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Conceptual design requires conceptual understanding, what we call design insight. Novel
designs require novel insights. Such understanding is usually hard-won through difficult
analysis. We propose algorithmic approaches to developing insight, utilizing dimension
reduction techniques. This work generalizes techniques for scalar quantities to entire fields,
enabling the identification of low-dimensional structure of more general objects. We present
applications to aerodynamic and structural shape design.

Nomenclature

Dimension Reduction
·a Active subscript
·i Inactive subscript
E[·] Expectation
·̂ Sample mean
〈·, ·〉 Inner product
C Average outer product of gradients
R Correlation tensor
Λ Eigenvalues
W Eigenvectors
φ Proper Orthogonal Decomposition mode

y Active variables
z Inactive variables
k Dimensionality of reduced space

Design Problem
X Input parameter space
W Matrix weight function
∇f Gradient
ρ Weight function
s Independent parameters
ξ Stochastic parameters
f Quantity of interest
m Dimensionality of input space
n Number of samples

I. Introduction

Original designs require new knowledge. Pahl and Beitz1 define one such case of new knowledge as being
“often based on the application of the latest scientific knowledge and insights.” In this work, we seek such
design insight – deep understanding of a physical system which aids the design process. Such insight is a key
part of developing new solutions, and defining procedures and techniques to aid this development is useful
to accelerate design.

A classical technique is the so-called ‘method of concentrated staring’.2 While time-honored, such a
procedure is not guaranteed to converge in finite time. Contemporary efforts have succeeded in deriving
scientific insights – such as governing ordinary differential equations3 and conservation laws4 – from data.
Closer to engineering practice, recent advances in fluid dynamics/turbulence consider identifying flow features
using solution data, perhaps most famously the Proper Orthogonal Decomposition (POD).5 While POD is
usually employed to understand the output of a dynamical system, the active subspace (AS) is used to
understand the input space, and identify low-dimensional structure. Our previous work considered the
active subspace as it relates to physical problems, with a particular eye towards developing insights suitable
for engineering design.6 In this work we further develop these ideas, drawing connections between POD and
the AS in order to handle more general problems of interest. In particular, we seek to handle spatial and
temporal variation of some quantity of interest (qoi), performing dimension reduction over a set of stochastic
variables, and interpreting the resulting structure in a physical context.

∗PhD Candidate, Aeronautics and Astronautics, AIAA Student Member
†Postdoctoral Scholar, Center for Turbulence Research, AIAA Member
‡Professor, Department of Mechanical Engineering, AIAA Associate Fellow

1 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
Se

pt
em

be
r 

26
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
02

74
 

 2018 AIAA Aerospace Sciences Meeting 

 8–12 January 2018, Kissimmee, Florida 

 10.2514/6.2018-0274 

 Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2018-0274&domain=pdf&date_stamp=2018-01-07


Section II reviews the active subspace, and Section III reviews the Proper Orthogonal Decomposition.
Section IV draws connections between active subspaces and POD, informing a dimension reduction technique
which considers variation in additional variables. Sections V and VI demonstrate this approach (respectively)
on the design of airfoils and structural members. Section VII provides some concluding remarks.

II. Active Subspaces

This section summarizes and motivates the active subspace.7 In what follows, unbolded symbols denote
scalars, bolded lowercase letters denote vectors, bolded uppercase letters are matrices, and caligraphic char-
acters represent sets. Suppose we have some qoi f(ξ) where ξ takes values in a domain ξ ∈ X ⊆ Rm. As m
increases, the computational cost of studying our qoi grows exponentially. This curse of dimensionality is the
motivating issue for active subspaces. Informally, the active subspace yields a linear subspace decomposition
of Rm, split into active and inactive directions. The idea is to either ignore or treat with lower fidelity the
inactive directions, and retain the active ones. This effectively reduces the dimension of the input space that
must be considered.

