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Reducing the cost of shadowing-based adjoint
sensitivity analysis for turbulent flows

By P. J. Blonigan†, S. M. Murman‡ AND A. Towne

Adjoint-based sensitivity analysis methods are powerful tools for engineers who use
flow simulations for design. However, the conventional adjoint method breaks down for
scale-resolving simulations such as large-eddy simulation (LES) or direct numerical simu-
lation (DNS), which exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity
analysis based on least-squares shadowing (LSS) avoids the issues encountered by conven-
tional methods, but has a high computational cost. This report analyzes some properties
of one approach, non-intrusive LSS (NILSS), and discusses the implications for compu-
tational cost reductions of the approach. We find that there are opportunities to con-
siderably reduce the cost of NILSS, but simple linear dimension reduction will not suffice.

1. Introduction

Scale-resolving simulations such as LES are necessary for engineering design and flow
analysis, most notably flows in which jets, wakes, and separation dominate. In these
cases, the Reynolds-averaged Navier-Stokes (RANS) solvers typically used by today’s
engineers often fail to accurately capture the relevant flow physics (Leonard et al. 2015).
At the same time, engineers are interested in gradient-based design optimization, error
estimation, and uncertainty quantification with flow simulations. All of these require effi-
cient approaches for sensitivity analysis. Unfortunately, conventional sensitivity analysis
approaches such as the adjoint method do not compute accurate sensitivities for statis-
tically stationary quantities of interest in scale-resolving turbulent flow simulations such
as LES or DNS (Blonigan et al. 2018). This is because, unlike RANS, LES and DNS
resolve the chaotic dynamics of turbulent fluid flows (Keefe et al. 1992), and the adjoint
method computes unusable sensitivities for chaotic systems (Lea et al. 2000).
Shadowing-based sensitivitiy analysis has shown great promise for computing accurate

sensitivities of statistically stationary quantities in chaotic dynamical systems. These
approaches are based off on LSS introduced in Wang et al. (2014). LSS has been shown
to compute accurate sensitivities for a number of chaotic dynamic systems, including a
two-dimensional airfoil with chaotic vortex shedding (Blonigan et al. 2018). However, this
study also demonstrated the excessive computational costs of LSS. Recently, NILSS was
used to compute sensitivities for chaotic flow around a cylinder (Ni & Wang 2017) and the
minimal flow unit, a channel flow with a truncated domain (Blonigan 2017). In the latter
study, NILSS was used to compute the adjoint field for the minimal flow unit, and the
adjoint field provided insight into the near-wall flow structures and turbulent bursting
events (Blonigan 2017). However, both studies demonstrated the high cost of NILSS,
which scales with the number of positive Lyapunov exponents present in a simulation.
This number is most likely very large for flows of practical interest (Keefe et al. 1992;
Blonigan et al. 2016).
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This report analyzes the potential for cost reductions of NILSS. Specifically, the en-
semble of tangent equations is analyzed, as this part of the NILSS algorithm contributes
most of the computational cost.

2. Breakdown of conventional sensitivity analysis

Consider a flow simulation with the following nonlinear governing equations

du

dt
= f(u; s) (2.1)

where u is a length n vector of state variables and s is some system parameter. For a
three-dimensional compressible flow simulation, u contains the five conserved quantities
at all degrees of freedom (grid points). The parameter s could be a flow parameter such
as the freestream Mach number or a geometric parameter such as chord length.
When designing a system with unsteady flow, engineers are often interested in a time-

averaged quantity J̄ ,

J̄(s) =
1

T

∫ t0+T

t0

J [u(t; s); s] dt, (2.2)

where J [u(t; s); s] is some instantaneous quantity of interest, such as the lift or drag
on an airfoil. In many cases, including applications with turbulent flow, engineers are
interested in infinite time averages, J̄ as T → ∞. Since the exact evaluation of this is
not computationally feasible, the infinite time average is approximated with a choice of
T that ensures J̄(s) is nearly stationary (i.e. does not vary with T ) (Oliver et al. 2014).
Sensitivities with respect to the parameter s can be computed using the following

equation obtained by differentiating Eq. (2.2)

dJ̄

ds
=

1

T

∫ t0+T

t0

(〈
∂J

∂u
, v

〉
+
∂J

∂s

)
dt, v ≡ ∂u

∂s
, (2.3)

where 〈·, ·〉 is the inner product and all variables on the right-hand side are time depen-
dent.
Conventionally, the tangent solution, v, is obtained from the linearization of Eq. (2.1),

referred to as the tangent equation

dv

dt
=
∂f

∂u
v +

∂f

∂s
, v(t0) =

∂u0
∂s

= 0. (2.4)

