | = e− Im[αe]Δx0 , (34a)
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Fig. 4 Comparison between the LNS and PSE propagators for the implicit Euler regularization technique. Amplitude (first row)
and phase (second row) of the relative LNS propagator ei(α−α0)Δx0 (first column), relative PSE propagator ei(αe−α0)Δx0 (second
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circle in b shows the boundary between growth and decay. The lines in c and f show the zero-error contours (color figure online)

�
(
eiαeΔx0

)
= Re [αe]Δx0, (34b)

and are therefore determined by the imaginary and real parts of αeΔx0, respectively. These quantities represent
the change in amplitude and phase of an LNS eigenmode with eigenvalue iα over one step in the PSE march.
The LNS and equivalent PSE propagators can be related using δαe. Specifically, the equivalent PSE propagator
can be written as a product of the exact propagator and an error term:

eiαeΔx0 = eiαΔx0eiδαeΔx0 . (35)

Applying the standard rules of exponentiation to Eq. (35), the amplitudes and phases of the LNS and equivalent
PSE propagators are related as

|eiαeΔx0 | = |eiαΔx0 ||eiδαeΔx0 | = |eiαΔx0 |e− Im[δαe]Δx0 , (36a)

�
(
eiαeΔx0

)
= �

(
eiαΔx0

)
+ �

(
eiδαeΔx0

)
= �

(
eiαΔx0

)
+ Re [δαe]Δx0. (36b)

Therefore, the real and imaginary parts of the scaled error δαeΔx0 represent an additive phase error and a
multiplicative amplitude error incurred in one step of the PSE evolution of each LNS mode. The Δx0 scaling
of δαe arises naturally in this analysis, which motivated our earlier use of this scaling for |δαe|.

The amplitude and phase of the LNS propagator, the equivalent PSE propagator, and the error term are
visualized in Fig. 4. The two propagators are depicted in terms of their amplitude and phase relative to the
primary mode being tracked. In other words, we show the amplitude and phase of ei(α−α0)Δx0 and ei(αe−α0)Δx0

rather than eiαΔx0 and eiαeΔx . These relative propagators are advantageous because they are functions only of
the difference α−α0 rather than both α and α0 independently. The error between these two relative propagators
is still described by the error term eiδαeΔx0 , as can be seen by factoring out eiα0Δx0 from both sides of Eq. (35).

The first row of Fig. 4 shows the amplitude of the two relative propagators and the error term as a function
of the real and imaginary parts of (α − α0)Δx0. The contour levels are the same in all three plots and are
logarithmically spaced. The amplitude of the relative LNS propagator is shown in Fig. 4a. By definition, it is
a function only of the imaginary part of the shifted eigenvalue and therefore consists of horizontal lines in the
complex (α − α0)Δx0-plane. A downstream-traveling mode whose eigenvalue has an imaginary part greater
than or less than the imaginary part of α0 is damped or amplified, respectively, relative to the primary mode
described by the PSE wavenumber. The converse is true for upstream-traveling modes, as previously discussed
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in Sect. 2.2. The amplitude of the relative PSE propagator is shown in Fig. 4b. The black circle shows the
location where the amplitude is one and exactly corresponds to the boundary of the stability region of the
implicit Euler integration scheme, as depicted in Fig. 2. Assuming that the step size has been properly chosen,
this ensures a stable march, since the amplitude is less than one everywhere outside of the circle. However,
the substantial differences between the amplitudes of the LNS and equivalent PSE propagators make it clear
that PSE will not properly evolve the amplitude of most LNS modes. This error is quantified by the amplitude
of the error term eiδαeΔx0 , which is shown in Fig. 4c. The black line shows the location where the amplitude
of the error term is one, i.e., where the amplitude error is zero, and all other eigenvalues are either excessively
damped or amplified.

Since these errors accumulate in each step of the PSE march, their values must be very low to accurately
capture the amplitude of a given mode over the entirety of the march. For example, to achieve an accumulated
amplitude error of less than 10% over only ten steps in the PSE march, the amplitude of the error term must
on average fall in the range e−0.01 < |eiδαeΔx | < e0.01. It is clear from the figure that this is satisfied for a very
limited region of the (α − α0) Δx-plane. Therefore, most LNS modes will incur significant amplitude error in
the form of either incorrect damping or amplification, depending on the value of their eigenvalue relative to
the PSE wavenumber α0.

We next consider the phase of the two relative propagators and the error term, which are shown as a function
of the real and imaginary parts of (α − α0)Δx0 in the second row of Fig. 4. The contour levels are the same
in all three plots and are linearly spaced between −π and π . The phase of the relative LNS propagator is
shown in Fig. 4d. By definition, the relative phase is equal to Re [α − α0]Δx0 and thus manifests as evenly
spaced vertical lines in the complex (α − α0) Δx-plane. The phase of the relative PSE propagator is shown in
Fig. 4e. The iso-contours take the form of rays emanating from the point (0,−1), which is the branch point of
the log function in Eq. (31). The phase jump from −π to π across the ray along the negative imaginary axis
corresponds to the associated branch cut. The obvious differences between the phases of the LNS and PSE
propagators indicate that the PSE march will generate significant phase error for most LNS modes. This error
is quantified by the phase of the error term, which is shown in Fig. 4f. These errors are incurred at every step
in the PSE march and accumulate additively. For example, a mode with a 3 deg phase error at each steps is
30 deg out of phase after ten steps in the PSE march. This accumulated phase error can also be understood as
an error in the wavelength or phase speed of the mode.

