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In this paper, we develop and demonstrate a method for constructing well-posed one-
way approximations of linear hyperbolic systems. We use a semi-discrete approach that 
allows the method to be applied to a wider class of problems than existing methods 
based on analytical factorization of idealized dispersion relations. After establishing the 
existence of an exact one-way equation for systems whose coefficients do not vary along 
the axis of integration, efficient approximations of the one-way operator are constructed by 
generalizing techniques previously used to create nonreflecting boundary conditions. When 
physically justified, the method can be applied to systems with slowly varying coefficients 
in the direction of integration. To demonstrate the accuracy and computational efficiency 
of the approach, the method is applied to model problems in acoustics and fluid dynamics 
via the linearized Euler equations; in particular we consider the scattering of sound waves 
from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. 
The latter problem shows the potential of the method to offer a systematic, convergent 
alternative to ad hoc regularizations such as the parabolized stability equations.

© 2015 Published by Elsevier Inc.

1. Introduction

Many physical phenomena can be modeled by systems of linear hyperbolic partial differential equations. A defining 
characteristic of hyperbolic systems is that their solutions are comprised of waves that propagate at finite speeds. The 
well-posed solution of these equations on a finite computational domain takes the form of either an initial boundary value 
problem in the time domain or an elliptic boundary value problem if the equations are transformed into the frequency 
domain. In either case, incoming waves must be specified at the boundaries.

In some situations, the solution is dominated by waves that propagate in one direction. We call these waves rightgoing 
and the waves that propagate in the opposite direction leftgoing. Approximate one-way equations are often sought to 
represent the rightgoing waves. These one-way equations, also known as parabolized or parabolic equations, are valuable 
because they can be rapidly solved in the frequency domain by spatial integration in the direction of wave propagation. 
For the spatial march to be accurate and well-posed, the one-way equation must approximate the same rightgoing waves 
as the original hyperbolic equation but not support any leftgoing waves. If support for the leftgoing waves is not properly 
removed, decaying leftgoing waves are wrongly interpreted as growing downstream waves, causing instability in the spatial 
march.

One-way equations have been formally derived for various wave equations. Most one-way wave equations are derived 
by factoring the dispersion relation in Fourier–Laplace space. Two factors are obtained – one representing rightgoing waves 
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and one representing leftgoing waves. A one-way wave equation is obtained by only retaining the rightgoing branch. The 
resulting equation contains a square root involving the Fourier–Laplace variables, and the inverse transform of this term 
results in a nonlocal integro-differential equation. Computationally efficient one-way wave equations can be obtained by 
localizing the operator using rational approximations of the square root [1]. Early methods involved approximations at a 
fixed low order [2,3], while subsequent versions generalized this idea to arbitrarily high-order approximations. The accuracy 
and well-posedness of different approximations have been extensively studied [4,5]. One-way wave equations are routinely 
used to study geophysical migration [6,7] and underwater acoustics [8,9], and, when transformed back to the time domain, 
can be used as approximate nonreflecting boundary conditions [10,11].

These methods are very efficient and accurate for simple wave equations but degenerate quickly in more complicated 
situations because of their dependence on the factorization of the equations in Fourier–Laplace space, which, for example, 
is not possible for equations whose eigenvalues cannot be written down analytically. It is therefore not straightforward to 
apply these techniques to general hyperbolic systems. Guddati [12] developed a method for the acoustic and elastic wave 
equations that does not depend on this factorization. His method shares some qualitative similarities to the scheme we 
propose in this paper, but it has not been extended beyond wave equations.

The linearized Euler and Navier–Stokes equations can be spatially integrated using an ad hoc generalization of linear sta-
bility theory called the parabolized stability equations (PSE) [13]. PSE is designed to track the one-way spatial evolution of a 
single rightgoing wave, usually the most spatially amplified wave supported by the system. The wavelength and growth-rate 
of this wave are assumed to be slowly-varying. Instead of formally deriving a one-way operator, PSE achieves a stable spatial 
march by numerically damping all leftgoing waves, either by using an implicit axial discretization along with a restriction 
on the minimum step size [14] or by explicitly adding damping terms to the equations [15]. This damping prevents the 
leftgoing waves from destabilizing the spatial march, but also has the unintended consequence of damping and distorting, 
to differing degrees, all of the rightgoing waves.

PSE has been used extensively to study instability waves in slowly-spreading shear-flows. It is often the case that the 
near-field solutions of these equations are dominated by a single amplifying rightgoing wave related to classic instability 
modes of the Orr–Sommerfeld operator. This wave can be calculated very efficiently with reasonable accuracy using PSE. On 
the other hand, other rightgoing waves supported by the Euler equations, for example rightgoing acoustic waves, are not 
properly captured by PSE because of the aforementioned damping.