Formally, we assume the gradient of our qoi ∇ξf exists, and define a weight function ρ(ξ). This ρ may
represent a probabilistic description of the input variables (i.e. a joint density function), or simply a function
which weights regions of parameter space according to the designer’s interesta. In principle X may be
unbounded; in the cases below we restrict attention to finite hyperrectangle bounds X = {ξ | ξl ≤ ξ ≤ ξu}.
We then compute the following matrix

C =

∫
Rm

∇ξf(ξ)∇T
ξ f(ξ)ρ(ξ) dξ, (1)

where dξ =
∏m

i=1 dξi. Since C is symmetric positive-semidefinite, it admits an eigenvalue decomposition
C =WΛW T . We then choose a decomposition based on the eigenvalues of C, that is

W = [W aW i], Λ =

[
Λa

Λi

]
(2)

where Λa = diag(λ1, . . . , λk) with λi ≥ λi+1 for all i ∈ {1, . . . ,m− 1} and k < m. The columns of W a are
the first k eigenvectors of C. With a decomposition of C chosen, we define the active (y) and inactive (z)
variables

y =W T
a ξ ∈ Rk, z =W T

i ξ ∈ Rm−k. (3)

In this way, the active directions W a define linear combinations of the input parameters. One can then
treat the Inactive Variables z with lower fidelity, focusing computational effort on the active directions.
As an illustrative example, consider the function f(ξ) = 1

2 (.7ξ1 + .3ξ2)
2. Clearly, the quantity of interest

f changes along the direction [.7, .3]T , and does not change at all along [.3,−.7]T (Fig. 1). A procedure
which estimates the AS will identify these directions, both allowing us to reduce the dimensionality of f ,
and providing some insight into how changes in parameter space contribute to variability in f .

Previous work has found a low-dimensional active subspace in a number of different scientific and engi-
neering applications, including scramjets,8 hydrologic models,9 and car aerodynamics.10 Our previous work
investigated the connections between aerodynamic shape design and the active subspace, which is briefly
summarized below.6

A. Example: Transonic airfoil design

Here we consider the effect of shape perturbations to an airfoil, and their effects on the associated lift
coefficient. We begin with a baseline NACA0012 geometry and modify the geometry through the Free Form
Deformation strategy.11 Our qoi is the lift coefficient, and our design variables are the vertical displacement
of 38 control points. We define reasonable hypercube bounds on the design variables, and approximate
Equation 1 by an estimated Ĉ matrix computed via Monte Carlo sampling (n = 103). Figure 2 presents
diagnostic results to assess the estimator of Ĉ, while Figure 3 summarizes the insights derived from the
estimated active subspace.

aSubject to the constraint ρ(ξ) > 0 for ξ ∈ X , and ρ = 0 for ξ 6∈ X .
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Figure 1: Isolines depicting sets of constant f(x1, x2), with an arrow depicting the corresponding active
direction. Note that on average, the function changes more along the active directions than the inactive
directions; in this case, the change in the inactive direction is exactly zero.

Figure 2: Bootstrap intervals of the eigenvalues of Ĉ and subspace distance for NACA0012 test case. The left
image shows bootstrap intervals of the eigenvalues, while the right displays those of the subspace distance.
Stars denote the estimates derived from the entire sample set, while curves and shaded bounds show the
bootstrap mean and bounds at one standard error, respectively. The dimension of the active subspace is
chosen by seeking eigenvalue gaps; thus, the spectrum of Ĉ suggests a one-dimensional active subspace. The
subspace distance is computed between the active subspace estimate Ŵ a and a bootstrap estimate of the
same quantity. This quantity is bounded above by 1; the smaller this value, the less variable our estimate
Ŵ a.

Figure 3 shows that in our example, the leading active subspace direction corresponds to the camber
line of the airfoil. Since the active subspace is one-dimensional, this implies that the camber line accounts
for the majority of variability of the lift coefficient, among the whole space of possible shape perturbations.
The dependence of the lift coefficient on the camber line is already well known from Thin Airfoil Theory.12
However, note that the conclusion above is derived not from an analytic approach, but through an algorithm
operating on data. Such data-driven approaches have the potential to supplement a designer’s intuition and
suggest novel insights, especially in the context of complicated or less-studied systems.
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Figure 3: Comparison of baseline and perturbed geometry. The left image compares the baseline geometry
against the airfoil deformed along the leading active subspace direction. This deformation corresponds to
the camber line, as evidenced by the thickness distributions plotted in the right image. Since an airfoil may
be uniquely decomposed into a linear combination of its thickness and camber, and since both profiles have
the same thickness distribution, we conclude the deformation is modifying the camber of the airfoil alone.
Taking the L1 norm of the difference between thickness distributions yields 5.6948× 10−7.