The conventional approach using Eqs. (2.3) and (2.4) to compute sensitivities works for
periodic and quasi-periodic systems if the time horizon is an integer number of periods
or if windowing is used. However, it fails for chaotic dynamical systems because chaotic
systems have at least one positive Lyapunov exponent. That is, the unsteady tangent
equations for a chaotic dynamical system will grow exponentially in time when exposed
to certain perturbations. Although the initial condition for the tangent equation, Eq.
(2.4), is zero, the term ∂f/∂s acts like a forcing term, which almost always contains
components that align with the unstable subspace, leading to exponential growth of the
tangent solution.
The exponential growth of the magnitude of v(t) means that as the time horizon

length T is increased, the gradient computed using Eq. (2.3) grows exponentially as
well. This means that conventional sensitivity analysis will compute very large, unusable
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sensitivities for chaotic dynamical systems such as scale-resolving flow simulations includ-
ing LES. This result was explained using forward sensitivity analysis, but conventional
adjoint-based sensitivity analysis encounters the same exponentially growth backward in
time.

3. Non-intrusive least-squares shadowing

One approach to avoid the breakdown discussed in the previous section is LSS (Wang
et al. 2014). Although LSS can compute accurate sensitivities, these sensitivities come
at a relatively high cost, most of which comes from solving a minimization problem that
scales with the product of spatial degrees of freedom and the number of discrete time
steps within the time horizon of interest, t0 < t < t0 + T . NILSS reduces the size of
this minimization problem considerably. Specifically, in NILSS the following alternative
minimization problem is solved

min
v(ti)

K∑

i=0

‖v(ti)‖22, s.t.
dv

dt
=
∂f

∂u
v +

∂f

∂s
+ ηf, t ∈ [t0, tK ], (3.1)

where η is chosen so that 〈v(t), f [u(t); s]〉 = 0. Now the tangent solution norm ‖v(t)‖2
is minimized at K + 1 checkpoints ti instead of at all time steps between t0 and tK . In
this case, the minimization problem, Eq. (3.1), can be solved with a Kn×Kn Karush-
Kuhn-Tucker (KKT) system.
The size of the minimization problem can be further reduced by decomposing the tan-

gent solution v(t) into a weighted combination of one forced and p unforced components,
v̂(t) and W j(t), respectively,

v(t) = v∗i (t) +Wi(t)αi, ti−1 ≤ t < ti, (3.2)

dv∗i
dt

=
∂f

∂u
v∗i +

∂f

∂s
+ η∗f, ti−1 ≤ t < ti, (3.3)

dW j
i

dt
=
∂f

∂u
W j

i + ηjf, ti−1 ≤ t < ti, (3.4)

where αi is a length-p vector, Wi is a n× p matrix, and W j
i is the jth column of Wi.

This decomposition allows the minimization statement, Eq. (3.1), to be written as a
minimization over the weights αi at each checkpoint ti rather than the entire tangent
solution v(ti). Since exponentially growing components of v(t) will contribute the most
by far to ‖v(ti)‖22, Eq. (3.1) can be approximated by setting Wi(ti) equal to a set of
vectors spanning the unstable subspace at ti. This choice of Wi(ti) reduces the size of
the KKT system to Kp×Kp.
Setting Wi(ti) to span the unstable subspace allows αi to be chosen such that the

solutions of Eq. (3.4) can cancel out the exponential growth in the solution v̂(t) of Eq.
(3.3), resulting in no exponential growth in v(t). This means that the number of unforced
tangents p should be at least the number of positive Lyapunov exponents, n+. Past
studies, including those by Pulliam & Vastano (1993), Keefe et al. (1992), and Sirovich
& Deane (1991), have found n+ to be a small fraction of n for a range of different flows.
The implementation of adjoint NILSS is an algorithm comprised of three main parts.

These parts are summarized below, and Appendix A contains the entire NILSS algorithm.
Readers are referred to Blonigan (2017) for the derivation and further details on the
approach.

187



Blonigan, Murman & Towne

In the first part of the NILSS algorithm, at least n+ tangent solutions are solved over
the time horizon of interest. A QR decomposition is computed of the n × n+ matrices
Wi(ti) at allK checkpoints. In the second part, the Rmatrices from these decompositions,
along with the gradient contribution gi from each segment (see appendix A) are used to
form the NILSS KKT linear system.




R1R
T
1 + I −R2

−RT
2 R2R

T
2 + I −R3

. . .
. . .

. . .

