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a b s t r a c t

A streaming algorithm to compute the spectral proper orthogonal decomposition (SPOD) of stationary
random processes is presented. As new data becomes available, an incremental update of the truncated
eigenbasis of the estimated cross-spectral density (CSD) matrix is performed. The algorithm requires
access to only one temporal snapshot of the data at a time and converges orthogonal sets of SPOD modes
at discrete frequencies that are optimally ranked in terms of energy. We define measures of error and
convergence, and demonstrate the algorithm’s performance on two datasets. The first example considers
a high-fidelity numerical simulation of a turbulent jet, and the second example uses optical flow data
obtained from high-speed camera recordings of a stepped spillway experiment. For both cases, the most
energetic SPOD modes are reliably converged. The algorithm’s low memory requirement enables real-
time deployment and allows for the convergence of second-order statistics from arbitrarily long streams
of data. A MATLAB implementation of the algorithm along with a test database for the jet example, can
be found in the Supplementary material.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The ability to represent complex dynamics by a small number
of dynamically important modes enables the analysis, modeling
and control of high-dimensional systems. Turbulent flows are a
prominent example of such systems [1,2]. Proper orthogonal de-
composition (POD), also known as principle component analysis
(PCA) or Karhunen–Loève decomposition, is a popular modal de-
composition technique to extract coherent structures from exper-
imental and numerical data. In its most common form [3], POD is
conducted in the time domain. It is computed from a time series
of snapshots and expands the flow field into a sum of products
of spatially orthogonal modes and coefficients with random time
dependence. POD modes are optimally ranked in terms of their
variance, or energy. These properties make PODmodes well suited
for low-order models based on Galerkin projection of the Navier–
Stokes equations [4,5].

Besides its definitions in the temporal and spatial domains, POD
can also be formulated in the frequency domain. This variant of
POD called spectral proper orthogonal decomposition (SPOD), dates
back to the early work of Lumley [6] and takes advantage of
temporal homogeneity. This makes it ideally suited for statisti-
cally (wide-sense) stationary data [7]. SPOD provides orthogonal
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modes at discrete frequencies that are optimally ranked in terms
of energy, and that evolve coherently in both space and time.
Perhaps predictably, this optimal space–time representation of
the data comes at a cost—very long time series are necessary in
order to converge the second-order space–time statistics. This data
demand also becomes apparent when comparing SPOD to other
modal decomposition techniques, for example the popular dy-
namic mode decomposition (DMD) [8]. For stationary data, SPOD
modes correspond to optimally averaged DMD modes computed
from an ensemble of stochastic realizations of a process [7], for
examplemultiple repetitions of the same experiment. In Section 5,
we use two databases consisting of 10,000 and 19,782 snapshots,
respectively. Evidently, the SPOD problem quickly becomes com-
putationally unmanageable for data with large spatial dimensions.

In this paper, we address this issue by proposing a low-storage
streaming SPOD algorithm that incrementally updates the SPOD as
new data becomes available. Similar algorithms are often referred
to as incremental, learning, updating, on-the-fly or online algorithms
in the literature. Streaming algorithms for DMD have been devel-
oped recently [9,10], for example. The proposed streaming SPOD
algorithm utilizes incremental updates of the singular value de-
composition (SVD) of the cross-spectral density (CSD)matrix of the
data. SVDupdating has been an active research topic for almost half
a century, see e.g. [11,12]. In this work, we build on Brand’s [13]
incremental singular value decomposition (SVD) by specializing
the method to updates of the estimated CSD matrix. Originally
developed for computer vision and audio feature extraction [14],
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the algorithm has been employed for recommender systems [15],
semantics [16], design optimization [17], and a wide spectrum of
other machine learning and data mining applications.

The paper is organized as follows. We first introduce standard
or batch SPOD in Section 2 before deriving the streaming algorithm
in Section 3. Measures of error and convergence are defined in
Section 4. In Section 5, we demonstrate streaming SPOD on two
datasets: a high-fidelity large eddy simulation (LES) of a turbulent
jet and experimental optical flow from high-speed camera data of
a stepped spillway. The effect of eigenbasis truncation is addressed
in Section 6. In Section 7, we conclude with a discussion of the
algorithm’s computational efficiency and utility in real-time and
big data settings.

2. Batch SPOD

SPOD is the frequency-domain counterpart of standard time-
domain or spatial POD. SPOD yields time-harmonic modes that
represent structures that evolve coherently in both time and
space [7]. The method is based on an eigendecomposition of the
CSD, which in turn is estimated from an ensemble of realizations
of the temporal discrete Fourier transform (DFT) in practice. The
CSD can be estimated using standard spectral estimation tech-
niques such as Welch’s method [see e.g. 18] from an ensemble
of snapshots. The SPOD formalism is derived from a space–time
PODproblemunder the assumption ofwide-sense stationarity. The
reader is referred to [7] for the derivation of the method and an
assessment of its properties. In particular, the method’s relations
to DMD and the resolvent operator are interesting from amodeling
perspective, as they link SPOD to concepts fromdynamical systems
and hydrodynamics stability theory.