In summary, the PSE propagator associated with the implicit Euler regularization technique introduces
both amplitude and phase errors relative to the LNS propagator. The size of these errors for a given mode
depends on the location of its eigenvalue in the complex (α − α0)Δx0-plane. Both types of error are small
only for eigenvalues that lie very near α0. This is consistent with our previous discussion of the eigenvalue
error |αe − α| shown in Fig. 3. As a result, only LNS modes for which α ≈ α0 can be accurately captured by
PSE.

3.2 Pressure-gradient relaxation

Next, we turn our attention to the second regularization technique described in Sect. 2.3 inwhich the streamwise
derivative of the pressure component of the PSE shape function is neglected.Wewill refer to this regularization
approach as pressure-gradient relaxation. This approach reduces the step-size restriction but does not eliminate
it. As a result, themodified equationsmust again be implicitly integrated, leading to the types of errors discussed
in the previous section, but at a reduced level due to the smaller stable step size. While it is important to keep
these errors in mind, the focus of this section is on characterizing the errors specifically caused by neglecting
the pressure component of the streamwise derivative of the PSE shape function.

The approximation of neglecting the streamwise derivative of the pressure component of the PSE shape
function can be represented by replacing Eq. (8) with a modified equation of the form

Z
dq̃

dx
= M̃q̃, (37)

where Z has the effect of setting to zero the pressure component of the derivative term without modifying the
other terms. For example, if pressure is explicitly chosen as one of the state variables, then Z is a diagonal
matrix with a zero in the entry that multiplies the pressure component of the derivative and a one in each of
the other (diagonal) entries.
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To analyze the effect of this modification, we test whether an arbitrary downstream-traveling local LNS
modes with eigenvalue iα and eigenvector v is also an approximate mode of Eq. (37). We know that this mode
is also a mode of the PSE operator M̃ if α is replaced with the shifted eigenvalue α̃:

M̃v = i α̃v. (38)

We next search for a perturbation to this mode that is a mode of Eq. (37):

M̃ (v + δv) = i
(
α̃ + δαp

)
Z (v + δv). (39)

The eigenvalue perturbation δαp and the eigenvector perturbation δv represent the error introduced by neglect-
ing the streamwise pressure derivative. Since the change between Eqs. (38) and (39) introduced by introducing
Z is not small, the perturbations are not necessarily small and nonlinear products cannot be immediately
neglected.

Before simplifying this expression, we search for conditions under which the LNS mode is an exact mode
of the modified PSE Eq. (37), i.e., for which the eigenvalue and eigenvector perturbations are both zero. Setting
δαp and δv to zero in Eq. (39) and using Eq. (38) to eliminate M̃ lead to the condition

i α̃ (Zv − v) = 0. (40)

An LNS mode with eigenvalue α and eigenvector v is also an exact mode of the modified PSE equations
created by the pressure-gradient relaxation regularization technique only if it satisfies Eq. (40). There are
two situations in which this condition is satisfied. First, it is satisfied if α̃ = 0, i.e., if α = α0. Therefore,
the primary LNS mode being tracked is a mode of the modified PSE given in Eq. (37). Since the numerical
errors associated with the remaining step-size restriction are small for the primary mode, we conclude that it
is accurately represented by PSE under pressure-gradient relaxation regularization. Second, condition (40) is
satisfied if Zv = v. Since multiplication by the matrix Z has the effect of setting to zero the pressure, this
relation is true only if the pressure component of the eigenvector v is identically zero. This is not the case for
most physically relevant modes. Other than these two special cases, all other LNS modes are not modes of
the regularized PSE. Therefore, the regularization causes errors in both the PSE eigenvalues and eigenvectors.
This is fundamentally different from the first regularization technique which only caused errors in the effective
representation of the eigenvalues.

To further simplify Eq. (37) in the case of nonzero error, we make use of the corresponding left-eigenvector
u that satisfies the eigenvalue relation

u∗M̃ = i α̃u∗. (41)

Left-multiplying Eq. (39) by u∗ and using Eq. (41) to eliminate M̃ leave

i α̃ u∗ (v + δv) = i
(
α̃ + δαp

)
u∗Z (v + δv) (42)

and solving for the eigenvalue perturbation gives

δαp = α̃

(
u∗ (v + δv)

u∗Z (v + δv)
− 1

)
. (43)

No assumptions have so far been made about the size of the perturbations.
The eigenvalue perturbation, which corresponds to the error in eigenvalue due to the PSE regularization,

is small if one or both of the following conditions are met: α̃ ≈ 0 or u∗ (v + δv) ≈ u∗Z (v + δv). Using the
definition of α̃, the first condition can be written α ≈ α0. Therefore, modes that are very near the primary mode
described by the PSE wavenumber are well represented by PSE. This is true regardless of the form of their
eigenvector. The second condition requires that the pressure component of the perturbed eigenvector v + δv
is small compared to the other components. If we also insist that the eigenvector perturbation is small, which
must be the case for the mode to be properly represented by PSE, this implies that the pressure component
of the LNS eigenvector v must be small. This is a generalization of the earlier zero-error condition Zv = v
which required the pressure component to be zero. All other modes that do not satisfy one of these conditions
will be poorly captured by PSE due to errors in both their eigenvalues and eigenvectors.