A number of other spatial marching methods have been developed for solving the Euler and Navier–Stokes equations that 
are collectively known as reduced or parabolized Navier–Stokes equations. After neglecting viscous terms in the paraboliza-
tion direction, leftgoing acoustic waves are eliminated by special treatment of the streamwise pressure gradient. A number 
of variations exist in which this term is treated differently, ranging from neglecting it partially [16] or entirely [17] to pre-
scribing it based on experimental data [17] or empirical approximations. Classical boundary layer equations fall into this 
category.

In this paper, we describe and demonstrate a new technique for developing accurate one-way approximations of linear 
hyperbolic systems. Our method formally removes support for leftgoing waves from the equations without analytically fac-
torizing the dispersion relation, resulting in well-posed equations that can be solved by spatial marching without the need 
for numerical damping. As a result, the rightgoing waves can be accurately captured for systems in which the leftgoing 
waves are unimportant. In Section 2, we first derive exact one-way equations based on concepts related to the well-
posedness of hyperbolic boundary value problems and then show how the exact equations can be efficiently approximated 
using techniques that were originally developed for generating high-order nonreflecting boundary conditions. The method 
is applied to the Euler equations in Section 3, and the accuracy and efficiency of the resulting one-way Euler equations is 
demonstrated in Section 4 using three example problems. Finally, we discuss possible improvements to the method and 
conclude the paper in Section 5.

2. Method

In this section, we formulate our parabolization method. First, we derive the spatial boundary value problem for a 
general hyperbolic system. Then, we derive an exact one-way equation for systems that are homogeneous along the axis 
of parabolization by identifying and eliminating leftgoing waves. The exact formulation is computationally expensive, so we 
next formulate efficient, well-posed approximations of the exact equations. We discuss the application of these methods to 
systems that vary along the axis of parabolization and finally compare the computational cost of the one-way equations to 
standard solution techniques.

2.1. Problem formulation

We begin with a system of linear, strongly hyperbolic partial differential equations

∂q

∂t
+ A (x, y)

∂q

∂x
+

d−1∑
B j (x, y)

∂q

∂ y j
+ C (x, y)q = 0. (1)
j=1
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Here, x ∈ R is the axis along which we will parabolize the equations, y = {y1, . . . , yd−1} ∈ R
d−1 are additional, transverse 

spatial dimensions, and d is the total spatial dimensionality of the problem. The coefficients A, B j , C ∈ C
Nq×Nq are smooth 

matrix functions of x and y and do not depend on t . The vector q = q(x, y, t) ∈C
Nq is the solution to be determined.

We discretize equation (1) in the transverse directions using a total of N y degrees of freedom. Standard finite difference 
discretizations are used in the example problems presented in Section 4, but in principle any collocation method could be 
used. We represent the discrete analog of each continuous variable and operator with a bold variable of the same name. 
The semi-discrete approximation of equation (1) can then be written

∂q

∂t
+ A (x)

∂q

∂x
+ B (x)q = 0, (2)

where B = ∑d−1
j=1 B j D j +C and the matrix D j approximates the derivative ∂

∂ y j
. At this point, transverse boundary conditions 

must also be incorporated into B . It is important that these boundary conditions do not alter the structure of A. Common 
options such as damping layers, perfectly matched layers, and characteristic boundary conditions satisfy this requirement.

Equation (2) is a one-dimensional strongly hyperbolic system. In other words, A is diagonalizable and has real eigenval-
ues. This follows from the fact that the entries of A are a discrete sampling of the continuous matrix A. Specifically, A can 
be written as a block-diagonal matrix, where each block contains the matrix A evaluated at one of the collocation points. 
This structure guarantees that A is diagonalizable and that its eigenvalues are real, since they are precisely the eigenvalues 
of A at the collocation points.

In the preceding development, equation (2) inherited strong hyperbolicity from equation (1). This is not, however, the 
only way to arrive at a system equivalent to equation (2). For example, higher order y derivatives could be added to 
equation (1), destroying its hyperbolicity, without destroying the hyperbolicity of equation (2). The method described in the 
remainder of this paper can be applied to any linear, one-dimensional, strongly hyperbolic equation, regardless of its origin.

For simplicity, we restrict our attention to the case in which A is invertible for all x. This restriction is not necessary 
but simplifies the discussion. We treat the case where A is singular in Appendix A. Under this assumption, the number of 
positive and negative eigenvalues of A is fixed for all x, and we denote these quantities as N+ and N− , respectively. The 
total size of the semi-discrete system is N = Nq N y = N+ + N− .