Fig. 1 serves as a visual guide through the batch algorithm.
We start with an ensemble of nt snapshots qi = q(ti) ∈ Rn

of a wide-sense stationary process q(t) sampled at discrete times
t1, t2, . . . , tnt ∈ R. By q we denote the state vector. Its total length
n is equal to the number of grid points nx times the number of
variables nvar. The temporal mean corresponds to the ensemble
average defined as

q =
1
nt

nt∑
i=1

qi ∈ Rn. (1)

We collect the mean-subtracted snapshots in a data matrix

Q = [q1 − q, q2 − q, . . . , qnt − q] ∈ Rn×nt (2)

of rank d ≤ min{n, nt − 1}. With the goal of estimating the CSD,
we apply Welch’s method to the data by segmenting Q into nblk
overlapping blocks

Q(l)
= [q(l)

1 − q, q(l)
2 − q, . . . , q(l)

nfreq − q] ∈ Rn×nfreq (3)

containing nfreq snapshots each. If novlp is the number of snapshots
by which the blocks overlap, then the jth column of the lth block
Q(l) is given as

q(l)
j = qj+(l−1)(nfreq−novlp) − q. (4)

We assume that each block can be regarded as a statistically
independent realization under the ergodicity hypothesis. The pur-
pose of the segmentation step is to artificially increase the number
of ensemble members, i.e. Fourier realizations. This method is
useful in the common scenario where a single long dataset with
equally sampled snapshots is available, for example from a numer-
ical simulation. In situations where the data presents itself in form
of independent realizations from the beginning, segmenting need
not be applied. This is the case, for example, if an experiment is

repeated multiple times. Next, the temporal (row-wise) discrete
Fourier transform

Q̂(l)
= [q̂(l)

1 , q̂(l)
2 , . . . , q̂(l)

nfreq ] ∈ Rn×nfreq (5)

of each block is calculated. A windowing function can be used to
mitigate spectral leakage. All realizations of the Fourier transform
at the kth frequency are subsequently collected into a new data
matrix

Q̂k = [q̂
(1)
k , q̂(2)

k , . . . , q̂(nblk)
k ] ∈ Rn×nblk . (6)

At this point, we introduce the weighted data matrix

Xk =
1
√
nblk

W
1
2 Q̂k = [x

(1)
k , x(2)k , . . . , x(nblk)k ] ∈ Rn×nblk , (7)

where W ∈ Rn×n is a positive-definite Hermitian matrix that
accounts for quadrature and possibly other weights associated
with the discretized inner product

⟨a, b⟩E = a∗Wb. (8)

The inner product (8) induces the spatial energy norm ∥ · ∥E =√
⟨·, ·⟩E by which we wish to rank the SPOD modes. The product

Sk = XkX∗k ∈ Rn×n (9)

defines the weighted CSD matrix of the kth frequency. A factor
of 1

nblk
seen in other definitions of the CSD is absorbed into our

definition of the weighted data matrix in Eq. (7).
SPOD is based on the eigenvalue decomposition

Sk = UkΛkU∗k (10)

of theCSDmatrix,whereΛk = diag(λk1 , λk2 . . . , λknblk
) ∈ Rnblk×nblk

is the matrix of ranked (in descending order) eigenvalues and
Uk = [uk1 ,uk2 , . . . ,uknblk

] ∈ Rn×nblk the corresponding matrix of
eigenvectors. Equivalently, we may consider the economy SVD of
the weighted data matrix

Xk = UkΣ kV∗k, (11)

where Σ k = diag(σk1 , σk2 . . . , σknblk
) ∈ Rnblk×nblk is the matrix

of singular values and Vk = [vk1 , vk2 , . . . , vknblk ] ∈ Rn×nblk the
right singular vector matrix. This can be shown by rewriting the
CSD in terms of the SVD of the data matrix as Sk = XkX∗k =
UkΣ kV∗kVkΣ kU∗k = UkΛkU∗k . Throughout this paper, we assume
that all Fourier realizations of the flow are linearly independent. In
the final step, the SPOD modes φ and modal energies σ 2 are found
as

Φk = W−
1
2 Uk = [φk1 , φk2 , . . . ,φknblk

] ∈ Rn×nblk (12)

andΣ k = diag(σk1 , σk2 . . . , σknblk
) ∈ Rnblk×nblk , (13)

respectively. The weighting of the eigenvectors in Eq. (12) guaran-
tees orthonormality

Φ∗kWΦk = I (14)

under the inner product (8).

