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Analysis and prediction of rare events
in turbulent flows

By P. J. Schmidf, O. T. Schmidt{, A. Towne AND M. J. P. Hack

Turbulent shear flows are characterized by an interplay of many scales that describe
persistent, quasi-invariant motion as well as violent, intermittent events. A data-driven
computational framework, based on the decomposition of an embedded phase-space tra-
jectory together with a community-identification step, will be introduced to properly
describe and analyze these slow-fast dynamics. The framework combines elements of
dynamic system theory with network analysis, and is applied to data-sequences from a
reduced model of the turbulent self-sustaining process (SSP) in wallbounded shear flows.
Its effectiveness in detecting and quantifying structures and in laying the foundation for
their targeted manipulation will be assessed.

1. Introduction and motivation

Numerical simulations and experiments of turbulent fluid motion are characterized by
a vast range of temporal and spatial scales. Nonetheless, over the past decades, we have
succeeded in systematizing and deconstructing turbulent flows into widely acknowledged
coherent structures (e.g., streaks, hairpin vortices, etc.) interspersed with short-lived,
violent events (e.g. bursts). The search for the essential mechanisms underlying and
sustaining turbulence, e.g., by studying minimal-channel units (Jimenez & Moin 1991)
or otherwise restricting scales, has identified persistent, quasi-periodic motion (of large-
scale and very large-scale, streaky structures) as well as intermittent, instability-triggered
breakdown and reorganization of these structures. Characteristic turbulence features,
such as production, dissipation and intermittency, can be associated with these events
and the statistics of their occurrence in simulations and experiments. Further progress
in analyzing and manipulating turbulent fluid motion has to recognize these dynamic
structures, and our current computational and mathematical tools have to be adapted
to them.

From a control-theoretic point of view, while it seems feasible to control (or delay)
transitional flows, it appears too ambitious (and misguided) to aim at relaminarizing
high-Reynolds number flows. From minimal-unit investigations (Jimenez & Moin 1991),
we have learned that a significant part of turbulence activity is concentrated in the
intermittent events (bursts). It appears more promising then, to concentrate on these
extreme events and design strategies to reliably predict and perhaps, manipulate them.

The starting point of our analysis is a description of time-evolving processes using a
dynamical systems approach in phase space combined with set-theoretic methods to char-
acterize the dynamics Schmid et al. (2017). More specifically, the dynamic evolution of
the flow fields will be described by a path in a suitably chosen phase space that converges
towards and diverges from coherent building blocks. A hierarchy of these building blocks
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FIGURE 1. Sketch of slow-manifold dynamics and burst event. The flow progresses along the (red)
phase-space trajectory on the slow manifold M, but intermittently deviates (blue trajectory) to
return back to M. The structures near the detachment point could be predictive of an imminent
burst event.

will be identified using network and cluster analysis, and the phase-space trajectory will
be categorized by its residence time close to coherent states in phase space. To this
end, transition probabilities will have to be computed between regions of phase space.
An initial discretization of the full phase-space trajectory into finite-sized hypercubes
will be computed. From there, a transition probability matrix between occupied sections
of phase space will be determined. This procedure and the information contained in the
transition matrix are reminiscent of a probability density analysis within a Fokker-Planck
description of dynamical systems.

Persistent dynamics are given by high probabilities (near certainties) of remaining
within a given group of phase-space sectors, while intermittent events are characterized
by rare transitions to corners of phase space that have low residence time and are other-
wise weakly connected to persistent structures. The demarcation of persistent from inter-
mittent structures is accomplished by reorganizing the initial discretization of the phase
space into communities. This step is achieved by interpreting the phase-space trajectory
(and the transition matrix) as a directed network graph (Chartrand & Zhang 2012),
with the transition probability as a weight between its nodes. Community-clustering
algorithms are then applied to regroup phase space into similar groups (coherent struc-
tures) and outlier groups (transitory, intermittent structures). This process will provide
a novel and objective manner of identifying low-dimensional mechanisms that interact to
form the overall dynamics and reproduce the processed data sequence. In other words,
we will objectively decompose the flow into a slow manifold (in wall-bounded turbu-
lence consisting of streaks, hairpin vortices, etc.) and a fast manifold orthogonal to the
trajectory’s tangent space in the slow manifold (that models the intermittent bursts).
Concentrating on the slow manifold, we can also identify structures that have a higher
probability of detaching from the slow manifold and use these structures as precursors
(or predictors) of impending violent events (see Figure 1). These predictive structures,
paired with a dynamic programming (model-predictive control) approach, can then guide
a control strategy to prevent intermittent bursts and remain/return to the slow manifold.