III. Proper Orthogonal Decomposition

Proper orthogonal decomposition is a standard technique used to extract energetic structures from
stochastic data.5 The basic objective is to find a deterministic function φ(s) that best approximates a
stochastic function u(ξ, s) on average. Here, s is a set of independent variables and ξ parameterizes the
stochastic function. This goal is accomplished by maximizing the expected value of the normalized projection
of the stochastic function onto the deterministic one,5 i.e.,

E
[
|〈u(ξ, s),φ(s)〉|2

]
/〈φ(s),φ(s)〉, (4)

where 〈·, ·〉 is an inner product on the space of u and E [·] is the expectation operator over the probability
space.

The function φ(z) that maximizes (4) must satisfy the eigenvalue problem

〈R(s, s′),φ∗(s′)〉 = λφ(s), (5)

where

R (s, s′) = E [u(ξ, s)u∗(ξ, s′)] (6)

is the two-point correlation tensor. If each member of the stochastic ensemble is square integrable, then
R(s, s′) is a nuclear operator and Hilbert-Schmidt theory guarantees that the eigenmodes satisfying equation
(5) have a number of special properties. There is a countably infinite set of eigenmodes, {φj , λj}, that can
be ranked according to their eigenvalue, λ1 ≥ λ2 ≥ · · · ≥ 0, which gives the energy captured by each mode.
The eigenvectors are orthogonal, 〈φj ,φi〉 = δji, and complete. Accordingly, any member of the stochastic
ensemble can be expanded as

u(ξ; s) =

∞∑
j=1

ai(ξ)φi(s) (7)

with ai(ξ) = 〈u(ξ, s),φi(s)〉. This expansion is optimal in the sense that an approximation obtained by
truncating the series at order k captures more energy than any other possible expansion using k basis
functions. The eigenmodes also provide a diagonal representation of the correlation tensor,

R(s, s′) =

∞∑
j=1

λjφj(s)φ
∗
j (s
′), (8)
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so they are its principle components. If the independent variable s includes dimensions that are homogeneous
or stationary, the ensemble members will not be square-integrable, but a well-behaved eigenvalue problem
can be recovered by first expanding these dimensions into Fourier modes and solving the Fourier-transformed
version of equation (5).

POD has been used extensively within the fluid mechanics community to extract coherent structures from
data.13,14 As an example, Figure (4) shows several structures extracted from large-eddy simulation data for
a Mach 0.9 jet.15 The jet is round and stationary, so each POD modes corresponds to a particular azimuthal
Fourier mode and temporal frequency, and the modes are functions of the streamwise and radial coordinates
x and r, respectively. The axisymmetric components of the pressure at four frequencies are shown in the
figure.16 Each mode takes the form of a wavepacket, and these structures have been shown to contribute
significantly to the production of jet noise.17

r/
D

St = 0.35

0
1
2
3

St = 0.52

r/
D

x/D

St = 0.69

0 5 10 15
0
1
2
3

x/D

St = 0.87

0 5 10 15

Figure 4: Pressure component of axisymmetric spectral POD mode for a Mach 0.9 turbulent jet at four
frequencies. The frequencies are reported in terms of the Strouhal number St = fD/U , where f is the
frequency, U is the jet velocity, and D is the jet nozzle diameter.

IV. Handling Independent Variables

When pursuing input parameter dimension reduction of the stochastic variables ξ in the presence of
independent variables s, there are a number of approaches one could adopt. In this section, we detail two
approaches which make assumptions on the functional form of f , synthesize a POD-inspired approach, then
show that the synthesized approach automatically recovers the previous two as special cases when their
assumptions are satisfied. The two-point gradient correlation tensor will play a role in every approach which
follows; it is defined here for convenience:

C(s, s′) ≡
∫
∇ξf(ξ, s)∇T

ξ f(ξ, s
′)dξ. (9)

A. Integral approach

The basic idea of this approach is to integrate out the independent variables, and study the integrated
quantity using the standard active subspace. We call this the integrated Active Subspace (iAS). This is a
sensible approach when the integrated quantity is of practical interest, or when the gradient is well-correlated
throughout the independent variables. Define

F (ξ) ≡
∫
f(ξ,x)ds. (10)

The gradient of F with respect to the stochastic parameters is

∇ξF (ξ) =

∫
∇ξf(ξ, s)ds. (11)

Then the active subspace for F is defined by the eigenvalue problem
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CINTφINT = λINTφINT, (12)

where

CINT ≡
∫
∇ξF (ξ)∇T

ξ F (ξ)dξ,

=

∫ ∫ ∫
∇ξf(ξ, s)∇T

ξ f(ξ, s
′)dsds′dξ,

=

∫ ∫
C(s, s′)dsds′.