3. Streaming SPOD

Two aspects of the batch SPOD algorithmmake it computation-
ally demanding for large datasets. First, nfreq snapshots must be
loaded into memory and operated upon simultaneously in order
to compute the required Fouriermodes. Second, nblk realizations of
the Fourier mode at a given frequency of interest must be loaded
into memory and operated upon simultaneously to compute the
singular value decomposition that produces the SPOD modes. In
the following subsections,wedevelop strategies to overcome these
two challenges, leading to a streaming algorithm that requires ac-
cess to only themost recent data snapshot and recursively updates
the dmost energetic SPODmodes for each frequency of interest. A
graphical illustration of the streaming algorithm is shown in Fig. 2.
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Fig. 1. Illustration of the batch SPOD algorithm. Each rectangular slice represents a snapshot and the numbers in parentheses denote the equations in the text. The data is
first segmented, then Fourier transformed, then reordered by frequency, and finally diagonalized into SPOD modes.

3.1. Streaming Fourier sums

Ideally, a streaming SPOD algorithm would require access to
only one snapshot of the data at a time, e.g., the solution com-
puted in a simulation or measured in an experiment at the most
recent time instant. The batch SPOD algorithm does not have this
property because the discrete Fouriermodes in Eq. (5) are typically
computed using the Fast Fourier Transform (FFT) algorithm, which
requires simultaneous access to nfreg snapshots. This requirement
can be relaxed by computing the Fourier modes using the original
definition of the discrete Fourier transform rather than the FFT
algorithm.

Consider the definition of the discrete Fourier transform,

q̂(l)
k =

nfreq∑
j=1

q(l)
j fjk, (15)

where

fjk = z(k−1)(j−1) (16)

and z = exp(−i2π/nfreq) is the primitive nfreq-th root of unity.
Eq. (15) shows how each snapshot q(l)

j contributes to each Fourier
mode q̂(l)

k – specifically, the snapshot at time j is multiplied by the
complex scalars fjk and then added to the contributions of other
time instances to obtain each Fourier mode.

This observation provides a way to compute the Fourier modes
that requires access to only the most recent data snapshot. A new
snapshot qp will appear in block l if 1 < p− (l− 1)(nfreq− novlp) <

nfreq, inwhich caseq(l)
j is defined by Eq. (4)with j = p−(l−1)(nfreq−

novlp). The snapshot qp can appear in multiple blocks if the overlap
novlp is nonzero. Next, each q(l)

j is multiplied by the corresponding
fjk values for each k = 1, . . . , nfreq and added to previous terms to
give the partial sum[
q̂(l)
k

]
np
=

[
q̂(l)
k

]
np−1
+ q(l)

np fnpk =
np∑
j=1

q(l)
j fjk. (17)

Once np = nfreq for block l, the Fourier mode is recovered as

q̂(l)
k =

[
q̂(l)
k

]
nfreq

. (18)

This procedure has several desirable properties. First, by con-
struction, it requires access to only the most recent data snapshot.
This immediately reduces the memory required to compute the
Fourier modes by a factor of approximately nfreq compared to
a standard FFT algorithm. Second, no approximations have been
made, so the computed Fourier modes are exact. Third, additional
computational andmemory savingmay be obtained by computing
the partial sums in Eq. (17) only for frequencies of interest. Often,
the value of nfreq required to control spectral leakage and aliasing is
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Fig. 2. Illustration of the streaming SPOD algorithm. Numbers in parentheses denote the equations. As soon as a new data snapshot becomes available, the partial Fourier
sums are updated. Once the Fourier sums are completed, the old eigenbases for each frequency are augmented by the orthogonal complement from the new data. The basis
rotation and truncation conclude the update.

larger than the number of frequencies actually needed for analysis.
Standard FFT algorithms automatically compute every frequency,
k = 1, . . . , nfreq, whereas it is straightforward to compute only the
frequencies of interest using the streaming algorithm by including
only those values of k.

Themain drawback of themethod is that computing all nfreq fre-
quencies requires ordernfreq

2 operations, compared tonfreq log nfreq
for an FFT algorithm. However, memory requirements, not opera-
tion counts, are the primary obstacle for applying SPOD to large
datasets. Moreover, the increased operation count can be partially
negated by computing only frequencies of interest, as described
above.

3.2. Incremental updates of the CSD

The second aspect of batch SPOD that hinders its application
to large datasets is the need to store many realizations of each
Fourier mode in memory to compute the modes. To overcome this
obstacle, we develop an algorithm that recursively updates the d
most energetic SPOD modes for each frequency as new Fourier
modes become available from the streaming Fourier algorithm.
We require the updating algorithm to converge a fixed number
of modes d to be able to operate within a strictly limited amount

of memory. We start by adapting Brand’s [13] incremental SVD
algorithm to the special case of updating the eigendecomposition
of the estimated CSD matrix. The best rank-d approximation used
to truncate the eigenbasis and the initialization of the algorithm
are discussed later in Sections 3.3 and 3.4, respectively.