It proves useful to work with the characteristic variables of equation (2). Since A is diagonalizable, there exists a trans-
formation T (x) such that

T AT −1 = Ã =
[

Ã++ 0
0 Ã−−

]
, (3)

where Ã++ ∈ R
N+×N+ > 0, Ã−− ∈ R

N−×N− < 0, and Ã are diagonal matrices. The diagonal entries of Ã++ and Ã−− are 
precisely the positive and negative eigenvalues of A, respectively. The transformation T is known analytically since it is the 
discretization of the matrix T that diagonalizes A.

The characteristic variables of equation (2) are then φ(x, t) = T (x)q(x, t), and can be separated into positive and negative 
parts based on the positive and negative blocks of A:

φ =
{

φ+
φ−

}
(4)

with φ+ ∈R
N+ and φ− ∈R

N− . In terms of the characteristic variables, equation (2) becomes

∂φ

∂t
+ Ã (x)

∂φ

∂x
+ B̃ (x)φ = 0, (5)

where B̃ = T B T −1 + ÃT dT −1

dx .
Since we wish to obtain a one-way equation in the frequency domain, we proceed by applying a Laplace transform in 

time to equation (5), giving

s φ̂ + Ã (x)
∂φ̂

∂x
+ B̃ (x) φ̂ = 0, (6)

where φ̂(x, s) is the Laplace transform of φ(x, t) and s = η − iω (η, ω ∈ R) is the Laplace dual of t . We have assumed zero 
initial conditions, but that is unimportant since we are only interested in the long-time stationary behavior of the solution. 
We will ultimately take η = 0 and set ω to a particular value to obtain the stationary solution at that frequency, but keeping 
the possibility of non-zero η will help us distinguish between upstream and downstream solutions of equation (5).

Solving equation (6) for x-derivatives gives

dφ̂ = M (x, s) φ̂ (7)

dx
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with

M = − Ã
−1

(
sI + B̃

)
. (8)

It is useful to partition M into blocks according to the sizes of the positive and negative characteristic variables:

d

dx

{
φ̂+
φ̂−

}
=

[
M++ M+−
M−+ M−−

]{
φ̂+
φ̂−

}
. (9)

The size of each block is implied by the subscripts; for example, M+− ∈ C
N+×N− . We will continue to use this convention 

throughout the paper.

2.2. Exact one-way equation

In this subsection, we show that there exists an exact parabolization of equation (7) for the special case in which M
is not a function of x. The method will be extended to x-dependent operators in Section 2.4. We also assume that M is 
diagonalizable. It is shown in Appendix B that the methods developed for diagonalizable matrices can be applied without 
modification to systems in which M is defective.

The essential step in parabolizing equation (7) is distinguishing between its rightgoing and leftgoing solutions. Since 
equation (7) is uniform in x, its general solution is the summation of modes

φ̂(x, s) =
N∑

k=1

vk(s)ψk(x, s), (10)

where each expansion coefficient ψk satisfies

dψk

dx
= iαk(s)ψk, (11)

and each (iαk , vk) is an eigenvalue-eigenvector pair of M . We include the i in our definition of the eigenvalue for consis-
tency with the usual definition of spatial wave-numbers. The real and imaginary parts of αk are related to the phase-speed 
and spatial growth rate of the mode.

The task at hand is to determine which of these modes are rightgoing and which are leftgoing, in terms of energy 
transfer. Briggs [18] developed a criterion for making this distinction: mode k is rightgoing if

lim
η→+∞ Im [αk(s)] = +∞ (12)

and leftgoing if

lim
η→+∞ Im [αk(s)] = −∞. (13)

Since M tends to the real diagonal matrix −η Ã
−1

as η → +∞, it is clear that all of its eigenvalues will exhibit one of these 
two behaviors. Furthermore, based on the block structure of Ã, there are exactly N+ rightgoing modes and N− leftgoing 
modes. When applied to an operator obtained from a constant coefficient hyperbolic system such as equation (7), Briggs’ 
criterion is consistent with well-posedness theory for hyperbolic systems as developed by Kreiss [19].

The exact parabolization of equation (7) is obtained by zeroing the leftgoing modes. That is, for each leftgoing mode, 
equation (11) is replaced with the condition

ψk = 0. (14)

This is exactly the same condition that is applied to each incoming mode in order to generate nonreflecting boundary con-
ditions at an outflow. Indeed, our parabolization technique can be thought of as applying a nonreflecting outflow boundary 
condition not just at the boundary, but to the entire domain, since we wish to disallow leftgoing solutions everywhere to 
achieve a well-posed spatial march.

