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In addition to the classical Kelvin-Helmholtz modes, compressible jets support hierar-

chical families of modes that represent upstream and downstream traveling acoustic waves

trapped within the jet by its annular shear layer. These trapped waves have recently been

shown to participate in a variety of different resonance phenomena, including screech, im-

pingement tones, and a weak subsonic resonance. The properties of the trapped waves

vary with the jet Mach number, and recent results from a simple parallel flow vortex sheet

model suggest the existence of three distinct Mach number regimes. In this paper, we use

a series of large-eddy simulations along with a global linear model to investigate the prop-

erties of the trapped waves within and at the boundaries of these different Mach number

regimes. We show that the resonance between a pair of duct-like modes predicted by the

vortex sheet model for the range 0.82 < M < 1 persists to lower Mach numbers and is grad-

ually damped away. Moreover, this resonance does not exist at supersonic Mach numbers,

and is instead replaced by a weaker interaction between a different pair of trapped waves.

We show that a global resolvent-based model provides good approximations of the power

spectral density of the trapped waves as a function of both frequency & wavenumber and

frequency & streamwise position.

I. Introduction

Turbulent jets support a rich set of waves whose behavior play a central role in the overall dynamics
and acoustics of the jet. The most widely studied of these waves are those related to the Kelvin-Helmholtz
instability of the shear layer that develops between the jet and the ambient fluid. These waves grow and then
decay as they travel downstream, generating a distinctive pattern often refered to as a wavepacket.1 These
wavepackets have been shown to be intimately tied to noise emitted from the jet, especially at downstream
angles.

In addition to the downstream-traveling Kelvin-Helmholtz waves, turbulent jets also support hierarchical
families of modes representing acoustic waves trapped within the potential core of the jet. These modes
were first discovered by Michalke,2 but were initial disregarded as an unphysical artifact of the local stability
analysis performed in that investigation. They were first systematically investigated by Tam & Hu,3 who
postulated that they represent acoustic waves trapped within the potential core by the jet’s annular shear
layer. They showed that the modes have distinct properties at low subsonic Mach numbers (M ≈ 0.6) and
substantially supersonic Mach numbers (M ≈ 1.5); while only upstream-traveling trapped waves exist at low
Mach numbers, both upstream- and downstream-traveling trapped waves exist at supersonic Mach numbers.

Towne et al.4 and Schmidt et al.5 showed that the trapped waves behave differently at high subsonic
Mach numbers (M ≈ 0.9) than they do for the regimes studied by Tam & Hu.3 Specifically, both upstream-
and downstream-traveling trapped acoustic waves exist only within narrow frequency bands. Towne et al.4

showed that the frequencies at which both types of waves exist changes along the streamwise axis of the jet,
which leads to so-called ‘turning points’ where downstream-traveling waves can be converted into upstream-
traveling waves at specific locations within the jet. Coupled with reflection at the nozzle exit plane, this
leads to the possibility of resonance between the upstream- and downstream-traveling waves at discrete
frequencies,5 which in turn generates tones that can be observed outside of the jet.
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A number of subsequent studies have demonstrated the relevance of the trapped waves in several other
resonance phenomena. Jordan et al.6 found that the trapped waves participate in a resonance with Kelvin-
Helmholtz waves that leads to strong tones when a solid edge, such as the flap on a wing, is positioned close to
a subsonic jet. Using simulation and experimental data, respectively, Gojan et al.7 and Edgington-Mitchell
et al.8, 9 found evidence that the trapped acoustic waves participate in the resonance leading to screech tones
in under-expanded supersonic jets, in line with an earlier conjecture by Shen & Tam.10 Mancinelli et al11, 12

formulated an improved screech tone prediction model based on these findings. Tam & Ahuja13 showed that
the trapped waves participate in the resonance leading to strong tones in the case of a subsonic jet impinging
on an infinte flat plate, and Bogey & Gojon14 and Jaunet et al.15 provided additional confirmation of this
theory and extended it to supersonic jets.