The block-wise sample mean is readily updated through the
recursive relation

q(m)
=

m− 1
m

q(m−1)
+

1
m

⎡⎣ 1
nfreq

nfreq∑
j=1

q(m)
j

⎤⎦ . (19)

Analogously, a rank-1 update of the CSD takes the form

S(m)
k =

m− 1
m

S(m−1)k +
m− 1
m2 x(m)

k x∗(m)
k (20)

and can be performed once the mth Fourier realization q̂(m)
k be-

comes available. Note that we use the sample CSD as an unbiased
estimator for the unknownpopulation CSD. The update formula for
the CSD, Eq. (20), can be rewritten in terms of the data matrix Xk
as

X(m)
k X∗(m)

k =
m− 1
m

X(m−1)
k X∗(m−1)k +

m− 1
m2 x(m)

k x∗(m)
k (21)
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by using definition (9). Analogous to Eq. (7), we denote by

X(m)
k = [x

(1)
k , x(2)k , . . . , x(m)

k ] =
1
√
m

W
1
2 Q̂(m)

k ∈ Rn×m (22)

the datamatrix containing the firstmweighted Fourier realizations
at the kth frequency. We now insert the SVD of the data matrix

X(m)
k = U(m)

k Σ (m)
k V∗(m)

k (23)

into the update formula (21) to obtain an updating scheme

U(m)
k Σ

2(m)
k U∗(m)

k =
m− 1
m

U(m−1)
k Σ

2(m−1)
k U∗(m−1)k +

m− 1
m2 x(m)

k x∗(m)
k (24)

for the eigendecomposition of the CSD at iteration levelm in terms
of the eigendecomposition at level m − 1 and the newly arrived
data x(m)

k . For brevity, we factorize Eq. (24) and consider the data
matrix

X(m)
k =

[√
m− 1
m

U(m−1)
k Σ (m−1)

k V∗(m−1)k

√
m− 1
m2 x(m)

k

]
(25)

=
[
U(m−1)

k x(m)
k

]⎡⎢⎢⎣
√

m− 1
m

Σ (m−1)
k V∗(m−1)k 0

0

√
m− 1
m2

⎤⎥⎥⎦ (26)

instead of the product X(m)
k X∗(m)

k . With the goal in mind to update
U(m−1)

k with the new data x(m)
k , Eq. (25) is factored into the matrix

product given by Eq. (26). We seek to find the updated set of
left singular vectors U(m)

k in the column space of the augmented
eigenbasis

[
U(m−1)

k x(m)
k

]
and start by restoring orthonormality.

The component of x(m)
k that is orthogonal to U(m−1)

k can readily be
found from a partial step of the modified Gram–Schmidt (MGS)
algorithm as

u⊥(m)
k = x(m)

k − U(m−1)
k U∗(m−1)k x(m)

k . (27)

Using Eq. (27), the multiplicand is recast into a product of a mod-

ified multiplicand
[
U(m−1)

k
u⊥(m)
k

∥u⊥(m)
k ∥

]
with orthonormal columns

and a matrix as[
U(m−1)

k x(m)
k

]
=

[
U(m−1)

k
u⊥(m)
k

∥u⊥(m)
k ∥

][
I U∗(m−1)k x(m)

k
0 ∥u⊥(m)

k ∥

]
. (28)

Inserting Eq. (28) into Eq. (26) yields the expression

X(m)
k =

[
U(m−1)

k
u⊥(m)
k

∥u⊥(m)
k ∥

]

×

[
I U∗(m−1)k x(m)

k

0 ∥u⊥(m)
k ∥

]⎡⎢⎢⎣
√

m− 1
m

Σ
(m−1)
k V(m−1)

k 0

0

√
m− 1
m2

⎤⎥⎥⎦ (29)

for the updated datamatrix.Multiplying Eq. (29)with its conjugate
transpose yields the updated CSD

X(m)
k X∗(m)

k =

[
U(m−1)

k
u⊥(m)
k

∥u⊥(m)
k ∥

]
M

⎡⎢⎣ U∗(m−1)k

u⊥∗(m)
k

∥u⊥(m)
k ∥

⎤⎥⎦ , (30)

where

M =
m− 1
m2

[
mΣ (m−1)2

k + U∗(m−1)k x(m)
k x∗(m)

k U(m−1)
k ∥u⊥(m)

k ∥U∗(m−1)k x(m)
k

∥u⊥(m)
k ∥x∗(m)

k U(m−1)
k ∥u⊥(m)

k ∥
2

]
(31)

is a m × m Hermitian matrix. The remaining task is to recast the
right-hand side of Eq. (30) into SVD form. This is achieved through

an eigendecomposition M = ŨΣ̃
2
Ũ∗ of M. Equivalently, we may

factor M as M = KK∗ first, where

K =

√
m− 1
m2

[√
mΣ (m−1)

k U∗(m−1)k x(m)
k

0 ∥u⊥(m)
k ∥

]
= ŨΣ̃ Ṽ∗, (32)

and compute the SVD of K. Inserting the eigendecompositionM =
KK∗ = ŨΣ̃

2
Ũ∗ into Eq. (30) yields

X(m)
k X∗(m)

k =

[
U(m−1)

k
u⊥(m)
k

∥u⊥(m)
k ∥

]
Ũ  

U(m)
k

Σ̃
Σ (m)

k

Σ̃
∗

Ũ∗

⎡⎢⎣ U∗(m−1)k

u⊥∗(m)
k

∥u⊥(m)
k ∥

⎤⎥⎦

= U(m)
k Σ (m)2

k U∗(m)
k . (33)