The use of phase-space embedding and set-theoretic tools has recently been proposed
by Kaiser et al. (2014) and applied to a mixing layer. While this work introduced some
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of the techniques (such as phase-space tesselation) used in our work, it concentrated
on the bimodal nature of mixing layers where two states with nearly equal catchment
basins are connected by a saddle-point structure. Moreover, the clustering of phase-space
regions in Kaiser et al. (2014) was accomplished by the k-means algorithm, which is
unsuitable for our application as it would not be able to objectively identify intermittent
events. A similar attempt, using network-theoretic tools, was made to recast interacting
vortices in terms of weighted graphs, with the weights given by the Biot-Savart-induced
velocity (Nair & Taira 2015).

The description of evolutionary processes in terms of transition probabilities and
Markov matrices has been pioneered over the past years within the Lagrangian-coherent-
structure and stochastic PDE community, (see, e.g., Froyland & Padberg 2009). These
techniques — so far applied only to simple and low-dimensional problems — have shown
great promise, but have not yet been embraced by the turbulence community.

The detection and description of rare events have also been attempted by a dynamically
orthogonal (DO) mode approach, (see, e.g., Farazmand & Sapsis 2017). This method
uses a dynamically changing, linear-tangent approximation to the phase-space trajec-
tory to detect a substantial (and drastic) deviation from an otherwise smoothly varying
manifold described by a few DO-modes. While elegant and effective in its approach, the
computational cost of computing the DO-modes is quite significant.

2. Formulation and computational setup

We will follow the above-mentioned procedure and recast our data sequence as a tra-
jectory in a high-dimensional phase space spanned by appropriate coherent flow fields
(given by, e.g., POD modes) or by characteristic scalar flow variables (such as dissipa-
tion, production and intermittency). This phase space is then discretized and the resulting
trajectory is converted into a Markov matrix describing the probabilities of transition
between various phase-space elements over one time-step. This Markov matrix is then
interpreted as a directed, weighted graph (Chartrand & Zhang 2012) consisting of all oc-
cupied phase-space elements; it fully encodes the dynamics of the data sequence within
a probabilistic setting. In a final step, the original network is reorganized into larger
communities (Leicht & Newman 2008) to iteratively isolate persistent motion from rare
outlier events. Each of the procedural steps will be further explained below.

2.1. Dimensionality reduction by phase-space embedding

Starting with a sequence of temporally equispaced flow-field snapshots, we identify a set of
flow fields that allow an accurate, but approximate, description of the data sequence in a
lower-dimensional space. While the choice of these flow fields is dependent on the specific
application, we propose proper orthogonal decomposition modes or variants thereof (see
Lumley 1970; Sirovich 1987; Berkooz et al. 1993) as a reasonable starting point. By
truncating the basis and projection of the original flow fields onto the retained POD
modes, we arrive at a lower-dimensional system of time-evolving expansion coefficients.
For complex fluid systems and/or sophisticated temporal behavior (e.g., bi- or multi-
modality), a more judicious choice of embedding basis has to be made.

2.2. Constructing the Markov matrix

Following the lower-dimensional representation of the phase-space trajectory, we proceed
by discretizing the phase space into k-dimensional hypercubes, with k denoting the di-
mensionality of the phase space. Traditionally, this step is performed using a subdivision
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algorithm, where successive cuts by (k—1)-dimensional hyperplanes are made followed by
a reorganization/reassignment of all trajectory points into the resulting two hyperspaces.
The cutting dimension is then rotated through all phase-space coordinates and period-
ically continued, until all hypercubes contain less than a user-specified number of tra-
jectory points. This technique is the method of choice for low- to moderate-dimensional
phase space, but will not produce favorable scaling properties for higher dimensions.
Consequently, we will opt for a search algorithm that scales linearly with the number of
processed snapshots and scales weakly (or negligibly) with the dimensionality k of the
phase space. In this search algorithm, we follow the phase-space trajectory and assign
the trajectory points to hypercubes of a prescribed size; points leaving a current hyper-
cube require a search through previously created hypercubes and, in the case of a failed
search, the creation of a new one. To accelerate the search through previous hypercubes,
hashing can be introduced; while this may be necessary for very large-scale applications,
no particular advantage has been found so far for our initial applications.