Given this surge in interest in the trapped acoustic waves, and the different properties observed by Tam
& Hu3 and Towne et al.4 for different Mach numbers, it is important to gain a complete understanding of
the Mach number dependence of these waves. Towne et al.4 studied their Mach number and temperature
ratio dependence using a simple cylindrical vortex sheet model. The model predicted that the properties of
the waves observed at Mach 0.9, and the resulting resonance, should be limited to the Mach number range
0.82 < M < 1 for isothermal jets (for the first family of waves, with slightly different values for other families).
Outside of this interval, the properites observed by Tam & Hu3 are recovered, and the model predicts that
these boundaries depend on the jet temperature ratio. Furthermore, the authors speculated that in real
jets, the transition between the different behaviors is likely gradual due to the possibility of lightly damped
resonance along with ongoing excitation by turbulent fluctuations outside of the high-subsonic range.

While the small number of data points available in the literature were consistent with these model
predictions, comprehensive data were not available to confirm the changing properties of the trapped waves
as a function of Mach number. This paper will fill in this gap using several large eddy simulations of
jets at different Mach numbers as well as global models based on eigenvalue and resolvent analysis of the
Navier-Stokes equations linearized about the turbulent mean flow.

The remainder of the paper is organized as follows. Section II reviews the vortex-sheet model and its
Mach number predictions. Section III presents the LES setup and results, and section IV introduces the
global models and compares them with the LES results. Finally, section V summarizes the paper.

II. Cylindrical vortex sheet model

We begin by reviewing the vortex-sheet model used by Tam & Hu3 and Towne et al.4 to describe the
trapped waves, with particular focus on the Mach number predictions of the latter authors.

The dispersion relation for a compressible, cylindrical vortex sheet was first derived by Lessen et. al16

and can be written as
Dj (k, ω;m,M, T ) = 0 (1)
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(ω −Mk)2, (3a)

λo =
√

k2 − ω2. (3b)

Im and Km are modified Bessel functions of the first and second kind, respectively. All quantities have
been normalized by the jet diameter and far-field thermodynamic quantities such that M = Ujet/c∞ is the
acoustic Mach number and T = Tjet/T∞ is the temperature ratio. Equation 1 is satisfied for only certain
combinations of the temporal frequency ω and axial wavenumber k, both of which can in general be complex.
These special (k, ω) pairs are the eigenvalues of the vortex sheet.

The trapped waves are represented by families of eigenvalues that can be parameterized by the index
pair (m,n), where m is the azimuthal wavenumber and n is an effective radial wavenumber related to Bessel
function zeros.4 This can be seen in Figure 1, where the eigenvalues for St = 0.3, m = 0, and M = 0.9
are plotted. The properties of these eigenvalues as a function of frequency, azimuthal wavenumber, Mach
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Figure 1: Vortex sheet eigenvalues for St = 0.3 and m = 0 for Mach number M = 0.9: (
C

) Kelvin-
Helmholtz; (

1

) Kelvin-Helmholtz complex-conjugate; (
u

) upstream duct-like trapped acoustic modes; (
E

)
downstream duct-like trapped acoustic modes; (

`

) discrete free-stream-like acoustic mode. The dashed lines
show the continuous branch of eigenvalues for acoustic waves in an unbounded quiescent fluid.

number, and temperature ratio determine the properties of the trapped acoustic waves of interest. In this
paper, we will focus on axisymmetric waves (m = 0) in isothermal jets (T = 1).

Eigenvalue pairs for which both ω and k are real-valued are particularly important as they correspond to
propagating waves that convect away from their source without growing or decaying. The properties of these
propagating waves can be visualized in k−ω space. Figure 2 shows these dispersion relations for m = 0 and
n = 1, 2, 3 for the three Mach numbers, M = 0.6, 0.9, 1.5, which were the focus of Tam & Hu3 and Towne
et al.4 The Mach number dependence of the trapped waves described in the introduction are apparent. For
M = 0.6, all of the trapped waves have negative group velocity, ∂ω

∂k
, i.e., they are all upstream-traveling.