−RT
K−1 RK−1R

T
K−1 + I −RK−1

−RT
K RKR

T
K + I







ψ1

ψ2

...
ψK


 =




R1g1 − g2
R2g2 − g3

...
RKgK


 .

(3.5)

The third and final part of the algorithm involves solving the following adjoint equation
over all K time segments in reverse from K to 1.

−dŵ
dt

=
df

du

∣∣∣∣
T

t

ŵ +
1

∆T

∂J

∂u

∣∣∣∣
t

. (3.6)

The terminal condition of the adjoint in each segment depends on the next segment
and the solution of the NILSS KKT system (3.5). Finally, the sensitivity can be computed
using the conventional adjoint sensitivity equation

dJ̄

ds
=

∫ tK

t0

∂f

∂s

∣∣∣∣
T

t

ŵ(t) dt+
∂J̄

∂s
. (3.7)

In practice, the vast majority of the cost of NILSS is from step 5 in the first algorithm,
A, solving the tangent equations (Blonigan 2017). Therefore, the cost of NILSS for a
given flow simulation scales roughly with the number of positive Lyapunov exponents, n+.
Although n+ is much smaller than n, it is still relatively large for scale-resolving turbulent
flow simulations. For example, Blonigan et al. (2016) estimated n+ to be roughly 1500
for Reτ = 180 channel flow in a 4π× 2× 2π domain. This means that NILSS would cost
roughly 1500 times as much as a primal solution for a given time horizon.

4. Tangent equation ensemble cost

Since the cost of NILSS scales with the cost of the ensemble of tangent equations,
reducing the cost of this ensemble is the most effective way to reduce the overall cost of
NILSS. To achieve this cost reduction, further understanding of the tangent equations
and the unstable subspace for turbulent flows is required.

4.1. Tangent solution accuracy requirements

One way to reduce computational costs is to approximately compute the ensemble of
tangent equations. For instance, if one were solving the tangent equations with implicit
time stepping, the residual tolerance for the tangent could be made lower than that for
the primal equations. One could also consider using reduced-order models of the tangent
equation, which can be very inexpensive but have some error associated with them.
To study how accurately the tangent equations should be solved, a simple error model

is added to the discrete homogeneous tangent equation
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Figure 1. Distribution of the sensitivity dJ̄/dc for a fixed primal solution u(x, t) but different
values of ǫ (a) and β (b). Note that β = 0.0 in (a) and ǫ = 0.01 in (b). Dotted lines indicate
the sensitivity computed by NILSS with the true tangent equations. All cases were run with a
T = 500 time horizon and K = 50 segments. 100 sample runs with random Q0 were performed
for each ǫ, β pair.

dW
′j
i

dt
=

(
∂f

∂u
+ ǫS

)
W

′j
i + β, ti−1 ≤ t < ti, (4.1)

where S is a diagonal matrix whose main diagonal entries are random numbers sampled
from a uniform distribution U(−1, 1), ǫ is the amplitude of the error term, and β is a
bias term. This error model ensures that the error amplitude remains proportional to
the tangent, which is important since the tangent grows exponentially for the unstable
directions, quickly rendering a fixed amplitude error forcing term negligible.
To demonstrate this error model, the Kuramoto-Sivashinsky (K-S) equation is used.

The K-S equation exhibits spatio temporal chaotic behavior for just one spatial dimen-
sion, making it an inexpensive surrogate for turbulence. This report considers the K-S
equations with the same numerical discretization, parameters, and boundary conditions
as in the report by Blonigan & Wang (2014). As for Blonigan & Wang (2014), the in-
stantaneous objective function is the spatial average of the primal solution u(x, t)

J(u) =

∫ L

0

u(x) dx.

Sensitivities were taken with respect to the linear convection parameter c defined by
Blonigan & Wang (2014).
Figure 1 shows the effect that ǫ and β have on the sensitivities computed using NILSS

for a given solution u(x, t). Noise on the order of 1% of ‖v(t)‖2 created by setting ǫ = 0.01
has little effect on the accuracy of NILSS; the sensitivities are distributed tightly around
the “true” NILSS sensitivity computed for ǫ, β = 0.0. Setting ǫ = 0.1 has some effect, but
the tails of the sensitivity distribution remain within ±10% of the true NILSS sensitivity.
Noise on the order of ‖v(t)‖2 causes sensitivities to be widely distributed. Figure 1(b)
shows that the bias β has a much larger impact on the accuracy of the sensitivity.
Figure 2 shows the adjoint magnitude versus time for the same realizations considered

for Figure 1. Note that the adjoint remains bounded in all cases, although solutions
for higher values of ǫ and β can have some exponential growth. These results and the
sensitivity distributions in Figure 1 suggest that NILSS is robust to zero-mean errors
on the order of 1–10%. These results also suggest that NILSS can compute accurate
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Figure 2. NILSS adjoint L2 norms versus time for the adjoints used to generate Figure 1. Thick
lines show the magnitude of the conventional adjoint, which grows exponentially backward in
time.