With the initial discretization given, we can compute the transition probability matrix.
We label our hypercubes by B; with ¢ = 1,..., N, and N denoting the number of hyper-
cubes containing the phase-space trajectory in its entirety. We also need to introduce a
suitable density measure m(B;) for each box B; which we take as the number of instances
(phase-space points) it contains. We then can define the transition probability matrix P
as
m(Bl N ]:_1(8]‘))

m(B;)
where F~! stands for the temporal backstep operator, i.e., we evaluate its argument at
the previous time-step (see Kaiser et al. (2014)).

In the above expression, the numerator counts the number of occurrences where phase-
space points transition into box B; from box B; over one time step. The denominator
simply determines the phase-space points in box B;. The ratio represents an approxi-
mation of the (Markov) transition probability between box B; and B; and signifies the
probability that any point in B; may have come from box B; over one time-step. The
full matrix P then provides an approximation of the (Markov) transition probability
matrix between all boxes in our discretization of phase space and is referred to as the
Ulam-Galerkin method (Ulam 1960). Mathematically, the above matrix P is a finite-
dimensional approximation of the Frobenius-Perron operator (Lasota & Mackey 1994)
(i.e., the adjoint of the Koopman operator), analogous to the fact that the matrix aris-
ing from the Dynamic Mode Decomposition is a finite-dimensional approximation of the
Koopman operator.

Note that the discretization of phase space (i.e., the user-specified size of the initial
hypercubes) remains as a critical parameter in our analysis. It has to be chosen suffi-
ciently small to accurately approximate the phase-space trajectory and sufficiently large
to contain enough trajectory points for an accurate representation of the transition prob-
abilities; a judicious balance between these two extremes has to be found.

The Markov matrix P encodes the full dynamics, albeit in a probabilistic manner.

P = i,j=1,...,N, (2.1)

2.3. Community clustering

The Markov matrix P describes the transition probabilities between our initial discretiza-
tion of the entire phase-space trajectory. It is a row-stochastic matrix of size N x N. We
choose to interpret P as an adjacency matrix (Chartrand & Zhang 2012) of a weighted,
directed graph, where each node represents a box B; and each edge is given by a connec-
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tion between the two respective boxes B;, B;, with the transition probability P;; as the
edge’s weight. The sparse nature of P and the low connectivity of the associated graph
reflect the fact that in general only a few boxes B; feed into a given box B;.

This type of graph can be reorganized into larger communities of similar (to be defined)
clusters. In addition, it can be analyzed using graph-theoretic measures (Chartrand &
Zhang 2012), such as the graph Laplacian or the structure of near-invariant modes (Froy-
land & Padberg 2009). For our application, we are interested in detecting communities
in the network. A community is defined as a collection of nodes from the graph that
shows strong intraconnectivity (within the community) but weak interconnectivity (to
other communities). Multiple algorithms exist for the detecting of graph communities
within large networks, many of them relying on a measure of interconnectivity referred
to as modularity given by

1 kinkqut
Q= NZ [Pij _ 1]\7] 1 Seuc (2.2)
4,J

with k™°" as the in- or out-degrees of the nodes and {¢;} as the i-th community. d; ;
denotes the Kronecker symbol. Based on this definition, we look for a division of the
graph into communities {¢;} such that @ attains a maximum value. This undertaking
constitutes a combinatorial optimization problem which can be solved by using simulated
annealing or a greedy algorithm. Instead, we use an approximation proposed by Leicht &
Newman (2008) which incrementally computes a maximum modularity @ by exploiting
spectral properties of the graph. This algorithm is computationally efficient and produces
essentially identical results as more costly algorithms.