372 A. Towne et al.

3.3 Explicit damping

Finally, we analyze the explicit damping regularization technique introduced by Andersson et al [1]. To do so,
we follow an approach similar to that employed in Sect. 3.1 and derive an expression analogous to Eq. (21)
that describes the PSE propagation of an arbitrary LNS mode. Beginning with the solution expansion from
Eq. (23), we again consider a single arbitrary downstream-traveling LNSmodewith eigenvalue iα, eigenvector
v, and expansion coefficient ψ̃ . Inserting this local solution into Eq. (18) gives an evolution equation for the
expansion coefficient:

dψ̃

dx
= i α̃

1 − s i α̃
ψ̃ . (44)

Using Eq. (27) to eliminate ψ̃ j in favor of ψ̂PSE, Eq. (44) becomes

dψ̂PSE

dx
=

(
iα0 + i α̃

1 − s i α̃

)
ψ̂PSE. (45)

If we set the damping parameter to s = Δx0/2, then Eq. (45) can be integrated without a step-size restriction
(see Sect. 2.3). As a result, it can be directly compared to the exact LNS evolution Eq. (21). Comparing
Eqs. (21) and (45), we see that the LNS eigenvalue iα is replaced by a modified eigenvalue

iαs = iα0 + iα − iα0

1 − Δx0
2 (iα − iα0)

(46)

that describes the PSE evolution of the LNS mode. The difference between αs and α quantifies the error in the
PSE treatment of the mode:

δαs � αs − α = − (α − α0) + α − α0

1 − Δx0
2 (iα − iα0)

. (47)

Equation (47) shows that the error in the PSE representation of a mode with eigenvalue iα depends only
on its location in the complex plane relative to the primary mode, i.e., α − α0, and the nominal step-size
restriction Δx0. This was also the case for the implicit Euler regularization technique, while the error for the
pressure-gradient relaxation technique depended on α −α0 as well as the eigenvector of the mode. As was the
case in both of these previous cases, the error is zero for the primary mode α = α0.

Figure 5 shows the error as a function of the location of α in the complex plane relative to α0. Both the
axes and the error have been scaled by Δx0. The contour levels are identical to those used in Fig. 3. Overall,
Fig. 5 is extremely similar to Fig. 3 and the same conclusion holds— only LNS modes for which the distance
between α and α0 is small are accurately captured by PSE under the explicit damping regularization.

As before, the nature of the error can be elucidated by examining its real and imaginary parts separately.
We again consider the real and imaginary parts of the relative PSE and LNS propagators and the error term,
which are related as

ei(αs−α0)Δx0 = ei(α−α0)Δx0eiδαsΔx0 . (48)

To facilitate comparison with the results in Sect. 3.1, we have taken the step size to be Δx = Δx0. This has
no effect on the actual error, since αs (and thus δαs) does not depend on the step size and the propagators
in Eq. (48) are obtained via exact integration of the respective local evolution equations over the interval
xk < x < xk + Δx . This choice is also convenient for plotting the results as it makes the scaled propagation
error δαsΔx0 a function of a single complex parameter (α − α0)Δx0 rather than of α − α0, Δx0, and Δx
separately. Again, the error discussed here assumes exact integration of the regularized equations; the eventual
numerical integration of the equations required in practice produces an additional error on top of that described
here, but this is numerical error can be made arbitrarily small since no minimum step-size restriction exists in
this case.

The amplitude and phase of the (relative) LNS propagator, the (relative) equivalent PSE propagator, and
the error term are represented graphically in Fig. 6. The contour levels are identical to those used in Fig. 4 and
are logarithmically spaced for the amplitude and linearly spaced for the phase. The amplitude and phase of the
LNS propagator are shown in sub-figures (a) and (d), respectively, and are discussed in Sect. 3.1. The amplitude
and phase of the PSE propagator are shown in sub-figures (b) and (e). The black circle in the amplitude plot
shows the location where the amplitude is equal to one. It is centered at the point (0,−1) in the (α − α0)Δx0
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Fig. 6 Comparison between the LNS and PSE propagators for the explicit damping regularization technique. Amplitude (first
row) and phase (second row) of the relative LNS propagator ei(α−α0)Δx0 (first column), relative PSE propagator ei(αe−α0)Δx0

(second column), and the error term eiδαeΔx0 (third column). The color bars pertain to all three sub-figures in their respective
rows and are the same as those in Fig. 4. The circle in b shows the boundary between growth and decay. The lines in c and f show
the zero-error contours (color figure online)

plane and has a radius equal to one. All modes outside of the circle are damped. Assuming that Δx0 has been
properly chosen, this ensures a stable march.