sensitivities even if the tangent and adjoint equations are not discretely consistent since
the noise term in Eq. (4.1) is not included in the adjoint equations in this study.
Finally, note that increasing the segment size for a fixed value of η will increase the

variance of the gradient and cause the adjoint to grow exponentially in magnitude. This
means that if the accuracy of the tangent equation is relaxed for NILSS care needs to be
taken when selecting a segment size. If it is too long, the error will dominate the tangent
solution, and NILSS will fail.

4.2. Evolution and structure of the unstable subspace

A necessary precondition for reduced-order models of the tangent equation is that the
tangent solution must inhabit a low-dimensional manifold. For NILSS, this means that
reduced-order models are of use if the unstable subspace or subsets of the unstable
subspace can be approximated on a low-dimensional vector space of some sort. To explore
the applicability of projection-based reduced-order models to unsteady tangent equations,
this report investigates how the unstable subspace evolves over time.
We use covariant Lyapunov vectors (CLVs) as they correspond to specific time scales

(Lyapunov exponent reciprocals) and are norm invariant. The CLVs ψ1(u), ψ2(u), ..., ψn(u)
correspond to each Lyapunov exponent Λi and satisfy the evolution equation (Ginelli
et al. 2007)

d

dt
ψi[u(t)] =

∂f

∂u

∣∣∣∣
u(t)

ψi[u(t)]− Λiψi[u(t)]. (4.2)

Note that Eq. (4.2) is a linearization of Eq. (2.1) with an additional term −Λiψi(u(t)).
Lyapunov exponents and covariant vectors can be computed for numerical simulations.
For this report, Lyapunov exponents and CLVs are computed using the algorithms pre-
sented by Benettin et al. (1980) and Ginelli et al. (2007), respectively.

4.2.1. Evolution of the unstable subspace

First, we wish to determine if any part of the unstable subspace at time ti, Qi is useful
at other times tj 6= ti. In other words, we wish to know whether the orthonormal basis of
the unstable space at time ti can be used to approximate the tangent space at a nearby
time tj . This can be done for a given CLV ψk[u(tj)] by projecting it onto an unstable
subspace Qi and determining which portions of Qi the CLV is parallel to. This can be
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Figure 3. Figure showing projection accuracy [akij ]
T akij for Λ1 (a), Λ80 (b), and Λ159 (c) for

j = i+ 1. The first two modes are unstable (Λk > 0), while the third is nearly neutrally stable
(Λk ≈ 0). [akij ]

T akij for each individual segment are in grey, while their mean is in black.

done by computing the length-p weight vector akij defined as

akij = QT
i

ψk(u(tj))

‖ψk(u(tj))‖2
. (4.3)

Since ψk(u(tj)) is normalized, the nth component of akij is the cosine of the angle

between ψk[u(tj)] and the nth column ofQi. Therefore, [a
k
ij ]

Takij indicates how accurately

Qi resolves ψ
k[u(tj)]. If [a

k
ij ]

Takij = 1, then ψk[u(tj)] can be resolved exactly by the span
of Qi. The same idea applies to subsets of columns of Qi.
To study the unstable subspace for a tubulent flow, we consider the minimal turbu-

lent flow unit for near-wall turbulence originally presented by Jimenez & Moin (1991).
Specifically, a πδ × 2δ × 1.34πδ minimal channel with Reδ = 3000 and Reτ = 140.0 is
considered. Details on the numerical solver and turbulent statistics used are presented
by Blonigan (2017).
The CLVs are computed from 200 time segments of length 2.5te, where te is the eddy

turnover time defined as

te = δ/U.

Figure 3 shows [akij ]
T akij for several CLVs. Overall, it seems that the unstable subspace

from one time is not very useful for other times. Even when every column of Qi is used,
ψk(u(ti+1)) is poorly resolved, since [akij ]

Takij ≈ 0.12 averaged over all time segments.
Note that similar results were obtained for the K-S equation. We conclude that knowledge
of the unstable subspace at one time does not help with resolving instabilities at other
times.
This shows that a projection-based model would not gain much accuracy by using

unstable directions computed at other times, even for neutrally stable CLVs, which have
relatively slow time scales by definition. The flow instabilities corresponding to various
eddies appear, convect, and eventually dissipate along with the eddies themselves. Al-
though there are many eddies of similar size with similar instability mechanisms, they will
occur at different locations and times. A linear basis vector will only know one instability
on one eddy at one spatial location.
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Figure 4. Matrix of angle cosines between CLVs for the minimal flow unit at two different
times, t = 100te (a,b) and t = 175te (c,d). Matrices (b) and (d) are reordered using hierarchical
clustering.