The other two Mach numbers have waves with both negative and positive group velocities, i.e., there exist
both upstream- and downstream-traveling trapped waves. For M = 1.5, downstream traveling waves exist
at all frequencies, whereas they exist only in limited frequency bands for M = 0.9.

Figure 3 shows the dispersion relations for the (m = 0, n = 1) propagating waves for 0.4 < M < 1.5 at
intervals of ∆M = 0.04. It is clear that the three different behavios observed in Figure 2 hold within certain
Mach number intervals. Towne et al.4 showed that the boundaries between the three different behaviors
occurs at M = 0.82 and M = 1.

The resonance observed by Towne et al.4 and Schmidt et al.5 at M = 0.9 requires the existence of both
upstream- and downstream-traveling trapped waves. Thus, the model suggests that resonance should only be
possible for M > 0.82. However, the interpretation of the model focused exclusively on propagating waves.
Weakly damped downstream-traveling waves exist at lower Mach numbers, with the damping increasing with
decreasing Mach number. Thus, it is likely that the resonance persists to lower Mach numbers, gradually
fading away with decreasing Mach number. We will investigate this possibility using large-eddy simulation
and a global linear model.

The model also predicts the possibility of resonance for supersonic Mach numbers. To date, resonance
has only been observed in supersonic jets in the case of an obvious downstream end conditions, such as a
plate or a shock-cell structure. We will investigate whether an intrinsic resonance occurs in the absence of
these end conditions.
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Figure 2: Dispersion relations for the first three m = 0 radial modes of the vortex sheet at T = 1 and (a)
M = 0.6; (b) M = 0.9; (c) M = 1.5.
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Figure 3: Vortex sheet dispersion relations for the (0,1) family of trapped waves at T = 1 and Mach numbers
0.4 < M < 1.5 with increments ∆M = 0.04. The colors indicate: (black) M < 0.82; (blue) 0.82 < M < 1;
(red) M > 1.

III. Large-eddy simulation

III.A. LES databases

To explore the Mach number dependence of the trapped waves, large-eddy simulations of isothermal jets
issued from a convergent-straight nozzle are performed at five different Mach numbers, Mj = 0.4, 0.7, 0.8, 0.9
and 1.5. This Mach number range allows us to examine the behavior of the trapped waves within the low-
Mach-number regime, the transition regime around M = 0.82, and the supersonic regime. The Reynolds
numbers of these jets all fall within the range Rej = ρjUjD/µj = [0.3, 1]× 106, and can thus be considered
to be asymptotically high. The flow configuration and operating conditions match companion experiments
conducted at the PPRIME Institute, Poitiers, and the M = 0.9 and M = 1.5 cases have been extensively
validated against measurements from these experimentls.17, 18

The simulations were performed using the compressible flow solver “Charles” developed at Cascade
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Technologies, which solves the spatially-filtered compressible Navier-Stokes equations on unstructured grids
using a control-volume based finite-volume method.17 The nozzle geometry is explicitly included in the
computational domain and synthetic turbulence boundary conditions are used to model the boundary layer
trip present in the companion experiments.18 To properly capture the internal turbulent boundary layers,
localized isotropic mesh refinement and wall modeling19 are applied on the interior surface from the boundary
layer trip to the nozzle exit. This leads to fully turbulent nozzle-exit boundary layers and results in significant
improvements for the flow field and sound predictions, compared to those obtained from the typical approach
based on a laminar flow assumption in the nozzle. All other solid surfaces are treated as no-slip adiabatic
walls. A 1% coflow is imposed outside the nozzle in the simulation to prevent spurious recirculation and
facilitate flow entrainment, and sponge layers and damping functions are applied to avoid spurious reflections
at the boundary of the computational domain.20, 21 Each of the subsonic simulations was performed on the
same adapted grid containing approximately sixteen million grid points and was run for a duration of 2000
acoustic time units (tc∞/D). The supersonic jet is almost perfectly expanded, and a slightly different
setup and parameters were used in this case.17 The available LES databases consist of time series for the
primitive flow variables interpolated onto a structured cylindrical output grid that approximately mirrors
the underlying LES resolution.