The substantial differences between the LNS and equivalent PSE propagators are quantified by the error
term eδαsΔx0 . Its magnitude and phase are shown in Fig. 6c, f, respectively. Comparing these plots to Fig. 4c,
f, we see that the errors produced by the explicit damping regularization are similar to those produced by the
standard implicit Euler regularization. In particular, they are nearly identical for small values of (α − α0) Δx0.
In fact, the first two terms in the Taylor series of δαeΔx0 and δαeΔx0 about (α − α0) Δx0 = 0 are identical.
Notably, all of the conclusions made for the implicit Euler regularization hold as well for the explicit damping
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regularization. As before, both the amplitude and phase errors accumulate during the PSE march and must be
very small at each step to achieve an accurate representation of a given mode.

3.4 Summary

Before considering some example problems, it may be helpful to summarize the key results of the three analyses
presented in Sect. 3. Excluding the possible pathological cases discussed in Sect. 3.2, the central conclusion
can be stated as follows: For all three regularization techniques, only LNS modes whose eigenvalues are
near the eigenvalue of the primary mode being tracked can be accurately captured by PSE. For the implicit
Euler and explicit damping regularization techniques, the error induced by the PSE regularization is confined
entirely within the effective eigenvalues that govern the PSE evolution of each LNS mode; the eigenvectors
are unaffected. On the other hand, the pressure-gradient relaxation regularization technique produces errors in
both the eigenvalues and eigenvectors.

For flows containing multiple relevant modes, these results contrast the two usual interpretations of the
PSE solution discussed in Sect. 1—that it represents either (i) a single mode or (ii) the true response of the
initial perturbation. These scenarios would require high damping rates and low errors, respectively, for all
modes other than the primary mode described by the PSE wavenumber. Figures 4 and 6 show that neither is
true for the implicit Euler and explicit damping regularization methods, respectively. Similarly, our analysis
of the pressure-gradient relaxation method shows that the error is not small away from the PSE wavenumber,
and there is no reason to expect the damping to be universally large. Instead, our analysis suggests that the
PSE solution will contain erroneous contributions from other LST modes for any of the three regularization
techniques.

4 Examples

4.1 Free-stream acoustic waves

In this example, we examine the effect of PSE regularization on free-stream acoustic waves. Previous inves-
tigations have demonstrated that PSE is capable of capturing acoustic radiation in some cases but not others
[10,11,23]. Our analysis here provides a rigorous explanation of these observations.

We describe the acoustic waves using the analytical eigenvalue expression provided in Eq. (12). These
branches provide an excellent approximation of the real acoustic modes present in external flows such as
boundary layers, mixing layers, wakes, and jets. We set M = 0, which corresponds to a quiescent free stream.
Increasing the free-stream velocity tends to increase the distance (i.e., the difference in phase speeds) between
convective and acoustic waves, so the zero-free-stream-velocity results can be interpreted as a lower bound on
the error for flows with nonzero free-stream velocity. Thus, the M = 0 case represents a best-case scenario that
minimizes the error incurred by the PSE approximation. To make the analysis as widely applicable as possible,
we do not specify a form for the acoustic eigenvectors. While the far-field shape of the acoustic modes are
essentially universal, their form in the near field can be different for different flows. This prevents us from
analyzing the pressure-gradient relaxation regularization method but has no effect on the results for the other
two methods, which depend only on the eigenvalues.

To compute the PSE approximation of the acoustic modes, we must also define the primary mode tracked
by PSE by specifying a value for the PSE wavenumber α0. To do so in a physically meaningful way, we choose
values for the phase speed cp = ω/Re [α0] and the growth rate g = − Im [α0] /ω, which together define the
frequency-scaled primary mode α0/ω = 1/cp − ig. The growth rate is defined such that the mode grows by a
factor of egcp over the distance Δx0. We need not specify any specific form for the eigenvector of the primary
mode, so it represents any mode of interest in any external flow.

To study the effect of regularization on the acoustic modes, we compute their PSE approximation for an
array of values for cp and g. In each case,Δx0 is chosen according to Eq. (17). Results are shown in Figure 7 for
cp = 2, 0.5, 0.2 (from left to right) and g = 0, 0.5, 1 (from top to bottom), which together cover a physically
relevant range of values. The axes have been scaled by ω, which make the results frequency independent.
In each sub-figure, the circle shows the location of the primary mode α0/ω. The solid lines show the exact
downstream acoustic branch α+, while the two broken lines are the corresponding PSE approximations αe and
αs .
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Fig. 7 PSE approximation of downstream acoustic waves: (blue line) exact acoustic branch; (spaced line) PSE approximation
for the implicit Euler regularization technique; (spaced dotted line) PSE approximation for the explicit damping regularization
technique; (circle) location of α0, which correspond to the phase speeds cp = 2, 0.5, 0.2 (from left to right) and the growth rates
g = 0, 0.5, 1 (from top to bottom) (color figure online)