Once the communities are established, we deflate the Markov matrix P by lumping
identified communities into a single node. This is accomplished using the deflation trans-
formation

P = DTPD, (2.3)
with

1 ifs ;
Dij=4{. "'S9 o1 N =1, (2.4)
0 otherwise

The deflated matrix P(!) contains the full (statistical) dynamics between the identified
communities. By repeated application of the community-detection-deflation procedure,
we arrive at a progressively compressed network that increasingly consists of fewer, but
larger, communities. By maintaining the identities of the original snapshots within each
community, we can reorganize the original transition probability matrix P into block-
diagonal form: the (rather dense) blocks describe the motion within the community,
while the (very sparse) off-diagonal blocks represent the exchange between communities.
The reordering of the graph nodes that results in an optimal block-diagonal form of P is
the desired result of our iterative process.

Before demonstrating the full algorithm on an example, it is worth keeping in mind
that the above methodology can equally be applied to fluid behavior that, rather than
being dominated by rare events, is characterized by a co-existence of multiple meta-
stable equilibrium states with intermittent switching between them. Both for the rare-
event scenario and the multi-modal setting, traditional analysis techniques often fail to
capture the essential features of the flow; the above formalism may then present a better
alternative.
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3. Application to a self-sustaining process (SSP) model

We will demonstrate and test the above algorithm on a simple model of the self-
sustaining process in wall-bounded shear flows. Wall-bounded shear flow at sufficient
Reynolds numbers is widely acknowledged to support a feedback loop that maintains
turbulent flow motion. It consists of streamwise vortices which, in the presence of span-
wise shear, generate streamwise elongated structures (streaks). These streaks are prone
to three-dimensional instabilities which cause eventual breakdown. During the reorgani-
zation phase, streamwise vortices are generated, and the cycle begins again Hamilton et
al. (1995). The various elements of this model have been identified in fully developed and
minimal-unit turbulence and have been proposed as the engine underlying the sustenance
of turbulent fluid motion.

3.1. The Moehlis-Faisst-Eckhart model

Rather than processing high-dimensional numerical simulations of fluid flows, we bench-
mark our proposed method by considering a lower-dimensional model that captures the
essential components of the self-sustaining process (SSP). This choice sidesteps the em-
bedding of the flow-field snapshots in a suitable basis.

Various models have been proposed over the years (Waleffe 1995; Moehlis et al. 2004);
we will concentrate on the model by Moehlis et al. (2004). It consists of nine time-
dependent ordinary differential equations for the coefficients of the various components
involved in the SSP: the base flow and its modifications, the streamwise rolls and streaks,
and the three-dimensional perturbations. The system is formulated for plane channel flow
and approximate trigonometric perturbation shapes are assumed for the wall-normal
coordinate direction. Fourier transforms in the homogeneous streamwise and spanwise
directions then allows for the expression of the interaction coefficients in a compact
analytic form. The full system for the coefficients {a;(t)} is given by

ar + Gar = G + &nasas + 120203, (3.1a)
a2 + Gaaz = &a1a4a6 — S22a5a7 — §a3asas — §aaa1a3 — 250309, (3.1b)
as + (zaz = &31(asar + asag) + E32a4as, (3.1¢)
as + Caas = —&araras — Sazazag — §a3azar — Eaaazas — 450509, (3.1d)
as + (sas5 = 10104 + E2a2a7 — Es53a2as + E5aa4a9 + Es5a305, (3.1¢)
a6 + Ceae = e1a1a7 + Ee2a1as + §e3a2a4 — paazas + Eesarag + Eeasas,  (3.1f)
a7 + (rar = —&r1(arae + asag) + r2azas + Erzazaq, (3.19)
as + (sas = Es1a2a5 + Es2a3aa, (3.1h)
ag + Coag = &g1a2a3 — o2acas, (3.14)

where the parameters in the above equations are given as

B BQ B 1 4@2 5 B B2+72 B 302+4B2
C1—§7 CQ—E T+’Y ) CB—Ta C4—W’
P A o . ek S S e e
7T T Re 0T 3Re PNt T Re ’

Co =9C1 (3.2)
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and
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32 = B (3o j;g:i;;j:ijz i 72)7 §a1 =815 = &1 = &pa = &61 = &o5 = &1 = %,
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§s1 = \/GHQ’ g2 = N (3.3)
with
s =TT, = VITT wam = VI TETE (34
and
K1 = aby ) Ko = Lﬁ’y. (3.5)
RayKgy RayRapy

The remaining, user-specified coefficients are the Reynolds number Re, and the stream-
wise and spanwise wavenumbers « and <y, respectively. The wavenumber 3, which de-
termines the length scale in the wall-normal direction, is taken as constant and set to
/2.