In order to write the one-way equation clearly and compactly, it is useful to write it in block matrix form. First, the 
expansion coefficients are arranged in a vector ψ such that the N+ rightgoing modes appear first followed by the N−
leftgoing modes:

ψ =
{

ψ+
ψ−

}
. (15)

Then equations (10)–(11) can be written in matrix form as

φ̂ = V ψ ↔ ψ = U φ̂ (16)
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and

dψ

dx
= Dψ . (17)

The columns of V are the right eigenvectors, the rows of U = V −1 are the left eigenvectors, and the entries of the diagonal 
matrix D are the eigenvalues of M , all ordered in the same way as ψ , such that M = V DU .

We can also partition the matrices V , U , and D into blocks based on their association with the upstream and down-
stream expansion coefficients and the positive and negative characteristic variables. Specifically, we write{

φ̂+
φ̂−

}
=

[
V ++ V +−
V −+ V −−

]{
ψ+
ψ−

}
, (18)

{
ψ+
ψ−

}
=

[
U ++ U +−
U −+ U −−

]{
φ̂+
φ̂−

}
, (19)

and

d

dx

{
ψ+
ψ−

}
=

[
D++ 0

0 D−−

]{
ψ+
ψ−

}
. (20)

Recall that based on our ordering of ψ , D++ contains the rightgoing eigenvalues and D−− contains the leftgoing eigen-
values. We make one additional assumption: that the matrices U ++ , U −− , V ++ , and V −− are full-rank for all η ≥ 0. We 
discuss the meaning of this assumption and implications of its violation in Appendix B.

The exact parabolization of equation (7), in terms of ψ , is

dψ+
dx

= D++ψ+, (21a)

ψ− = 0. (21b)

This can also be written in terms of the characteristic variables as

dφ̂+
dx

= M++φ̂+ + M+−φ̂−, (22a)

U −+φ̂+ + U −−φ̂− = 0. (22b)

Equation (22) is a differential–algebraic system of index 1, so φ̂− can be eliminated, giving an ordinary differential 
equation for the positive characteristic variable:

dφ̂+
dx

= M∗++φ̂+, (23)

where

M∗++ = M++ − M+−U −1−−U −+ (24a)

= [
M++ M+−

][
I

−U −1−−U −+

]
(24b)

= [
V ++ V +−

][
D++ 0

0 D−−

][
U ++ U +−
U −+ U −−

][
I

−U −1−−U −+

]
(24c)

= [
V ++ V +−

][
D++ 0

0 D−−

][
V −1++

0

]
(24d)

= V ++ D++V −1++. (24e)

In going from the third to fourth line, we made use of the identity V −1++ = U ++ − U +−U −1−−U −+ . It is clear from the final 
equality that the eigenvalues of M∗++ are precisely the downstream eigenvalues of M . The one-way equation is therefore 
well-posed and admits the proper rightgoing solutions.

Implementation of the exact one-way equation given by equation (22) would require calculation of the N− left eigenvec-
tors corresponding to the leftgoing eigenvalues of M . The resulting computational cost would usually be intolerably high. 
This is especially true for x-dependent systems, in which case local eigenvectors would need to be recalculated at each x
(see Section 2.4). Instead, we will generate a practical one-way equation by approximating the parabolization condition 
given by equation (22b).
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2.3. Approximate one-way equation

Motivated by the connection between the exact one-way equation and nonreflecting boundary conditions, our approx-
imate parabolization method is based on recursions that were introduced by Givoli and Neta [20] and Hagstrom and 
Warburton [21] for generating nonreflecting boundary conditions. Accordingly, we propose an approximate one-way equa-
tion given by the differential–algebraic system

dφ̂+
dx

= M++φ̂+ + M+−φ̂−, (25a)(
M − iβ j

+ I
)

φ̂
j =

(
M − iβ j

− I
)

φ̂
j+1

j = 0, . . . , Nβ − 1, (25b)

φ̂
Nβ

− = 0. (25c)

In this formulation, we have introduced a set of auxiliary variables {φ̂ j : j = 0, . . . , Nβ} and a set of complex scalar 

parameters {β j
+, β j

− : j = 0, . . . , Nβ − 1}. The zero-indexed variable is the physical variable (φ̂
0 = φ̂) and the remaining 

auxiliary variables are defined by the recursions. The selection of the recursion parameters will be discussed below. We call 
Nβ the order of the approximate one-way equation.

To verify that equation (25) is well-posed as a one-way equation, we examine its behavior in the limit as η becomes 
large in accordance with Briggs’ criterion. We stipulate that the recursion parameters remain bounded in this limit, which 
places no practical restriction on their values since they need only be defined at η = 0, and can be formally continued in 
any convenient manner for η > 0. Then, for sufficiently large η, equation (25b) is dominated by the terms involving M , 
and we conclude that φ̂ j = φ̂

j+1
for all j. Then equation (25c) implies that φ̂− = 0, which when applied to equation (25a)

eliminates the second term on the right-hand-side. For large η, M++ tends to the real, negative matrix −η Ã
−1
++ . All of the 

eigenvalues of this final matrix have α with positive imaginary part. Therefore, by construction, equation (25) admits only 
rightgoing modes and is well-posed as a one-way equation.