(13)

B. Local approach

The basic idea of this approach is to compute a separate active subspace for each value of the independent
variable s. We call this the local active subspace (lAS). This is a sensible approach when the gradient is
independent throughout independent variable space. The corresponding eigenvalue problem is then

CLOC(s)φLOC(s) = λLOC(s)φLOC(s), (14)

with

CLOC(s) ≡
∫
∇ξf(ξ, s)∇T

ξ f(ξ, s)dξ,

= C(s, s).

(15)

C. Synthesized approach

Usually, the active subspace considers input parameter spaces, while POD considers output feature spaces.
While the two techniques are often applied and interpreted differently, they are mathematically equivalent.
To see this, note that to define an active subspace without independent variables, we select a qoi f(ξ) and
a weight function ρ(ξ). Recall Equation (1)

C =

∫
Rm

∇ξf(ξ)∇T
ξ f(ξ)ρ(ξ) dξ. (1)

The leading eigenvectors of C form a basis for the active subspace. In the POD framework, we consider a
case where there are no independent variables s. We select a vector of features u(ξ) and a weight function
ρ(ξ). The goal is then to find φ which maximizes the quantity

λ = E[| 〈u(ξ),φ〉 |2]. (16)

The solution to Equation 16 is the leading eigenvector of the eigenvalue problem

Rφ = λφ, (17)

where

R =

∫
Rm

u(ξ)u(ξ)T ρ(ξ)dξ, (18)

is the correlation tensor. Subsequent orthogonal solutions may be found by considering additional eigenvec-
tors of R. Note that if we select u(ξ) = ∇ξf(ξ), we see that C = R. That is, the subspace arising from
POD is the active subspace.

While the subspaces arising from the two formulations are identical, the distinct perspective between the
two frameworks is both meaningful and useful. A POD interpretation of the modes arising from (17) would
lead to a low-rank representation of the gradient; that is

∇ξf(ξ) ≈
k∑

i=1

ψi(ξ)φi, (19)
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with k < m. The active subspace does not consider such an expansion, but rather considers the subspace
spanned by the first k modes φi. This subtle distinction is one of intent; the POD perspective seeks to
represent ∇ξf(ξ), while the active subspace uses the same information to make statements about f(ξ).

The observation above suggests an immediate generalization to the active subspace. It is straightforward
to account for independent variables in the POD framework. For example, consider a qoi f(ξ, s) which
depends on stochastic parameters ξ ∈ Rm and an additional set of independent variables s ∈ Rp. In POD,
the objective is to maximize

λ = E[| 〈∇ξf(ξ, s),φ(s)〉 |2], (20)

where the inner product is defined as

〈a(s), b(s)〉 =
∫
Rp

b∗(s)M(s)a(s)ds, (21)

where M(s) is a user-defined weight function. The function φ(s) which maximizes Equation 20 is the
solution to the following eigenvalue problem∫

Rp

R(s, s′)M(s′)φPOD(s
′)ds′ = λφPOD(s), (22)

where

R(s, s′) =

∫
Rm

∇ξf(ξ, s)∇ξf(ξ, s)
T ρ(ξ)dξ = C(s, s′) (23)

is the s -dependent two-point correlation tensor of the gradient. The choice of M(s) may be selected to
emphasize different components of ∇ξf and/or different regions of s ∈ Rp. Note that if
M(s) = Diag(δ(s− τ 0)), then this generalized approach reduces to computing the usual active subspace at
τ 0.