The horizontal part of the α+ branch is particularly important as it represents propagative acoustic waves
that do not decay as they travel downstream. In contrast, the vertical part of the branch represents evanescent
acoustic waves that decay as they propagate. The propagative α+ modes are mapped to the parts of the αe
and αs branches that lie between the branch point (where the branch begins) and the clear kink that exists
in each branch. It is clear that the equivalent PSE eigenvalues that represent the propagative acoustic modes
are in general themselves not propagative. For a fixed growth rate, decreasing the phase speed (and thus
increasing Re [α0] /ω) has the effect of increasing the damping rates and decreasing the phase speeds of the
PSE-approximated acoustic modes. For a fixed phase speed, increasing the growth rate from zero has the
effect of decreasing the damping (or increasing the growth rate) and again decreasing the phase speed of the
PSE-approximated acoustic modes. Overall, when the phase speed and growth rate of the primary mode are
low, the PSE regularization damps the propagative acoustic waves. In contrast, when the phase speed of the
primary mode is high, the PSE regularization actually causes the propagative acoustic waves to grow.

Regions in the complex α0/ω-plane that exhibit these two different behaviors for the implicit Euler and
explicit damping regularizationmethods are shown in Fig. 8. Specifically, the contour levels show theminimum
value of Im

[
αe,s

]
/ω for the propagative part of each PSE-approximated downstream acoustic branch. All

acoustic waves are damped for α0/ω values in regions where this value is positive, while modes on at least
part of the propagative branch are growing when it is negative. The solid line shows the boundary between the
two regions.

In boundary-layer flows, the real part of α0 is typically an order of magnitude larger than the imaginary part
[14,25]. The wedge-shaped region between the two broken lines satisfies this condition. Within this region,
both PSE regularization methods always have the effect of damping the downstream propagative acoustic
modes when the phase speed of the primary mode is subsonic (α0/ω > 1). On the other hand, when the phase
speed is supersonic (α0/ω < 1), the growth rate of at least part of the propagative part of the acoustic branch
is positive, albeit small.

In free shear flows, sound is produced in part by hydrodynamic structures called wavepackets that are
created by modes that grow and then decay [22]. In particular, sound is emitted from the region where these
structures reach their peak amplitude (where Im [α0] = 0) and transmitted thereafter as the wavepacket decays
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two regions. The wedge-shaped region between the two dashed lines shows the region of α0/ω space typical of boundary-layer
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(where Im [α0] > 0). As a result, the situation where Im [α0] /ω ≥ 0 is most relevant for understanding the
PSE treatment of acoustic waves in these flows. For small damping rates, both PSE regularizationmethods have
the effect of damping acoustic waves when the phase speed of the primary mode is subsonic and amplifying
them when the phase speed is supersonic. If the damping rate of the primary mode becomes large, the reverse
situation is possible, but acoustic waves are always damped by PSE for phase speeds below 0.6 and 0.4 for
the implicit Euler and explicit damping regularization techniques, respectively. This boundary is set by the
maximum real part of the small unstable region in the upper half plane in Fig. 8. It is interesting that the PSE
regularizations, which are designed to damp the upstream acoustic modes, can actually cause some or all of
the downstream acoustic modes to grow in some cases.

These results provide an explanation of the observation made by several previous investigators that PSE
provides a reasonable approximation of the acoustic radiation emitted from mildly supersonic flows but not
from subsonic flows. For example, Cheung and Lele [10,11] found that while PSE accurately captured near-
fieldKelvin–Helmholtz instabilitywaves in both supersonic and subsonicmixing layers, the associated acoustic
radiation was reasonably captured only for the supersonic case and vastly under-predicted (by as much as five
orders of magnitude) in the subsonic case. A similarly large under-prediction was reported by Towne [41] for
a different subsonic mixing layer. Figures 7 and 8 provide an explanation of these observations in terms of the
phase speeds of the Kelvin–Helmholtz instability waves that constitute the primary mode in these flows. The
Kelvin–Helmholtz waves in the supersonic mixing layers considered in these investigations have phase speeds
of between 1.8 and 2 [10]. Therefore, the error in the PSE representation of the acoustic modes is small and in
particular the imaginary parts of the PSE eigenvalues are nearly zero, as they should be. The error that does exist
in the imaginary part is likely to take the form of a small positive growth rate. Therefore, the far-field acoustic
radiation in these mixing layers should be accurately captured by PSE, but slightly over-predicted. This is
exactly what is observed in Figure 8(c) of Cheung and Lele [11] and numerous figures in Cheung and Lele
[10]. The Kelvin–Helmholtz waves in the subsonic mixing layers considered in these investigations have phase
speeds of less than 0.4 [10]. As a result, the PSE regularization generates significant error in the representation
of the acoustic modes and in particular damps them significantly. Therefore, the far-field acoustic radiation
should be severely under-predicted by PSE, as has been observed.