This represents a fundamental difference between the frequency domain one-way equations pursued in this paper and 
time domain one-way equations that are often used as nonreflecting boundary conditions. In the time domain case, any 
parameters that arise in the formulation must be specified as explicit functions of s in order for the equations to be 
transformed back into the time domain. As a result, the choice of parameters critically effects the well-posedness of the 
approximate equations [4]. In contrast, the recursion parameters do not effect the well-posedness of our frequency domain 
one-way equations, allowing for great flexibility in the parameter selection process.

Next, we show that the approximate one-way equation converges to the exact one-way equation as the order of the 
approximation increases, provided that the recursion parameters are appropriately chosen. Since equation (25a) is identical 
to equation (22a), we must only show that equation (25b) and equation (25c) together converge to equation (22b). In other 
words, we wish to show that ψ− → 0 as Nβ → ∞. To do so, we begin by defining ψ j = U φ̂

j
, which is the natural extension 

of the previous definition ψ = U φ̂. Equation (25b) can then be written(
D − iβ j

+ I
)

ψ j =
(

D − iβ j
− I

)
ψ j+1 j = 0, . . . , Nβ − 1. (26)

Since D is diagonal, each scalar component of ψ j can be considered separately:(
iαk − iβ j

+
)

ψ
j
k =

(
iαk − iβ j

−
)

ψ
j+1
k j = 0, . . . , Nβ − 1, k = 1, . . . , N. (27)

It is then straightforward to eliminate all of the intermediate ( j = 1, .., Nβ − 1) auxiliary variables, leaving

ψ
Nβ

k = F(αk)ψk k = 1, . . . , N (28)

with

F(α) =
Nβ−1∏

j=0

α − β
j

+
α − β

j
−

. (29)

We now re-assemble equation (28) into a single matrix equation for all k:{
ψ

Nβ

+
ψ

Nβ

−

}
=

[
F ++ 0

0 F −−

]{
ψ+
ψ−

}
, (30)

where F ++ and F −− are diagonal matrices whose entries are the values of F(α) associated with each rightgoing and 
leftgoing eigenvalue, respectively.
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Next, we apply the termination condition given by equation (25c). To do so, we write the left-hand-side of equation (30)

in terms of φ̂
Nβ

:

[
U ++ U +−
U −+ U −−

]{
φ̂

Nβ

+
φ̂

Nβ

−

}
=

[
F ++ 0

0 F −−

]{
ψ+
ψ−

}
. (31)

Applying equation (25c) and eliminating φ̂
Nβ

+ leaves

ψ− = Rψ+, (32)

with

R = F −1−−W F ++, (33)

and

W = U −+U −1++. (34)

The rectangular matrix R is analogous to a matrix of reflection coefficients. Each entry of R takes the form

rmn = F(α+,n)

F(α−,m)
wmn (35)

where α+,n is the nth rightgoing eigenvalue, α−,m is the mth leftgoing eigenvalue, and wmn is the (m, n) entry of the 
weighting matrix W , which does not depend on the recursion parameters.

To achieve convergence to the exact one-way equation, every rmn must converge toward zero as the order of the approx-
imation increases. Since the weights are fixed, the recursion parameters must be chosen such that F(α+,n)/F(α−,m) goes 
to zero for all m, n. This is accomplished by forcing F(α+,n) to zero and F(α−,m) to infinity.

The following geometric interpretation of F is helpful for choosing parameters that accomplish these objectives. Note 
that F is composed of a product of factors

F j(α) = α − β
j
+

α − β
j
−

. (36)

It is clear that the magnitude of each individual factor is less than one for regions of the complex α plane that are closer 
to β j

+ than β j
− (|α − β

j
+| < |α − β

j
−|) and greater than one for regions that are closer to β j

− than β j
+ (|α − β

j
+| > |α − β

j
−|). 

Therefore, F(α+,n) is driven to zero by placing the β j
+ parameters near the rightgoing eigenvalues in the complex plane, 

and F(α−,m) is driven to infinity by placing the β j
− parameters near the leftgoing eigenvalues.