III.B. Empirical dispersion relations

An empirical dispersion relation for the trapped waves can be obtained from the LES data using the procedure
described by Towne et al.4 and Schmidt et al.5 Using Fourier transforms in both the streamwise direction
and time, the power spectral density is computed as a function of the streamwise wavenumber k and the
frequency St. For the subsonic jets, only the first six jet-diameters are included in the streamwise Fourier
transform to ensure that the results are dominated by the dynamics within the potential core. For the
supersonic jet, we will see shorty that the trapped waves are observed substantially further downstream, so
we include data for the first twenty diameters of the jet in this case.

This procedure leads to the frequency-wavenumber diagrams shown in Figure 4 for the five different Mach
numbers. Results are shown for pressure at along the jet centerline, which corresponds to the azimuthal
mode m = 0. Here, iso-contours of the power spectral density of the pressure signal are plotted as a function
of the Strouhal number and streamwise wavenumber, which is scaled by the jet diameter. In order to resolve
fluctuations occurring at different amplitudes, the scale of the contours is logarithmic and spans four orders
of magnitude. The power spectral density at each Mach number if scaled by its maximum value, which
is related to the magnitude of Kelvin-Helmholtz wavepackets in the jet. The various bands of energy (the
dark regions on the plot) can be interpreted as an “empirical dispersion relation” for the waves within the
potential core. The first three vortex sheet dispersion relations (n = 1, 2, 3) are shown as dashed lines on
top of these empirical dispersion relations.

Focus first on the results for M = 0.9 (panel (d)), where the resonance was first observed by Towne et
al.4 and Schmidt et al.5 The waves predicted by the model are clearly present in the data. Next, consider
the results for M = 0.7 and 0.8 (panel (b-c)), which are below the theoretical cut-off of M = 0.82 for the
existence of downstream-traveling waves. Nevertheless, the upstream-traveling waves predicted by the model
are clearly present in the data. Moving to the still-lower Mach number of M = 0.4 (panel (a)), the waves
predicted by the vortex sheet model are no longer present in the data. At the supersonic Mach number
M = 1.5, the waves predicted by the model are clearly present in the data, and, as expected, the energy
is distributed fairly evenly over all frequencies within each family of waves (e.g., n = 1, 2, 3). Note that
the positive wavenumber trapped modes represent the continuation of the negative wavenumber modes to
negative frequencies due to symmetries of the Fourier transform.

III.C. Wavenumber-filtered power spectra

Next, we use the frequency-wavenumber decomposition as a filter to isolate the signature of the trapped and
determine their streamwise location. The trapped waves have negative phase-speeds (except for some of the
downstream-traveling waves in the supersonic case) while the dominant convective instabilities have positive
phase-speeds. Therefore, zeroing the positive wavenumber components and taking an inverse streamwise
Fourier transform filters out all waves with positive phase-speeds, effectively distilling the negative phase-
speed trapped waves. Contours of the power-spectral-density of the phase-speed-filtered centerline pressure
are plotted in Figure 5 for each Mach number. In all cases, the filtered power spectrum is normalized by
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Figure 4: Comparison between modeled and empirical dispersion relations for the m = 0 trapped waves in
the potential core for (a) M = 0.4; (b) M = 0.7; (c) M = 0.8; (d) M = 0.9; (e) M = 1.5. Data: ( )
vortex sheet model; contours show the empirical dispersion relation obtained via frequency-wavenumber
decomposition of the pressure along the polar axis.

the maximum amplitude of the unfiltered data, which is again related to the dowstream-traveling Kelvin
Helmholtz wavepackets. The contours are distributed logarithmically and span three orders of magnitude.
Since only data within the first six diameters of the jet was used for the subsonic cases, no results are available
for x/D > 6, as indicated by the hashed regions in the figure. Note that the small buildup of energy along
the x/D = 6 boundary is an artifact of the wavenumber filtering routine.