In addition to studying the propagative acoustic modes, it is of interest to scrutinize the PSE treatment of
the part of the α+ acoustic branch that has very large imaginary values, which describes evanescent acoustic
mode that are highly damped. Figure 7 shows that the αe approximations of the α+ acoustic branch also goes
to infinity for all of the selected cp and g values, and this conclusion can be confirmed in general by computing
the limit of Eq. (31). On the other hand, the αs approximations of the α+ acoustic branch remain contained
within the relatively tight axes of the figure for cp = 2 and all three values of g. Taking the limit of Eq. (46)
as the imaginary part of α goes to infinity confirms that αs asymptotes to a finite value for high damping rates.
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In fact, this is a special case of a more general result:

lim|α|→∞ αe = α0 + 2i

Δx0
. (49)

If Δx0 is chosen according to Eq. (17), the right-hand side of the limit can be written as α0 + 2i Re [α0].
This result holds for any α, not just the acoustic branch. This shows that all LNS modes that are slow and/or
highly damped are all mapped to the same equivalent PSE eigenvalue with real part equal to the real part of
the primary mode and imaginary part equal to Im [α0] + 2Re [α0]. The damping rate of this PSE eigenvalue
is therefore significantly underestimated and can even be negative when Im [α0] < −2Re [α0]. As a result, it
is possible for waves that should be quickly damped to persist (or even grow) within the PSE solution when
the equations are regularized using the explicit damping method.

4.2 Single-stream jet

Next, we consider the acoustic radiation emitted by a round jet, with the goal of verifying the trends observed
in the previous section. The flow consists of a single stream of fluid with Mach number Ma = Uj/c∞ ejected
from a nozzle of diameter D into ambient fluid at rest. The Reynolds number is Re = Uj D/ν∞ = 3 × 104.
An analytical expression is used to approximate the mean flow about which the Navier–Stokes equations are
linearized. Following Crighton and Gaster [12], the mean streamwise velocity is given by the expression

ūx = Uj

2

{
1 + tanh

[
D

8θ

(
D

2r
− 2r

D

)]}
(50)

with a linearly increasing momentum thickness

θ = 3

100

(
x + 2

3
D

)
, (51)

the mean radial and azimuthal velocities are set to zero, and the mean density and pressure are set to constant
values equal to their ambient values. Details of the linearized equations and their discretization can be found
in Towne and Colonius [43].

The dominant instability mode of this flow is related to the Kelvin–Helmholtz instability of the shear layer
between the jet and the ambient fluid. The phase speed of theKelvin–Helmholtzmode increaseswith increasing
Mach number [3], which allows us to vary the value of the key parameter Re [α0] /ω by adjusting the Mach
number. Accordingly, the results from Sect. 4.1 predict that PSE will damp the acoustic waves emitted by the
jet more severely for lower Mach numbers.

To verify this prediction, we compare the LNS and PSE propagation of the Kelvin–Helmholtz mode and
its emitted acoustic radiation for a range of Mach numbers. We consider axisymmetric perturbations at two
different frequencies, St = ωD/(2πUj ) = 0.1 and 0.3. For each case, the local Kelvin–Helmholtz mode at
the jet inlet is provided as a boundary condition for a global LNS calculation and as the initial condition for a
PSE calculation. The PSE march is regularized using the explicit Euler method, and each streamwise step is
taken with the minimum stable step size.

The key results are summarized in Fig. 9.Here,we plot the ratio of the squared pressure amplitude computed
via PSE and LNS at the location within the acoustic field where the LNS solution is largest, i.e., the location of
maximum acoustic radiation. If the PSE solution were to faithful capture the acoustic field, this ratio would be
equal to one; this value is indicated by the dashed line in the figure. Instead, we observe that the PSE solution
under-predicts the acoustic radiation and that the under-prediction is increasingly severe with decreasingMach
number, as predicted by the theory. The error is smaller for the higher frequency at supersonic Mach numbers,
consistent with the results of Sinha et al [37], but the magnitude of the error is still around 50%.

4.3 Dual-stream jet

Finally, we consider the example of a dual-stream jet, which serves as a demonstration of the detrimental
impact of PSE regularization on a flow with multiple relevant instability modes. The flow consists of two
coaxial streams: an inner stream with an initial diameter D and Mach number M1 = U1/c∞ = 1.26 and an
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Fig. 9 Ratio of the pressure amplitude computed by PSE and LNS for a single-stream jet at the location of maximum acoustic
radiation as a function ofMach number for two frequencies: (circle) St = 0.1 and (square) St = 0.3. Values less than one (dashed
line) indicate that PSE has damped the acoustic radiation. The damping is more severe for lower Mach numbers, consistent with
the theory developed in §4.1
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Fig. 10 Mean streamwise velocity of the compressible dual-stream jet. The dashed white line shows the streamwise location at
which the LNS, PSE, and OWNS calculations are initiated

outer stream with initial diameter 1.33D and Mach number M2 = 0.8. The jet is isothermal and the Reynolds
number of the jet based on the inner jet velocity and diameter is Re = U1D/ν∞ = 2.6 × 106.