By noting that Ũ is a rotationmatrix that preserves orthonormality,
the spectral theoremguarantees that this decomposition is unique,
and therefore corresponds to the updated eigendecomposition of
the CSD matrix. The updates of the eigenbasis and eigenvalues
hence take the form

U(m)
k =

[
U(m−1)

k
u⊥(m)
k

∥u⊥(m)
k ∥

]
Ũ and (34)

Σ (m)
k = Σ̃ , (35)

respectively. Besides the rotation (34), the implementation of the
algorithm requires theMGS step (27) and the construction and SVD
of K, as defined in Eq. (32). Note that the large matrices X(m)

k X∗(m)
k

and U(m−1)
k U∗(m−1)k appearing in the derivation are never computed

in the actual algorithm. Up to this point, no approximations have
been made.

3.3. Eigenbasis truncation

The recursive rank-1 updates described by Eq. (34) add an
additional vector to the eigenbasis of the CSDmatrix at each step. In
practice, however, we are interested in converging a fixed number
d of the most energetic SPOD modes only. Fortunately, the basic
property of the SVD guarantees that this best rank-d approxima-
tion is readily obtained by truncating the basis after the dth vector.
Formally, we express this by partitioning the updated eigenbasis
and matrix of singular values as

U(m)
k =

[
U′k

(m) ukd+1

]
andΣ (m)

k =

[
Σ ′k

(m) 0
0 σkd+1

]
, (36)

respectively, and letting

U(m)
k ← U′k

(m) andΣ (m)
k ← Σ ′

(m) (37)

as we update the basis during runtime. At this point, a truncation
error is introduced as the vector component ukd+1 that is orthog-
onal to the retained d eigenvectors is discarded. The batch SPOD
algorithm, on the contrary, guarantees that every eigenvector is
orthogonal to all other nblk − 1 eigenvectors. We address the error
resulting from the basis truncation in Section 4.

As before, the final step of the algorithm consists of obtaining
the SPOD modes by weighting the CSD eigenvectors according to
Φ(m)

k = W−
1
2 U(m)

k = [φ
(m)
k1

, φ
(m)
k2

, . . . ,φ
(m)
kd
] ∈ Rn×d.

3.4. Initialization

Once the first Fourier realization becomes available, the eigen-
basis is initialized as U(1)

k ← [x(1)k , 0, . . . , 0] ∈ Rn×d and
subsequently updated as U(2)

k = [u
(2)
k1

,u(2)
k2

, 0, . . . , 0] at iteration
level m = 2, and so on. Correspondingly, the singular value
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matrix is initialized with the first Fourier realization as Σ (1)
k ←

diag(x∗(1)k x(1)k , 0, . . . , 0) ∈ Rd×d before being updated as Σ (2)
k =

diag(σ (2)
k1

, σ
(2)
k2

, 0, . . . , 0). The truncation of the eigenbasis is per-
formed once the iteration level exceeds the number of desired
SPOD modes, i.e. whenm ≥ d+ 1.

Alternatively, the eigenbasis can be initialized fromapreviously
computed SPOD basis as U(1)

k = W
1
2Φold

k . Initializing the algorithm
with an initial SPOD basisΦold

k obtained from a batch computation
or a streaming computation with a larger value d has the benefit of
reducing the truncation error. This follows directly from the best
rank-d property of the SVD.

4. Errors and convergence

The errors of the approximation can be quantified by comparing
the rank-d solutions at themth iteration level to the reference solu-
tionΦbatch

k andΣ batch
k obtained from the batch algorithmdescribed

in Section 2.

Errors with respect to batch solution. We define two error quanti-
ties

eφ,batch
j (m) =

nfreq∑
k=1

(
1−max

j

⟨
φ
(m)
kj

, φbatch
kj

⟩
E

)
and (38)

eλ,batch
j (m) =

nfreq∑
k=1

⏐⏐⏐⏐⏐λ
(m)
kj
− λbatch

kj

λbatch
kj

⏐⏐⏐⏐⏐ . (39)

that measure the error in the jth eigenvector and eigenvalue,
respectively. The eigenvector error given by Eq. (38) is defined in
terms of the inner product (8) and compares the patterns of two
modes, i.e. it is 0 for identical and 1 for orthogonal modes. The
maximum over the mode rank index is taken to ensure that the
most similar modes are compared to each other. This is important
as similar modes can swap order between iterations.