The filtered power spectral density for M = 0.9, shown in Figure 5(d), exhibits a series of distinct high
energy regions in x − St space. Towne et al.4 demonstrated that these energetic regions correspond to
trapped acocustic waves that are resonating between the nozzle at x = 0 and a downstream end condition
provided by turning points created by the slow contraction of the potential core. We see in Figure 5(a-c)
that these resonating waves persist to lower Mach numbers below the M = 0.82 cutoff predicted by the
vortex-sheet model but gradually fade away. The maximum amplitude of the filtered power spectra is an
order of magnitude lower for M = 0.7 compared to M = 0.9, and no trace of the resonating waves remains
for M = 0.4. These results support the hypothesis of Towne et al.4 that the resonance observed at M = 0.9
will remain active below the M = 0.82 cutoff suggested by the vortex sheet model but eventually disappear
as the resonance occurs between increasingly damped waves.

The x − St energy distribution is markedly different for the supersonic jet. While there are bands of
energy at frequencies associated with the saddle points, substantial energy is also spread over all frequencies.
Additionally, the high energy regions extend much further downstream than in the subsonic case, suggesting
that the trapped waves persist well beyond the end of the potential core. This suggests a lack of turning
points within the potential core that, in the subsonic case, reflect energy back upstream and limit the trapped
waves to the first few diameters of the jet.
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Figure 5: Filtered PSD of the centerline pressure as a function of streamwise position and frequency for (a)
M = 0.4; (b) M = 0.7; (c) M = 0.8; (d) M = 0.9; (e) M = 1.5.

IV. Global linear models

A complete description of the resonance phenomena requires the use of a spatially varying model of the
jet in order to capture the end effects needed to convert downstream-traveling waves into upstream-traveling
waves. In Towne et al.,4 a weakly nonparellel model was developed based on the Euler equations linearized
about the turbulent mean flow of the jet. Unfortunately, this model is cumbersome for describing the weakly
damped waves that are expected to underpin resonance at Mach numbers below 0.82. In the present work,
we instead use a global model based on the linearized Navier-Stokes equations using the same numerical
framework as in Schmidt et al.5, 22

IV.A. Theory

Consider the compressible Navier-Stokes equations, which can be written conceptually as

∂q

∂t
= F (q) , (4)

where q is a state-vector of flow variables. Applying the Reynolds decomposition

q (x, r, θ, t) = q̄ (x, r) + q′ (x, r, θ, t) (5)

to equation (4) and isolating the terms that are linear in q′ yields an equation of the form

∂q′

∂t
−A (q̄) q′ = f (q̄, q′) , (6)

where

A (q̄) =
∂F

∂q
(q̄) (7)
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and f contains the remaining nonlinear terms.
Applying Fourier and Laplace transforms to the homogeneous azimuthal and time dimensions, respec-

tively leads to
(iωI −Am) q̂ = f̂ , (8)

where iω is the Laplace dual of t, m is the azimuthal wavenumber, and Am is the operator A with ∂
∂θ

replaced by im.
Two different models can be obtained from equation (8) depending on the treatment of ω and f̂ . The

global modes of the flow are obtained by finding special (ω, q̂) pairs for which equation (8) is satisfied with

f̂ = 0. These pairs correspond to eigenvalues and eigenvectors of A. Alternatively, restricting ω for real
values and solving equation (8) for q̂ gives the input-output relationship

q̂ = Rf̂ (9)

defined by the resolvent operator
R = (iωI −Am)−1 . (10)

Towne et al.23 showed that the cross-spectral density tensor Sq̂q̂ , 〈ŷŷ∗〉 can be written in terms of the
resolvent operator as