The LNS and PSE operators for this flow were obtained by linearizing the compressible Navier–Stokes
equations in cylindrical coordinated about the mean flow, which was computed from large-eddy simulation
data computed by Brès et al. [8]. Information about the numerical method can be found in Brès et al. [7]. The
mean streamwise velocity is shown in Fig. 10. Again, details of the linearized equations and their discretization
can be found in Towne and Colonius [43]. Following Schmidt et al [36], we use a lower effective Reynolds
number of 105 in the linear equations to mimic the effect of an unknown turbulent viscosity, but this ad hoc
approximation has no bearing on the comparisons we make in what follows.

The dual-stream jet contains several relevant instability modes. As an example, a portion of the local
LNS spectrum at x/D = 1 is shown in Fig. 11a for the frequency St = ωD/(2πU1) = 0.3. First, there
are two discrete unstable downstream-traveling modes. These two modes are related to the Kelvin–Helmholtz
instability of the two shears layers that form between the inner and outer streams and the outer and ambient free
streams, respectively. This can be confirmed by calculating their phase speeds, which match those expected
for the two shear layers, or by examining their eigenfunctions. The streamwise velocity components of the
two unstable discrete modes are plotted along with the local mean streamwise velocity in Fig. 11a. Each mode
clearly peaks at the radial r/D location of one of the shear layers. Additionally, the jet supports a series of
neutrally stable discrete modes, which appear in Fig. 11a along the dashed line at Im[α] = 0. These represent
a family of acoustic waves that are trapped within the inner potential core of the jet, which were identified
by Tam and Hu [39] and recently investigated by Towne et al [45]. Finally, the jet supports downstream- and
upstream-traveling free-stream acoustics waves, which appear in Fig. 11a as mostly vertical branches that
asymptote toward Re[α] = 0 for Im[α] → ±∞, respectively. Additional modes that are not important for the
ensuing discussion, including stable convective modes and stable spurious modes that inevitably arise due to
the dispersive nature of the finite-difference discretization used to approximate radial derivatives, are shown
in the figure as light gray circles.
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Fig. 11 Local eigenmodes of the dual-stream jet at x/D = 1. a Local LNS eigenvalues; b streamwise velocity component of the
two Kelvin–Helmholtz modes superposed with the mean streamwise velocity. The amplitudes of the eigenvectors are arbitrary

This rich pool of modes supported by the dual-stream jet provides an opportunity to demonstrate the
difficulty of applying PSE to flows with multiple relevant eigenmodes. We begin by comparing the LNS and
PSE propagation of the inner Kelvin–Helmholtz mode. To do so, we provide the local inner Kelvin–Helmholtz
mode at x/D = 1 as a boundary condition for a global LNS calculation and as the initial condition for a PSE
calculation (as well as a one-way Navier Stokes calculation, which will be discussed later). The PSE march is
regularized using the explicit Euler method, and each streamwise step is taken with the minimum stable step
size.

The results are shown in Fig. 12. The two rows show the same data plotted using different contour levels
chosen to highlight the results in the jet near field and acoustic field, respectively. In both the LNS and PSE
solutions, the inner Kelvin–Helmholtz mode grows and then decays in the streamwise direction, leading to
a wavepacket structure in the jet near field. PSE provides an excellent approximation of this wavepacket. In
addition to the near-field wavepacket, the LNS solution also exhibits a strong beam of acoustic radiation that
is admitted from the wavepacket near its location of peak amplitude. The PSE solution also contains this
acoustic beam, but its amplitude decays more rapidly away from its source. This behavior is predicted by
the analysis in Sect. 4.1. Even though the inner stream of the jet is supersonic, the phase speed of the inner
Kelvin–Helmholtz mode is subsonic, with a value of about 0.7 near the location of peak amplitude. Thus,
according to the analysis in Sect. 4.1, the acoustic LNS modes will be damped at each step in PSE march,
leading to a decrease in amplitude with increasing x .

Next, we repeat the same exercise with the outer Kelvin–Helmholtz wave at x/D = 1 specified as the
boundary condition and initial condition for the LNS and PSE calculations, respectively. Results are shown
in Fig. 13. The LNS solution contains a short wavepacket generated by the outer Kelvin–Helmholtz mode,
extending to about x/D = 4. Beyond this point, the solution is dominated by short-wavelength disturbances
caused by the trapped acoustic waves. The PSE solution contains an accurate approximation of the initial
Kelvin–Helmholtz wavepacket but completely misses the trapped acoustic waves. Additionally, the flooded
contour levels in the second row of Fig. 13 show that the PSE solution contains a second wavepacket in the
region 5 < x/D < 10. This wavepacket is caused by the inner Kelvin–Helmholtz mode, which was excited
by energy that leaked from the outer mode. This is consistent with the observations made by Sinha et al [38]
for a different dual-stream jet.