Convergence with respect to previous solution. Estimates for the
convergence of the eigenvectors and eigenvalues are defined anal-
ogously in terms of their values at the previous iteration levelm−1.
The resulting measures of convergence

eφ,prev
j (m) =

nfreq∑
k=1

(
1−max

j

⟨
φ
(m)
kj

, φ
(m−1)
kj

⟩
E

)
and (40)

eλ,prev
j (m) =

nfreq∑
k=1

⏐⏐⏐⏐⏐λ
(m)
kj
− λ

(m−1)
kj

λ
(m−1)
kj

⏐⏐⏐⏐⏐ , (41)

for the jth eigenfunction and eigenvalue, respectively, can bemon-
itored during runtime.

5. Examples

This section demonstrates the performance of the proposed
streaming SPOD algorithm on two examples. The first example is
a high-fidelity numerical simulation of a turbulent jet [19], and
the second example is optical flow obtained from a high-speed
movie of a stepped spillway experiment [20,21]. Anoverviewof the
databases and SPOD parameters is presented in Table 1. The SPOD
parameters are chosen according to best practice. A discussion of
how to choose them is beyond the scope of this work. The same
applies to detailed physical interpretations of the results. Here,
we focus on the performance and convergence of the streaming
algorithm as compared to its offline batch counterpart. We use
a Hanning window for the Fourier transformation and set the
number of retained SPOD modes to d = 5. The effect of eigenbasis
truncation is discussed in more detail in Section 6.

Table 1
Parameters for the two example databases and the SPOD. The spectral estimation
parameters nfreq , novlp and nblk are identical for batch and streaming SPOD. d is the
number of desired modes for the streaming algorithm.
Database SPOD parameters

Case q nx1 nx2 nt nfreq novlp nblk d

Jet psymm 175 39 10,000 256 128 78 5
Spillway [u, v] 224 160 19,782 512 256 77 5

5.1. Example 1: large eddy simulation of a turbulent jet

The turbulent jet is a typical examples of a stationary flow. A
number of studies, see e.g. [22] for an early experimental and [23]
for a recent numerical example, use SPOD to analyze jet turbulence.
Our first is example is an LES of a Mach 0.9 jet at a jet diameter-
based Reynolds number of 1.01 · 106 [19]. The LES was calculated
using the unstructured flow solver ‘‘Charles" [24]. The database
consists of 10,000 snapshots of the axisymmetric component of the
pressure field obtained as the zeroth azimuthal Fourier component
of the flow. We choose to resolve 129 positive frequencies by
setting nfreq = 256. Each block therefore consists of 256 snapshots.
We further use a 50% overlap by letting novlp = 128. This results
in a total of 77 blocks for the spectral estimation, each of which
represents one realization of the temporal Fourier transform. The
first snapshot of the database is visualized in Fig. 3. The chaotic
nature of the flow becomes apparent at first glance.

Fig. 4(a) shows the batch SPOD spectrum obtained for the
spectral estimation parameters listed in Table 1. Each line repre-
sents the energy spectrum associated with a single mode index
j. The total number of modes is equal to the number of blocks,
i.e. nblk = 77 in this example. Most of the energy is concentrated
in the large-scale structures that dominate at low frequencies. The
roll-off of the distribution at higher frequencies is indicative of
an energy cascade that transfers energy from larger to smaller
scales. Over a certain frequency interval 0.1 ≲ f ≲ 0.6, the first
mode is significantly more energetic that the other modes. This
low-rank behavior has important physical implications discussed
elsewhere [25]. The spectra of the five leadingmodes are replicated
in Fig. 4(b) and compared to the results obtained using streaming
SPOD (◦ symbols). It can be seen that the two results are almost in-
distinguishable. This provides a first indication that the streaming
SPOD algorithm accurately approximates the SPOD eigenvalues.
We will quantify this observation in the context of Fig. 6.

After establishing that the modal energies are well approxi-
mated by the streaming algorithm, we next examine the modal
structures. Fig. 5 shows a side-by-side comparison of the first (j =
1), third (j = 3) and fifth (j = 5) modes at two representative
frequencies (f = 0.1, top half and f = 0.6, bottom half). The
leading modes (first and fourth row) computed using streaming
SPOD are almost indistinguishable from the reference solution for
both frequencies. The thirdmodes (second and fifth row) still com-
parewell. More differences become apparent for the fifthmodes. It
has to be kept in mind though, that the subdominant modes are in
generalmore difficult to converge. This exemplifies the importance
of being able to converge second-order statistics from long data
sequences.

In Fig. 6, we next investigate the errors and convergence be-
havior for the jet example in terms of the quantities defined in
Eqs. (38)–(41). The eigenvalue error in Fig. 6(a) drops by approx-
imately one order of magnitude from beginning to end. As an-
ticipated from Fig. 4(b), the eigenvalue error is generally small,
i.e. below the per mil range after the first iteration. The eigen-
value convergence is addressed in Fig. 6(b). Starting from the end
of the initialization phase (gray shaded area), the convergence
measure drops by about two orders of magnitude. The error and
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Fig. 3. Fluctuating pressure of the first snapshot of the turbulent jet LES: (a) streamwise plane; (b) symmetric pressure component only. The boundary layer inside the
nozzle is turbulent, whereas the flow inside the potential core is laminar. The potential core collapses after approximately 5 jet diameters.