D. Limiting cases

As noted above, the synthesized POD method reduces to the integral and local approaches automatically,
based on properties of f . We consider these two special cases:

1. Perfectly correlated gradients

Suppose the gradient is perfectly correlated in s; this may be expressed mathematically as

C(s, s′) = Cconst. (24)

To relate to the integral method, we first note that from (13) we have CINT = S2Cconst, where S2 is the
hyper-volume of the s domain. Inserting (24) into (22) yields

1

S2
CINT

∫
φ(s′)ds′ = λφ(s). (25)

Since the matrix is independent of s, so too are its eigenvectors, thus (25) becomes

1

S
CINTφ = λφ (26)

This is identical to the eigenproblem for the integrated approach (12), up to a scaling factor 1/S which has
no impact on the eigenvectors, and uniformly scales all eigenvalues.
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2. Uncorrelated gradients

Suppose the gradient is uncorrelated in s; this may be expressed as

C(s, s′) = CLOC(s)δ(s− s′). (27)

This form is identical to (15); thus inserting (27) into (22) yields∫
CLOC(s)δ(s− s′)φ(s′)ds′ = λφ(s), (28)

and evaluating the integral leads to (14).
These two limits demonstrate that the synthesized POD method recovers the two approaches above

automatically, based on the properties of f . Intuitively, the POD approach handles the boundary cases
appropriately, and so one would expect the approach recovers an appropriate dimension reduction for cases
intermediate to these limits.

E. Illustrative test case

Here we consider the generalized dimension reduction technique suggested above on a simple test case.
Consider the function

f(ξ, s) = (ξ1 cos(πs/2) + ξ2 sin(πs/2))
3, (29)

with uniform ρ(ξ, s) over the unit hypercube (ξ1, ξ2, s) ∈ [0, 1]3. Figure 5 depicts the resulting POD modes
for this example, as well as the locally computed active subspace results. The modes are depicted as
traces; plots of the individual vector components as they vary in the independent variable s. The results
of Figure 5 demonstrate that while the modes from the POD and local AS formulations are similar, the
local AS modes have jumps which make them inconvenient to interpret. The differences could be reduced
by manually changing the sign of the lAS modes (as the sign is arbitrary), but it would not be clear that
this is the ‘proper’ correction without a priori knowledge of the POD modes, as there is no reason to expect
smoothness in the lAS framework. In contrast, the relative sign between different s values is an intrinsic
property of the POD modes.

Figure 5: Leading mode for the lAS and POD modes. Each colored curve is the s-varying value for each entry
of the depicted vector mode, with Blue depicting the lAS, and Red for POD. Note that the two techniques
are in qualitative agreement. The discontinuities in the active subspace are inconvenient, but not intrinsically
meaningful as eigenvectors are only defined up to scalar multiples.
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When applying an (estimated) active subspace, it is common to study the summary plots,18 defined by
the pairs (fi,W

T
a ξi). In the case where k ≤ 2, it is possible to depict these pairs graphically. We may

define a generalization which accounts for additional variability in s by considering the pairs (fi,Φ(si)
T ξi),

where Φ(si) are the modes resulting from the POD approach. Figure 6 demonstrates that the POD modes
successfully account for all the variability in our qoi, leading to a complete dimension reduction.

Figure 6: Summary plots using the leading iAS mode (Left) and leading lAS and POD modes (Right).
On the Left, note that the averaged (in s) quantity (Red dots) collapses under the iAS mode, but the full
variability is not captured. On the Right, the sign ambiguity of the lAS prevents a full collapse of the data
(Blue), while the POD modes resolve this issue (Red).
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V. Airfoil Design

In this section, we consider the shape design of a subsonic (M = 0.5, α = 1.25◦) airfoil. Here, we
introduce the physical problem, compare the modes arising from different dimension reduction techniques,
the illustrate a use of the POD modes to perform spatially-localized sensitivity analysis. Note that our
objective in this work is not to accomplish a single design task, e.g. retrieve a single airfoil geometry which
optimizes the lift, but rather to derive insight, e.g. determine how a particular shape deformation affects
airfoils on average.

A. Problem description

We consider the physical problem of the geometric design of an airfoil. Our quantity of interest is the
vertical contribution of the entire pressure distribution Cp(s). As with Subsection II A, we consider a
baseline NACA0012 profile and apply d = 38 Hicks-Henne bump functions in order to parameterize the
geometry.11 We use the open-source CFD solver SU211 to solve the Euler equations, draw a low-discrepancy
set of design points via a Halton sequence,19 and utilize finite-diferencing to compute the gradient of our
qoi. Figure 7 gives the baseline flow about the airfoil, and a schematic view of the airfoil coordinate system
s used below.