Sq̂q̂ = RS
f̂ f̂
R∗, (11)

where 〈·〉 is an ensemble average over different realizations of the jet, S
f̂ f̂

, 〈f̂ f̂∗〉 is the cross-spectral density
of the nonlinear forcing terms, and the asterisk superscript indicates the Hermetian transpose. The forcing
cross-spectral density S

f̂ f̂
is in general unknown and is often modeled as unit-amplitude white noise, in which

case S
f̂ f̂

= I. While deviations from this approximation in the form of correlated nonlinear forcing terms

can have important implications,22 it has been shown to be a reasonable first approximation for turbulent
jets.24 With this approximation, equation (11) becomes

Sq̂q̂ = RR∗. (12)

This expression can be further simplified by using the singular value decomposition of the resolvent
operator,

R = UΣV ∗. (13)

The singular values, which appear within the diagonal positive-semi-definite matrix Σ, give the square root
of the optimal gains between the input and output modes defined by the right and left singular vectors
contained in the columns of the orthonormal matrices V and U , respectively. Inserting this decomposition
into equation (12) gives

Sq̂q̂ = UΣ2U∗. (14)

Since the right-hand-side of equation (14) will be dominated by terms involving the largest singular values,
it can be well-approximated using only the first few singular modes. Finally, the power spectral density is
given by the diagonal terms of the approximated Sq̂q̂ tensor.

IV.B. Global Modes

We begin by examining the global eigenvalue spectra for m = 0 and M = 0.8, 0.9, and 1.5, shown in
Figure 6, which correspond to Mach numbers below, within, and above the range where the vortex sheet
model predicts resonance. The eigenvalues for the M = 0.9 case, shown in Figure 6(b), were studied in
detail by Schmidt et al.5 They showed that the spectrum is made up of continuous branches and hierarchical
families of lightly damped discrete modes. The first family of discrete modes is shown in red in the figure.
These modes protrude toward the real axis from a continuous Λ-shaped branch of modes. The discrete modes
represent resonating trapped acoustics modes that lie between the two saddle points for the n = 0 family of
vortex sheet modes, and the additional families of discrete global modes correspond to higher n values.

These discrete modes describing resonance change, but do not disappear, when the Mach number is
reduced to 0.8. The global eigenvalue spectrum for this case is shown in Figure 6(a), and the n = 1 discrete
modes are again shown in red. Instead of protruding from the continuous branch toward the real axis as in
the M = 0.9 case, the discrete modes now connect two parts of the continuous branch. This is consistent
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(a)

(b)

(c)

Figure 6: Global eigenvalue spectrum of the jet for: (a) M = 0.8; (b) M = 0.9; (c) M = 1.5.

with the changing shape of the vortex sheet and empirical dispersion relations between the Mach 0.9 and
0.8 cases.

In contrast, no trace of the discrete modes remains in the supersonic case. This is consistent with the
properties of the trapped waves. In the 0.82 < M < 1 range, there exist three types of trapped waves:
upstream- and downstream-traveling duct-like modes and an additional upstream-traveling discrete free-
stream mode.4 Schmidt et al.5 found that the discrete modes specifically represent a resonance between the
upstream- and downstream-traveling duct-like modes. Towne et al.4 showed that the upstream-traveling
duct-like mode ceases to exist for M > 1. As a result, the discrete global modes disappear in the supersonic
case. However, there remain Λ-shaped peaks in the continuous spectra, akin to the structure of the continuous
branch in the subsonic cases, and Schmidt et al.5 showed that the two sides of peak is associated with
downstream-traveling duct-like modes and upstream traveling discrete freestream modes, respectively.

9 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

Ju
ne

 2
8,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
9-

25
46

 



Figure 7: Comparison of frequency-wavenumber diagrams computed from the LES (top row) and from the
revolvent model (bottom row) for: (a,d) M = 0.8; (b,e) M = 0.9; (c,f) M = 1.5. The contours levels are
logarithmically and span four order of magnitude.