Suppose that, for a given system, there exists a pair of parameters {β0+, β0−} for which |F0| < 1 for all rightgoing eigen-
values and |F0| > 1 for all leftgoing eigenvalues. Furthermore, define κ as the maximum value of |F0(α+,n)|/|F0(α−,m)|
over all m, n. If this parameter pair is then repeated for all j = 0, . . . , Nβ − 1, the slowest converging entry of R will de-
crease like κNβ as the order of the approximation is increased. Therefore, even for this very simple choice of parameters, the 
method exhibits spectral convergence. In practice, it is not always possible to find a single pair of recursion parameters for 
which this supposition holds. Even if such a pair exists, it is typically preferable to distribute the parameters over a range of 
locations using the above distance-based guidelines, since eigenvalues close to a single repeated parameter converge much 
more rapidly than those farther away.

The question arises whether it is always possible to find a set of recursion parameters, for some sufficiently 
high Nβ , that makes every rmn arbitrarily small. Assuming that α+,n �= α−,m for all m, n, the answer is, surpris-
ingly, yes. Specifically, the minimal set that accomplishes this is 

{
βn+ = α+,n, βn− �= α+,n : n = 1, . . . , N+

}
if N+ < N− or {

βm− = α−,m, βm+ �= α−,m : m = 1, . . . , N−
}

if N− < N+ . This of course requires complete knowledge of the eigenvalues of 
the discretized system, which is rarely possessed in practice. However, for systems that model physical phenomena, the 
locations of the rightgoing and leftgoing eigenvalues are physically meaningful and can often be estimated by studying sim-
plified systems. This will be demonstrated for the Euler equations in 3.2. Furthermore, the spectra of discretized physical 
systems tend to be structured, such that groups of rightgoing eigenvalues often occupy different regions of the complex 
plane than groups of leftgoing eigenvalues. Again, this will often be the case for the Euler equations, even when linearized 
about nonuniform baseflows.

When eigenvalues cluster into groups, F can be driven to its desired limit for a large number of eigenvalues using a small 
number of parameters by taking advantage of the short distances between clustered eigenvalues and placing a parameter 
within the cluster. As will be shown in Section 2.5, it is precisely the fact that good approximations can be obtained for 
Nβ << N that makes the approximate one-way equations cost-effective.
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2.4. Extension to x-dependent systems

In the previous two subsections, we developed exact and approximate one-way equations under the assumption that M
is homogeneous in x. In this subsection, we discuss the extension of these methods to x-dependent systems.

First, it is easy to verify that for x-dependent systems, the approximate parabolization given by equation (25) still con-
verges to the exact parabolization given by equation (22) at every x. Therefore, we must only evaluate the exact method, 
and all conclusions will apply also to the approximate formulation.

Central to the concept of parabolization is the identification of rightgoing and leftgoing parts of the solution at each 
axial location. When M is x-dependent, equation (7) no longer admits simple modal solutions, so Briggs’ criterion no longer 
strictly applies. However, the theory of well-posedness of variable coefficient hyperbolic systems [19] provides a means by 
which to distinguish, locally at each x, parts of the solution that are rightgoing and leftgoing. Simply put, the variable coeffi-
cient extension of well-posedness theory states that constant coefficient analysis of the frozen coefficient system at a given 
x provides the correct (that is, well-posed) division of the solution into rightgoing and leftgoing components. Therefore, the 
one-way equations derived in the previous two sections will still retain and eliminate the correct parts of the operator at 
each axial station for x-dependent systems, and the equations therefore remain well-posed.

The fundamental difference between the homogeneous and x-dependent cases is that in the later, the rightgoing and 
leftgoing variables no longer evolve independently. Except in rare cases, the eigen-expansion φ̂ = V ψ no longer diagonalizes 
equation (7) because dV

dx �= 0. As a result, every expansion coefficient ψk is potentially coupled with every other coefficient. 
This coupling is intrinsic to x-dependent equations and is deeply linked to important properties of their solutions. For 
example, this coupling allows convective solution of the linearized Euler equations to excite acoustic waves that propagate 
in all directions.

The implication of this coupling for our one-way equation is that setting ψ− = 0 will cause ψ+ to evolve incorrectly as it 
propagates. Therefore, accurate one-way approximations can only be obtained when leftgoing waves have a weak influence 
on the evolution of the rightgoing waves. This is not a shortcoming of our particular parabolization method, but rather an 
inherent limitation on the class of problems for which a one-way solution strategy is sensible. An important situation in 
which the coupling is weak occurs when the system is slowly-varying in x. In this case, the slow variation of the system 
ensures the slow variation of V , which in turn implies that the eigen-expansion nearly diagonalizes M . A close examination 
of the meaning of “nearly diagonalizes” reveals that this is akin to the usual short-wavelength condition that is frequently 
invoked when extending local theory to spatially-varying equations.

To reiterate, the one-way equations are well-posed for all hyperbolic systems, but physical accuracy is guaranteed only 
for those that are sufficiently slowly-varying in x.

2.5. Computational cost

As mentioned in the introduction, the value of one-way approximations is their low computational cost compared to 
traditional solution techniques. We now compare operation count scaling estimates for several methods.