4.2.2. Structure of the unstable subspace

CLVs can also be used to study the structure of the unstable subspace and the strange
attractor as a whole. Potential partitioning of the unstable subspace is studied by cluster-
ing the angle cosines between unstable CLVs. Clustering groups CLVs with small angles
between them together. The small angles indicate some overlap or coupling between the
instabilities. A hierarchical clustering approach is used with a Euclidean distance metric
and average linkage clustering, also known as the UPGMA algorithm (Sokal & Michener
1958)
Figure 4 shows several snapshots of the cosine matrix for the minimal turbulent flow

unit. The clustering algorithm reordered the indices, grouping CLVs with a small angle
close to one another. Each snapshot has a number of pronounced groupings, indicated by
the darker blocks along the main diagonal. These blocks also typically have very small
off-diagonal components, which means that although the CLVs in the group are only
separated by small angles, they are nearly orthogonal to the rest of the CLVs. However,
it appears that these groups vary in time, so CLVs that are close at one time can be
nearly orthogonal at another time.

5. Conclusions

Although chaotic sensitivity analysis approaches such as NILSS are computationally
expensive, there might be some ways to reduce their cost. Firstly, the unstable subspace
can still be resolved with sufficient accuracy for NILSS with approximate tangent equa-
tion solutions. This has been demonstrated by modeling errors in the tangent equation
with stochastic forcing when computing the unstable subspace for NILSS. Therefore,
coarse discretizations or reduced-order models could be used in place of the full tangent
equation in the most expensive part of the NILSS approach, which could reduce the cost
of NILSS considerably.
Second, we found that using a fixed linear basis for reduced-order models of the tan-

gent will not work well. For the minimal flow unit, the entire unstable subspace varies
significantly with time, and snapshots of it do not form a basis from which the tangent
can be resolved accurately. Also, although the CLVs can be grouped together into clus-
ters with small angles between them, these clusters vary significantly over time. Overall,
these results suggest that linear dimension reduction is insufficient for the tangent of tur-
bulent flow fields. What is likely needed is nonlinear dimension reduction with some sort
of manifold learning approach, which has been used to great effect in computer vision.
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Appendix A. Adjoint NILSS algorithms

Algorithm 1 Adjoint NILSS

Inputs Initial condition for the governing equations u0, Spin-up time t0, Specified
time horizon and checkpoints t0, t1, ..., tK

Outputs Sensitivities dJ̄/ds

1: Compute u(t) by solving Eq. (2.1) until t = t0.
2: Set W1(t0) = Q0, where Q0 is some n× p unitary matrix.
3: for i = 1 to K do
4: Solve for u(t) from ti−1 to ti using Eq. (2.1).
5: Solve for each column of W ′

i (t) from ti−1 to ti using Eq. (3.4) with ηp = 0.
6: Compute and save

gTi,1 =
1

∆T

∫ ti

ti−1

∂J

∂u

∣∣∣∣
T

t

W ′
i (t) dt.

7: Compute and save FtiW
′
i (ti), where Fti = f(u(ti); s)f(u(ti); s)

T /‖f(u(ti); s)‖22.
8: Compute Wi(ti) = PtiW

′
i (ti), where Pti = (I − Fti).

9: Compute QiRi =Wi(ti) with a QR decomposition. Save Qi and Ri.
10: Set W ′

i+1(ti) = Qi.
11: end for
12: for i = 1 to K do
13: Compute and save gTi = gTi,1 + (1/∆T )

(
J̄ − J(u(ti); s)

)
FtiW

′
i (ti).

14: end for
15: Form and solve the adjoint KKT system Eq. (3.5).
16: for i = K to 1 do
17: if i = K then
18: ŵ(tK) = xK − PtKQKψK ,
19: else
20: ŵ(t−i ) = Pti(I −QiQ

T
i )ŵ(t

+
i ) + xi − PtiQiψi

21: end if
22: Solve Eq. (3.6) with terminal condition ŵ(ti) from ti to ti−1.
23: end for
24: Compute sensitivities with the conventional adjoint sensitivity equation, Eq. (3.7).

Note that

xi =
1

∆T

(
J̄ − J(u(ti); s)

) f(u(ti); s)

‖f(u(ti); s)‖22
.
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