IV.C. Resolvent-approximated power spectra

Finally, we examine the resolvent-based low-rank approximations of the power spectral density of the cen-
terline pressure. Figure 7 shows the frequency-wavenumber diagrams produced from the data and from the
resolvent modes for M = 0.8, 0.9, and 1.5. As before, the results at each Mach number are normalized by the
maximum amplitude along the Kelvin-Helmholtz dispersion relation, and the contours are logarithmically
spaced and span four orders of magnitude. The agreement for the two subsonic jets is excellent – the model
accurately captures the locations and changing shapes of the dispersion relations for the trapped waves. For
the supersonic jet, the model qualitatively captures the basic shape and locations of the dispersion relations,
but the results are not as crisp. This can likely be attributed to the lack of discrete modes in this case, which
make the low-rank resolvent approximation more accurate for the subsonic jets.

Figure 8 shows the wavenumber filtered power spectra in x − St space. The scaling of the results is the
same as for Figure 5, but here we use linearly spaced contours to focus on the highest energy regions. As
expected from the agreement in Figure 7, the model matches well with the LES data for the subsonic jets. In
particular, the streamwise location of the resonating waves is well-captured. The agreement is not as good
in the supersonic case, but the model does capture the approximate frequencies of the high-energy bands as
well as their downstream position compared to the subsonic cases.

V. Conclusions

Previous models3, 4 have suggested that trapped acoustic waves inside the potential core of turbulent jets
exhibit different behaviors within different Mach number regimes. In this work, we have provided evidence
in support of these model predictions using data from large-eddy simulations of jets at five different Mach
numbers. We demonstrate that the resonance observed at Mach 0.9 does not immediately vanish at the
critical Mach number of 0.82, but instead slowly fades away as the Mach number is reduced.

10 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

Ju
ne

 2
8,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
9-

25
46

 



Figure 8: Comparison of filtered power spectral density computed from the LES (top row) and from the
revolvent model (bottom row) for: (a,d) M = 0.8; (b,e) M = 0.9; (c,f) M = 1.5.

These behaviors were captured using global models based on the Navier-Stokes equations linearized
about the turbulent mean flow. The global spectra showed that the discrete eigenvalues that describe the
resonance do not vanish for Mach numbers below 0.82, but are instead increasingly damped. For supersonic
Mach numbers, the discrete modes vanish, leaving only a continuous spectrum that exhibits peaks in the
vicinity of the supersonic saddle point. Finally, we introduced a new global model based on resolvent analysis.
This model shows that the above changes in the global spectrum as a function of Mach number account for
the changes observed in the LES data.

Acknowledgments

The LES study was supported by NAVAIR SBIR project, under the supervision of Dr. John T. Spy-
ropoulos. The main LES calculations were carried out on CRAY XE6 machines at DoD HPC facilities in
ERDC DSRC.

References

1Jordan, P. and Colonius, T., “Wave Packets and Turbulent Jet Noise,” Annu. Rev. of Fluid Mech., Vol. 45, 2013,
pp. 173–195.

2Michalke, A., “A Note on the Saptial Jet-instability of the Compressible Cylindrical Wortex Sheet,” Zentralstelle für
Luftfahrtdokumentation und-information, 1970.

3Tam, C. K. W. and Hu, F. Q., “On the three families of instability waves of high-speed jets,” J. Fluid Mech., Vol. 201,
1989, pp. 447–483.

4Towne, A., Cavalieri, A. V. G., Jordan, P., Colonius, T., Schmidt, O. T., Jaunet, V., and Brès, G. A., “Acoustic resonance
in the potential core of subsonic jets,” J. Fluid Mech., Vol. 825, 2017, pp. 1113–1152.

5Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P., and Brès, G. A., “Wavepackets and trapped
acoustic modes in a turbulent jet: coherent structure eduction and global stability,” J. Fluid Mech., Vol. 825, 2017, pp. 1153–
1181.