Figure 7: Baseline flow for NACA0012 airfoil at M = 0.5 and α = 1.25◦ (Left), and schematic view of airfoil
coordinate system (Right).
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B. Dimension reduction modes

In this section, we investigate the modes arising from lAS, iAS, and POD approaches to dimension reduction.
Figure 8 gives the individual eigenvalues and their cumulative sum; this spectrum suggests that the leading
POD mode captures 94% of the average variability of the gradient, as measured by the l2 norm. Thus, we
compare only the leading POD mode against the leading modes of the lAS and iAS approaches.

Figure 8: Eigenvalues arising from the POD computation. The leading POD mode accounts for the vast
majority of the eigenvalue energy.

Figure 9: Comparison of leading integrated active subspace and integrated POD modes. Note that the
modes are in close agreement. While the iAS and POD modes are fundamentally different objects, in this
case their leading modes share some information. This is not always the case, as we will see below.
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Figure 10: Comparison of leading local active subspace mode (Left) and leading POD mode (Right). Each
color denotes a different design variable. Note that the active subspace directions are eigenvectors, and thus
are defined only up to a scalar multiple. To aid in comparing the lAS with the POD modes, we have scaled
the former with the local eigenvalue λ(s) arising from the lAS computation. Note that the lAS modes exhibit
jumps, a consequence of the local eigenvalue problem for each value of s.

C. Sensitivity

In this section, we suggest a practical application of the POD modes to a form of s -localized sensitivity
analysis. We consider a deformation to the airfoil corresponding to the leading iAS mode; as suggested above
in Subsection A, this is related to a change in camber of the airfoil. Note that Figure 8 implies the leading
POD mode captures ∼ 94% of the average gradient energy, as measured by the l2 norm. This suggests that
taking the inner product of an arbitrary vector v defining a shape deformation with this leading POD mode
will describe the variability of the qoi, localized in s and averaged in ξ.

Figure 11 depicts this sensitivity analysis, whose results suggest that the leading iAS mode causes the
greatest change to the pressure distribution at the fore and aft of the airfoil. We corroborate this finding in
Figure 12, which applies the deformation to different baseline geometries.

Figure 11: Localized sensitivity of the chosen shape deformation. Recall that s = 1 corresponds to the fore
of the airfoil, while s = 0, 2 correspond to the aft. Note that these sensitivity results suggest the pressure
distribution changes most at the fore and aft, under the studied shape deformation.

12 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
Se

pt
em

be
r 

26
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
02

74
 



Figure 12: Comparison of baseline (Black) and perturbed (Blue) pressure distributions. Each of the baseline
geometries are taken from the random ensemble of designs, and perturbed along the leading iAS mode. As
expected, the same perturbation affects different points in design space in the same fashion predicted by the
sensitivity analysis; that is, the pressure distribution is most perturbed at the fore and aft of the airfoil.

VI. Structural Design

In this section, we consider the structural design of a thin-walled box-beam, and consider the field of
shear stress as our qoi. Here, we introduce the physical problem, compare the modes arising from different
dimension reduction techniques, then illustrate a use of the POD modes to affect spatially-targeted changes
to the qoi.

A. Problem description

Figure 13 gives a schematic view of the geometry for the thin-walled box-beam, as well as an example
shear distribution for a beam of uniform thickness. The beam is assumed to have a square cross-section
of perimeter 4, with a thickness that varies in the beam coordinate s ∈ [0, 4]. An external shear loading is
assumed to be applied through the shear center, such that no twist is generated. We use the method of
shear flow to determine the shear distribution in the box-beam, making standard assumptions about the
out-of-plane shear components.20

Figure 13: Schematic depiction of box-beam geometry (Left) and shear distribution for a uniform thickness
(Right). The coordinate s is used to depict locations on the box-beam, starting with the center of the right
edge, and moving counter-clockwise. The dotted black line is the beam profile, and the control points for
the thickness distribution are depicted as black dots. On the Left, the solid black line depicts an illustrative
uniform thickness distribution. On the Right, the V z arrow depicts the shear loading. The colors blue and
red depict shear in the positive and negative s direction, respectively. For elucidation, the blue and red
arrows depict the shear direction, while the corresponding blue and red curves depict the magnitude of the
shear stress; the magnitude is greater where the curve is further from the beam profile

Our qoi is the entire distribution of shear τ(s) = q(s)/t(s). Note that this physical problem exhibits both
local and global behavior. Since the shear flow q(s) = q′(s) + q0 is dependent on a local q′(s) and global q0
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component, there is obviously correlation between different beam coordinates. Furthermore, since the shear
itself τ(s) = q(s)/t(s) is dependent on the local thickness, the shear exhibits some local behavior as well.
Thus, we have a combination of both local and global behaviors, and expect that the ultimate behavior of
the shear distribution will not lie at either of the limiting cases described above.