Fig. 4. SPOD energy spectra of the turbulent jet obtained using batch SPOD and streaming SPOD: (a) all nblk = 77 eigenvalues computed using batch SPOD (−−−); (b) d = 5
leading eigenvalues calculated using streaming SPOD (◦). The batch solution (−−−) is shown for comparison. j indicates the mode index from black (j = 1, most energetic)
to light gray (j = nblk in (a) and j = d in (b), least energetic).

Fig. 5. Side-by-side comparison of SPOD modes of the pressure field calculated using batch SPOD (left column) and streaming SPOD (right column) for the jet example.

convergence of the eigenvectors are investigated in Fig. 6(c) and
6(d), respectively. It is observed that the eigenvector error drops
monotonically for all fivemodes. The similarity of the leading batch
and streaming SPODmodes previously seen in Fig. 5 is reflected by

the small error of 0.6%. Similarly, the differences in the fifth modes
result in a 25% error according to themetric. Since the eigenvalue is
accurately predicted at the same time, we conclude that this large
error is primarily a result of the slow statistical convergence of the
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Fig. 6. Streaming SPOD error and convergence for the turbulent jet: (a) eigenvalue error; (b) eigenvalue convergence; (c) eigenvector error; (d) eigenvalue convergence. The
magenta lines show the cumulative error in (a, c) and themean of the convergencemetric in (b, d), respectively. The shaded area demarcates the initial region 1 ≤ m ≤ d+1
in which the eigenbasis is still rank deficient.

subdominant modes. The inset in Fig. 6(d) exemplifies this slow
convergence. After about 50 iterations, the errors of most modes
are below 1%.

5.2. Example 2: optical flow of a stepped spillway

The secondexample is that of a laboratory stepped spillway [20].
Stepped spillways are hydraulic structures designed to control
flow release and to achieve high energy dissipation. The two-
phase flow of the laboratory spillway is filmed using a high-
speed camera and an optical flow algorithm [21,26] was used to
estimate the streamwise and normal velocity components of the
air–watermixture. The parameters of the optical flow database are
summarized in Table 1.

Fig. 7 shows an example of the raw video data and a processed
snapshot of the instantaneous streamwise velocity component. As
for the jet example, we will not address the complex multi-phase
physics of the setup, but focus on the performance of the stream-
ing SPOD algorithm instead. We have selected the spillway as a
second example to investigate the algorithm’s performance under
high noise conditions. The high noise level of the measurement is
apparent in Fig. 7(b).

As before, spectra obtained using batch SPOD and the streaming
version are compared in Fig. 8. It is observed that the modal
energies asymptote towards a constant value for f ≳ 200. The
plateau seen at these frequencies indicates the noise floor of the
measurement. An inspection of the SPOD modes confirms this
conjecture. Modes in this region are dominated by noise and show
no apparent structure (not shown).

The comparison in Fig. 9 shows that the SPODmodes computed
using the streaming algorithm closely resemble their batch SPOD
counterparts. At the lower frequency (left), the SPOD modes are

comprised of surface waves and oscillations of the shear-layer be-
tween the step ridges. Surface waves are the dominant structures
at higher frequencies (right). Increasingly high noise levels are
observed in the less energetic modes, in particular for the higher
frequency case.

The eigenvalue error is studied in Fig. 10(a). Initially, the error
is significantly larger as compared to the turbulent jet case shown
in Fig. 6(a). Subsequently, a faster drop-off allows the eigenvalue
error to recover values similar to those found for the jet example.
The eigenvalue convergence behavior shown in Fig. 10(b) is very
similar to that of the jet example.

The eigenvector error and convergence are plotted in Fig. 10(c)
and 10(d), respectively. Both metrics occasionally undergo rapid
changes, most prominently at iteration level m = 45. Sudden
drops in the error are directly associated with peaks in the con-
vergence measure. This behavior occurs when an eigenvector in
the truncated basis gets replaced by a different structure. The re-
orthogonalization of the eigenbasis after such an event leads a
better correspondence with the batch solution. At the same time,
the convergence measure spikes as a result of the change in modal
structure. The error ranges between 10% (firstmode) and 44% (fifth
mode). The similarity of themodes depicted in Fig. 9 and the lower
errors in the jet case, as seen in Fig. 6, strongly suggest that these
relatively high errors are mainly associated with measurement
noise.

6. Effect of eigenbasis truncation

Spectral estimation parameters aside, the desired number of
SPOD modes d is the only additional user input required by the
streaming algorithm. The basis truncation inevitably leads to an
approximation error that originates from discarding the vector
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Fig. 7. First snapshot of the stepped spillway: (a) raw video frame; (b) streamwise velocity computed using optical flow. The air–water flow is characterized by instability
growth, air entrainment and strong turbulence.

Fig. 8. Same as Fig. 4, but for the spillway example.