For the test case below, we choose a box size of horizontal extent L, = L, = 4w, which
yields & = v = 1/2, and a Reynolds number of Re = 800. Furthermore, we produce
5 - 10% snapshots based on the above system of ordinary differential equations. In order
to help with visualization, we choose as observables the energy and dissipation of the
perturbations, which allows for the uncompressed display of the system’s dynamics. The
direct processing of the nine-dimensional coefficient space will give qualitatively similar
results.

Figure 2 shows a time-trace of the dissipation (subfigure a) as well as energy-dissipation
phase-space trajectory (subfigure b), after eliminating an initial transient period. The
intermittency of the dissipation signal reveals the occurrence of rare and violent events;
these events correspond to the breakdown of coherent structures and are responsible for
the bulk of the overall turbulent activity. The same characteristics are also observed in
phase space where predominantly low-energy, low-dissipation behavior is complemented
by rare excursions to higher energy and higher dissipation.

The phase space is then discretized using the search algorithm outlined above (see
Figure 3a). The final discretization consists of 1275 cells, ensuring a proper resolution of
the phase-space trajectory while maintaining significant subcell resolution to determine
the transition probabilities with sufficient fidelity. The fill pattern of the initial transition
matrix (a 1275 x 1275 row-stochastic matrix) is displayed in Figure 3b. It shows a strong
diagonal dominance, but also noticeable entries in the off-diagonals (representing cell-to-
cell transitions).

The task is then to detect communities in the corresponding network graph and to
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FIGURE 2. Dissipation as a function of time (a) and energy-dissipation phase-space trajectory
(b) resulting from the integration of the Moehlis-Faisst-Eckhardt model for & = v = 1/2 and
Re = 800.
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FIGURE 3. (a) Discretized energy-dissipation phase-space trajectory. (b) Fill pattern of the
transition probability matrix P using 1275 cells.

recluster the original cells into these communities. This is performed iteratively. First,
the 1275 cells are clustered into 88 communities (not shown), after which a repeated
application of the algorithm detects 14 communities (see Figure 4a) and finally 4 com-
munities (see Figure 4b). Further application of the clustering algorithm does not yield
fewer communities; the procedure then terminates.

At this stage the dynamics, represented by the phase-space trajectory, has been dis-
sected into four parts. This is indicated by the four diagonal blocks (see Figure 4b) that
describe the dynamics within each identified community. The sparse entries in blocks
off the block-diagonals establish connections between the detected communities. Their
location in the transition probability matrix also hints at possible exit and entry points
for a community-to-community transition. These cells are particularly interesting as they
may provide predictive structures that are prone to triggering a rare event. These struc-
tures could be the target of control efforts to prevent bursts and instead remain in the
low-energy, low-dissipation corner of phase space.
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FIGURE 4. Fill pattern of the transition probability matrix P (a) after two iterations of the
clustering algorithm, showing 14 identified communities (indicated by red diagonal blocks); (b)
after one more iteration, displaying the final result of 4 communities.

4. Conclusions

A computational framework has been developed that allows the analysis of datasets
that generally describe the interplay of distinct dynamic behaviors — among them bi-
modality (as observed in the wake of bluff bodies), multi-modality or intermittent bursts
from otherwise persistent motion (as observed in wall-bounded turbulence). It relies on
the formulation of the flow-field evolution as a trajectory in an appropriate phase-space
and the description of the dynamics in terms of a transition probability matrix between
discrete phase-space elements. The matrix is then interpreted as the adjacency matrix of
a directed, weighted graph, and community-detection algorithms are brought to bear to
extract persistent communities (structures) and to delineate them from volatile events
(bursts). The methodology has been applied to a simple nine-dimensional model of the
self-sustaining process in wall-bounded flows and has shown its capability in isolating
a hierarchy of dynamic communities. While still in its initial stage of development, we
will continue to refine the algorithmic components and apply them to more complex
and large-scale data sequences. The data-driven approach, however, holds promise for
an objective and effective treatment of complex dynamic behavior, intermittent features
and multimodal phenomena frequently found in fluid dynamics.
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