B. Dimension reduction modes

In this section, we investigate the modes arising from the lAS, iAS, and POD approaches to dimension
reduction on the structural problem. Figure 14 reports results from the POD approach, and gives the
individual eigenvalues and their cumulative percentage. This spectrum suggests the leading POD mode
accounts for a large portion of the gradient variability (∼ 40%), but is not sufficient to describe most of the
variation.

Figure 14: Eigenvalues arising from the POD computation. The leading POD mode accounts for a modest
portion of the eigenvalue energy.

C. Manipulating the shear

In this section, we suggest a practical application of the POD modes to locally modify the shear distribution.
One may regard the POD modes as localizing in s the sensitivity of the qoi to the design variables, accounting
for structure in the independent variables. We first consider taking the leading POD mode at a single point
s = 0, applying this deformation to the baseline geometry of uniform thickness, and observing the results
(Fig. 17). The results lead to a reduction in shear at s = 0, but undesirable behavior outside the studied
point. We then consider averaging the POD modes over the sidewalls (s ∈ [0, 0.5]∩ [1.5, 2.5]∩ [3.5, 4.0]), and
apply this composite deformation (Fig. 18). This leads to a reduction in shear over both sidewalls. The
modes themselves correspond to a thickening of the beam – an intuitive conclusion, but here arising not
from intuition, but from data.
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Figure 15: Comparison of leading integrated active subspace and integrated POD modes. Note that the
modes are in disagreement; unlike the airfoil problem, the modes arising from different computational pro-
cedures do not share information. Note that the leading iAS mode corresponds to a uniform thickening of
the structure, which is what we would expect for affecting the average shear in the beam.

Figure 16: Comparison of leading local active subspace mode (Left) and leading POD mode (Right). As
before, the lAS mode has been scaled by its spatially-varying eigenvalue λ(s) to aid in comparing these
different objects.
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Figure 17: Shear distributions (Left) and thickness perturbation (Right) using the POD mode at s = 0. On
the Left, the shear distribution for the baseline profile of uniform thickness is shown in solid curves, while
that of the perturbed geometry is shown in dashes. Note that the shear at the studied location is reduced,
but adjacent regions are affected differently. On the Right, the geometry perturbation is visualized; Blue
denotes adding material, while Red denotes removal. The geometry perturbation corresponds to thickening
the walls near the point s = 0, but thinning on the adjacent region.

Figure 18: Shear distributions (Left) and thickness perturbation (Right) using the POD modes averaged over
the sidewalls. Note that the shear across both sidewalls is reduced, while the rest of the shear distribution
is largely unaffected. This is accomplished by thickening both walls in a smooth fashion. While certainly an
intuitive way to reduce shear, this particular deformation was derived not from intuition, but from data. Note
that symmetry is not explicitly enforced in this problem – the lack of perfect symmetry in the deformation
is due to a lack of perfect convergence in the estimation procedure.
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VII. Conclusion

In this work, we sought automated, data-driven techniques for deriving exploitable understanding of a
physical problem – so-called design insight. We reviewed previous work with scalar quantities of interest,
using dimension reduction techniques to identify usable structure within a set of stochastic variables ξ. We
presented a mathematical framework to handle quantities which vary in a set of additional independent
variables s, and compared our POD-inspired method with other dimension reduction techniques. Finally,
we introduced a pair of design problems of interest in aerospace applications, and illustrated the usage of
dimension reduction to probing these settings, with an eye towards developing understanding. The result for
these well-studied problems was the recovery of sensible insights; however, applying these same techniques
to novel problems suggests the possibility of discovering new knowledge.

The first author was supported by the National Science Foundation Graduate Research Fellowship under
Grant No. DGE-114747. The second author was was funded by NASA grant no. NNX15AU93A and by the
NNSA Predictive Science Academic Alliance Program II, grant no. DE-NA0002373.
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