Fig. 9. Side-by-side comparison of SPOD modes calculated using batch SPOD (first and third column) and streaming SPOD (second and fourth column) for the spillway
example. The streamwise velocity is shown.

component orthogonal to the span of the existing basis vectors
U(m−1)

k .
Fig. 11 compares eigenvalue and eigenvector errors of the first

SPOD mode for four different values of d. The jet and spillway
examples are shown in Fig. 11(a, b) and 11(c, d), respectively. It
is observed that even restricting the basis to a single vector, i.e. the
most aggressive truncation possible, does not lead to significant
errors. For d ≥ 5, all error metrics shown in Fig. 11(a–c) are almost

indistinguishable. Small differences are observed in the eigenvec-
tor error for the spillway example. In 11(d), the eigenvector error
ranges between 10% for d = 5 and 2% for d = 20. As discussed in
Fig. 9, this discrepancy is mainly related to data noise.

After establishing that retaining only a few eigenvectors is
sufficient to control the truncation error, we now focus on the
effect of truncation on the suboptimal modes. Analogous to Fig. 11,
we compare the truncation errors of the fifth mode in Fig. 12.
Its error characteristics are similar to the ones of the first mode.
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Fig. 10. Same as Fig. 6 but for the spillway example.

Fig. 11. Eigenvalue (left column) and eigenvector (right column) errors of the first SPOD mode for different numbers of basis vectors d: (a, b) turbulent jet; (c, d) spillway.

This can be seen by comparing Fig. 12(a, b) to Fig. 11(a, b). By
increasing the basis size to d = 10, the final truncation errors
are noticeably reduced, but adding more vectors does not lead to
further reduction of the already low errors. For the spillway case
shown in Fig. 12(c, d), the effect of noise in the data becomes
apparent oncemore. Here, increasing the basis size from d = 10 to
d = 25 reduces both the eigenvalue and eigenvector errors. At the

same time, however, the earlier comparison of the mode shapes
in Fig. 9 demonstrated that the coherent large-scale structures are
accurately captured, even for d = 5.

The truncation error analysis suggests that the basis size d
should be chosen somewhat larger than the desired number of
modes. It is also important to emphasize that the definitions of the



108 O.T. Schmidt and A. Towne / Computer Physics Communications 237 (2019) 98–109

Fig. 12. Eigenvalue (left column) and eigenvector (right column) errors of the fifth SPOD mode for different numbers of basis vectors d: (a, b) turbulent jet; (c, d) spillway.

truncation errors rely on the batch solution as a reference, which
itself may not be statistically fully converged.

7. Discussion

In this work, we introduce an algorithm that recursively up-
dates the SPOD of large or streaming datasets. In Sections 4–6,
we demonstrate that the algorithm is capable of converging the
most energetic SPOD modes while lifting the requirement to store
potentially prohibitively large amounts of data.

The batch algorithm requires storage of nx × nvar × nt data
points plus another nx × nvar ×

( nfreq
2 + 1

)
× nblk points for

the spectral estimation of a real signal. In its simplest imple-
mentation, all data is loaded into memory simultaneously. If the
dataset is too large to be stored in memory, the nblk temporal
Fourier transforms can be computed a priori and stored, fully
or partly, on hard drive, and then be reloaded and processed
frequency by frequency. The drawbacks of this approach are the
significantly longer computing time resulting from the read/write
operations, and the additional storage requirements. For higher-
dimensional data, e.g. three-dimensional fields, snapshots totaling
multiple terabytes are likely to be required to converge the second-
order statistics, in particular those of subdominant modes. In
such cases, batch SPOD may become computationally intractable
altogether.

The streaming SPOD algorithm, on the other hand, has a much
lower storage requirement of nx × nvar × n′freq + nx × nvar ×(

n′freq
2 + 1

)
× d data points for X(m)

k and U(m)
k , respectively, plus a

number of small fields that do not scale with the large dimensions
in space and time. Here, n′freq ≤ nfreq is the number of frequencies
to be analyzed. Ideally, X(m)

k and U(m)
k are stored and updated in

memory during runtime. Besides its low storage requirements, the
algorithm achieves computational efficiency by employing MGS
steps for the orthogonalization.

A useful implication of the ergodicity assumption is that it
offsets the need to store a single long time-series. In Section 3, we
used overlapping blocks to increase the number of Fourier samples
in cases where the total number of snapshots is limited. A quite
different scenario occurs when dealing with fast data streams. In

such a scenario, we can take advantage of the fact that ergod-
icity permits arbitrarily long gaps between sampling periods of
two consecutive data blocks X(m)

k and X(m+1)
k . This is advantageous

in experimental setups such as time-resolved particle image ve-
locimetry (TR-PIV). It suffices to utilize nfreq consecutive snapshots
at a time, perform the computationally costly cross-correlations
to obtain velocity data, and update the SPOD eigenbasis before
continuing to sample data. This procedure allows, in principle,
to converge second-order flow statics over arbitrarily long time
horizons.
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