11 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

Ju
ne

 2
8,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
9-

25
46

 



6Jordan, P., Jaunet, V., Towne, A., Cavalieri, A. V. G., Colonius, T., Schmidt, O. T., and Agarwal, A., “Jet–flap
interaction tones,” J. Fluid Mech., Vol. 853, 2018, pp. 333–358.

7Gojon, R., Bogey, C., and Mihaescu, M., “Oscillation Modes in Screeching Jets,” AIAA J., 2018, pp. 1–7.
8Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J., and Honnery, D., “Upstream-travelling acoustic jet

modes as a closure mechanism for screech,” J. Fluid Mech., Vol. 855, 2018.
9Edgington-Mitchell, D., Duke, D., Harris, D., Wang, T., Schmidt, O. T., Juanet, V., Jordan, P., and Towne, A.,

“Modulation of downstream-propagating waves in jet screech,” 25th AIAA/CEAS Aeroacoustics Conference, 2019.
10Shen, H. and Tam, C. K. W., “Three-dimensional numerical simulation of the jet screech phenomenon,” AIAA J., Vol. 40,

No. 1, 2002, pp. 33–41.
11Mancinelli, M., Jaunet, V., Jordan, P., and Towne, A., “Screech-tone prediction for axisymmetric modes in supersonic

jets using upstream-travelling acoustic jet waves,” (in prep.), 2018.
12Mancinelli, M., Jaunet, V., Jordan, P., Towne, A., and Girard, S., “Reflection coefficients and screech-tone prediction in

supersonic jets,” 25th AIAA/CEAS Aeroacoustics Conference, 2019.
13Tam, C. K. W. and Ahuja, K. K., “Theoretical model of discrete tone generation by impinging jets,” J. Fluid Mech.,

Vol. 214, 1990, pp. 67–87.
14Bogey, C. and Gojon, R., “Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round

jets,” J. Fluid Mech., Vol. 823, 2017, pp. 562–591.
15Jaunet, V., Mancinelli, M., Jordan, P., Towne, A., Edgington-Mitchell, D., Lehnasch, G., and Girard, S., “Dynamics of

round jet impingement,” Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Amsterdam, Netherlands, 2019.
16Lessen, M., Fox, J. A., and Zien, H. M., “The instability of inviscid jets and wakes in compressible fluid,” J. Fluid Mech.,

Vol. 21, 1965, pp. 129–143.
17Brès, G. A., Ham, F. E., Nichols, J. W., and Lele, S. K., “Unstructured large-eddy simulations of supersonic jets,” AIAA

J., 2017, pp. 1164–1184.
18Brès, G. A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A. V. G., Towne, A., Lele, S. K., Colonius, T., and

Schmidt, O. T., “Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets,” J. Fluid Mech., Vol. 851, 2018,
pp. 83–124.

19Kawai, S. and Larsson, J., “Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy,” Phys.
Fluids, Vol. 24, 2012.

20Freund, J. B., “Proposed Inflow/Outflow Boundary Condition for Direct Computation of Aerodynamic Sound,” AIAA
J., Vol. 35, No. 4, 1997, pp. 740–742.

21Mani, A., “Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment,” J. Comput.
Phys., Vol. 231, 2012, pp. 704–7016.

22Schmidt, O. T., Towne, A., Rigas, G., Colonius, T., and Brès, G. A., “Spectral analysis of jet turbulence,” J. Fluid
Mech., Vol. 855, 2018, pp. 953–982.

23Towne, A., Schmidt, O. T., and Colonius, T., “Spectral proper orthogonal decomposition and its relationship to dynamic
mode decomposition and resolvent analysis,” J. Fluid Mech., Vol. 847, 2018, pp. 821–867.

24Towne, A., Brès, G. A., and Lele, S. K., “A statistical jet-noise model based on the resolvent framework,” 23rd
AIAA/CEAS Aeroacoustics Conference, AIAA paper 2017-3706 , 2017.

12 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

Ju
ne

 2
8,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
9-

25
46

 