In summary, we have demonstrated in this example that PSE fails to achieve either of the desired outcomes
discussed in the introduction. On the one hand, it does not deliver a solution that consists of a single weakly
nonparallel mode; the PSE solution contains acoustic waves and inner Kelvin–Helmholtz waves when the
initial condition was set to be the inner and outer Kelvin–Helmholtz modes, respectively. On the other hand,
PSE does not capture the complete downstream response to the initial condition; free-stream acoustic waves
and trapped acoustic waves that were observed in the full LNS solution were damped by PSE in the two cases.

We stress that these issues are caused by the regularization required to stabilize the ill-posed PSE march,
and there is no apparent way to fix these errors in the PSE framework. On the other hand, the one-way spatial



380 A. Towne et al.

(f)

x/D

(e)

x/D

(d)

r/
D

x/D

(c)

OWNS

(b)

PSE

(a)

LNS
r/
D

0 5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 30
−0.1

0

0.1

−0.5

0

0.5

0

5

10

0

5

10

Fig. 12 Flow response using the inner Kelvin–Helmholtz mode (KH1) as the initial condition at x/D = 1. Contours of the real
part of the pressure perturbation: a LNS; b PSE; c OWNS. The same data are shown in both rows, with contour levels selected
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Fig. 13 Flow response using the outer Kelvin–Helmholtz mode (KH2) as the initial condition at x/D = 1. Contours of the real
part of the pressure perturbation: a LNS; b PSE; c OWNS. The same data are shown in both rows with different contour levels

integration method introduced by Towne and Colonius [44] overcomes these issues by constructing well-
posed spatial evolution equations that do not require detrimental PSE-like regularization. For example, the
one-way Navier–Stokes (OWNS) solutions for the inner and outer Kelvin–Helmholtz initial conditions are
shown in the right-most columns of Figs. 12 and 13, respectively (see Towne and Colonius [43] for details on
the application of this method to jets). In both cases, the OWNS solution matches well with the global LNS
solution, indicating that, unlike PSE, OWNS has properly captured the complete downstream response of the
initial perturbation. While not the topic of this paper, recent applications of OWNS to boundary layers Rigas
et al [31] and for computing optimal (forced) disturbances Rigas et al [32] provide a promising alternative to
PSE for flows involving multiple unstable modes and acoustic radiation. It must be noted, however, that the
additional fidelity of OWNS comes with a corresponding increase in computational complexity and operation
count.

5 Conclusions

In this paper, we have performed a spectral analysis of the PSE operator to elucidate the behavior of LNS
modes whose wavenumber and growth rate differ from the primary disturbance begin tracked. The implicit
assumption made in many applications of PSE is that these other modes are either quickly damped so that the
solution can be regarded as an approximation of a single global mode or accurately propagated so that the
solution can be interpreted as the complete response to the initial perturbation. Our results show that neither
of these behaviors are generally true. These errors arise not because of the PSE ansatz given in Eq. (6), but
rather due to regularization techniques that must be applied to stabilize the downstream march due its inherent
ill-posedness. For the implicit Euler and explicit damping regularizations, the error manifests exclusively
in the effective eigenvalues that govern the PSE approximation of the evolution of each mode, leading to
incorrect wavelengths and growth rates. The pressure-gradient relaxation technique leads to errors in both the
eigenvalues and eigenvectors.
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In flows dominated by a single unstable mode, these errors will have little impact on the accuracy of PSE,
as suggested by its success in these cases. On the other hand, the errors can be significant for applications in
which multiple modes are relevant to the flow dynamics. Examples include flows involving acoustic waves,
multiple unstable modes, or transient growth. The effect of PSE on acoustic waves is considered in Sect. 4.1.
We showed that PSE can lead to either excessive damping or growth of acoustic waves, depending on the
wavelength and growth rate of the primary mode being tracked. These results explain previous observations
made by Cheung and Lele [11], Towne and Colonius [42], and others.

The detrimental effects of the PSE regularization predicted by the theory developed in this paper were
demonstrated for the example of compressible dual-stream jet. The local LNS operator for this flow supports
several different types of modes, including two unstable Kelvin–Helmholtz modes associated with the two
shear layers between the two streams of the surrounding ambient flow. Using these two Kelvin–Helmholtz
modes as boundary and initial conditions for global LNS and PSE calculations, respectively, we showed that the
PSE solutions contain contributions from modes other than the primary mode defined by the initial conditions
but do not accurately capture the full downstream response, as predicted by the theory.

Other methods exist that do not suffer from these limitations, but with the trade-off of greater computational
cost. Global LNS methods can in principle capture the full linear response to any perturbation, but these
calculations are typically orders of magnitude slower than PSE and remain challenging for multi-dimensional
problems. The one-way marching technique developed by Towne and Colonius [44] offers a middle ground
for slowly evolving flows; it can accurately evolve all downstream-traveling disturbances for a computational
cost much less than global LNS methods but still greater than PSE. This approach was shown to correctly
capture the full downstream response to the two Kelvin–Helmholtz modes for the dual-stream jet.
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