Using the approximate one-way equations entails satisfying the differential–algebraic system given by equation (25) at 
each axial step in the march. This, in turn, requires the solution of a matrix system with leading dimension O

(
N y Nβ

)
. For 

efficiency, it is important for the system to be sparse, which, in turn, requires the use of sparse discretization schemes. 
When this requirement is observed, the banded structure of the system results in a predicted operation count that scales 
like N y N2

β . Modern sparse solvers can often exploit additional structure within the system not accounted for in this simple 
cost estimate, and in practice we observe scaling like N y N p

β with 1 < p < 2. Frequently, p ≈ 1.5.

The eigen-solution required by the exact parabolization method scales like N3
y . The cost savings of the approximate 

method stems from the fact that Nβ 
 N y and therefore N p
β 
 N2

y . Because of the impracticality of the exact parabolization 
method, from here on out we will refer to the approximate formulation as the one-way equations. Direct time domain and 
frequency domain solutions of the original hyperbolic system scale like N y Nt and N2

y , respectively, per axial station. In time 
domain solvers, Nt is the number of time steps required to obtain a stationary solution. Again, the benefit of the one-way 
equations is that N p

β 
 Nt . Finally, PSE usually scales like N y Nit , where Nit is the number of iterations required to satisfy a 
nonlinear constraint that is part of the PSE formulation. PSE is typically cheaper than the one-way equations since in most 
cases Nit < N p

β .

3. Application to the Euler equations

In this section, our one-way methodology is applied to the linearized Euler equations. The primary task is to determine 
robust recursion parameters that can be used for a range of problems. To achieve this, we first use analytical eigenvalues 
for a uniform flow to predict the approximate locations of the eigenvalues of the semi-discretized equations for nonuniform 
flows. Using these estimates, strategies developed by Hagstrom and colleagues [21–24] for choosing parameters for nonre-
flecting boundary conditions can be adapted to select recursion parameters that result in accurate and convergent one-way 
equations for many flows. The development outlined here for the Euler equations can be used as a guide for identifying 
appropriate recursion parameters when applying the method to other hyperbolic systems of equations.
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3.1. Linearized Euler equations

The linearized Euler equations in three-dimensional Cartesian coordinates can be written in the form of equation (1)
with d = 3,

A =

⎡
⎢⎢⎢⎣

ūx −ν̄ 0 0 0
0 ūx 0 0 ν̄
0 0 ūx 0 0
0 0 0 ūx 0
0 γ p̄ 0 0 ūx

⎤
⎥⎥⎥⎦ , B1 =

⎡
⎢⎢⎢⎣

ū y1 0 −ν̄ 0 0
0 ū y1 0 0 0
0 0 ū y1 0 ν̄
0 0 0 ū y1 0
0 0 γ p̄ 0 ū y1

⎤
⎥⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎣

ū y2 0 0 −ν̄ 0
0 ū y2 0 0 0
0 0 ū y2 0 0
0 0 0 ū y2 ν̄
0 0 0 γ p̄ ū y2

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−∇ · ū ∂ν̄
∂x

∂ν̄
∂ y1

∂ν̄
∂ y2

0
∂ p̄
∂x

∂ ūx
∂x

∂ ūx
∂ y1

∂ ūx
∂ y2

0
∂ p̄
∂ y1

∂ ū y1
∂x

∂ ū y1
∂ y1

∂ ū y1
∂ y2

0
∂ p̄
∂ y2

∂ ū y2
∂x

∂ ū y2
∂ y1

∂ ū y2
∂ y2

0

0 ∂ p̄
∂x

∂ p̄
∂ y1

∂ p̄
∂ y2

γ ∇ · ū

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and q = {
ν, ux, u y1 , u y2 , p

}T . We have chosen as independent variables specific volume ν , velocity u = {
ux, u y1 , u y2

}T , and 
pressure p. The equations are linearized about a baseflow q̄ = {

ν̄, ūx, ū y1 , ū y2 , p̄
}T

, and all variables have been appropri-
ately non-dimensionalized by an ambient sound speed and density and a problem dependent length-scale. The fluid is 
approximated as a perfect gas with specific heat ratio γ .

The eigenvalues and diagonalizing transformation of A are

Ã =

⎡
⎢⎢⎢⎣

ūx 0 0 0 0
0 ūx 0 0 0
0 0 ūx 0 0
0 0 0 ūx + c̄ 0
0 0 0 0 ūx − c̄

⎤
⎥⎥⎥⎦ , T =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
(
ν̄
/

c̄
)2

0 0 1 0 0
0 0 0 1 0
0 1 0 0 ν̄

/
c̄

0 1 0 0 −ν̄
/

c̄

⎤
⎥⎥⎥⎥⎦ ,

where c̄ = (γ p̄ν̄)1/2 is the speed of sound. The semi-discretized operators Ã and T are found by sampling Ã and T , 
respectively, at the discretization points.

3.2. Parameter selection

The critical step in applying our one-way methodology to any system of equations is determining appropriate recursion 
parameters. As discussed in Section 2.3, this requires knowledge of the eigenvalues of the semi-discretized operator M
– specifically their location in the complex plane and their direction (rightgoing or leftgoing). For many baseflows, the 
eigenvalues of the semi-discretized equations form predictable groups that can be approximated and classified using the 
eigenvalues supported by a uniform flow. These uniform flow eigenvalues can be computed analytically, and therefore 
provide a means by which to predict the locations and directions of the eigenvalues for nonuniform baseflows. These 
estimates, in turn, can be used to define recursion parameters that result in convergent one-way approximations of the 
nonuniform equations.

We now derive the spatial eigenvalues of the Euler equations linearized about a uniform flow. For a uniform baseflow, 
C = 0 and the entries of the remaining three matrix coefficients are constants. Because of this, the transverse directions can 
be Fourier transformed rather than discretized. Then equation (1) reduces to

∂q†

∂t
+ A

∂q†

∂x
+ ik1 B1q† + ik2 B2q† = 0, (38)

where q† is the Fourier transform of q and k1,2 are the Fourier duals of y1,2. Proceeding as in Section 2.1, equation (38) is 
then written in terms of its characteristic variables φ† = T q†, Laplace transformed in time, and solved for the axial derivative 
term, finally resulting in an equation of the form

dφ̂†

dx
= M†φ̂† (39)

with

M† = ikT A−1 (I − z1 B1 − z2 B2) T −1. (40)
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Table 1
Classification of the eigenvalues of the uniform Euler equations: rightgoing (+), leftgoing (−), or singular (0).

Eigenvalue M̄x < −1 M̄x = −1 −1 < M̄x < 0 M̄x = 0 0 < M̄x < 1 M̄x = 1 M̄x > 1

αc − − − 0 + + +
αa1 − 0 + + + + +
αa2 − − − − − 0 +

Here, φ̂† is the Laplace transform of φ†, k = (ω + iη)/c̄ is a scaled Laplace variable, and z1,2 = k1,2/k are scaled transverse 
wavenumbers.

The eigenvalues of M are

iαc = ik

M̄x
, iαa1(z) = ik

−M̄x + μ(z)

1 − M̄2
x

, iαa2(z) = ik
−M̄x − μ(z)

1 − M̄2
x

, (41)

where M̄x = ūx/c̄ is the local Mach number, z = (
z2

1 + z2
2

)1/2
is a composite wavenumber, and the function μ(z) is given by

μ(z) =
√

1 − (1 − M̄2
x )z2. (42)

The discrete eigenvalue iαc has multiplicity three and describes the convection of entropy and vorticity, while the remaining 
two eigenvalues are continuous branches and describe both propagating and evanescent acoustic waves.

Each of these eigenvalues can be identified as either rightgoing or leftgoing for different values of the Mach number 
using Briggs’ criterion. Each eigenvalue also has a singular point at a particular Mach number corresponding to a singular 
point of A. This is discussed further in Appendix B, but for the purpose of parameter selection these infinite eigenvalues 
can be ignored. The results are summarized as a function of the Mach number in Table 1, in which a (+) indicates that an 
eigenvalue is rightgoing, a (−) indicates that an eigenvalue is leftgoing, and a zero indicates a singular point. With these 
directions determined, we set η = 0 from here on out.

The eigenvalues of semi-discretized nonuniform Euler equations can often be sorted into groups associated with these 
three uniform flow eigenvalues. First, nonuniform Euler equations typically support convective modes that travel with phase 
speeds ranging from the slowest to fastest axial velocities within the flow. The location and direction of these eigenvalues 
are given by evaluating αc with M̄x varied over this range of velocities.

Second, nonuniform Euler equations usually support branches of acoustic modes that are well approximated by αa1 and 
αa2 with M̄x set to its asymptotic value as |y| becomes large. If multiple asymptotic values of M̄x exist, multiple branches 
of acoustic eigenvalues will exist that can be approximated by evaluating αa1 and αa2 separately at each asymptotic value. 
These uniform flow acoustic eigenvalues are continuous branches while the eigenvalues of the semi-discretized nonuniform 
equations are necessarily discrete. One consequence of this is that the continuous eigenvalues need only be considered up 
to the maximum wavenumber zmax that is supported by the transverse grid, since no eigenvalues of the semi-discretized 
equations exist beyond this limit.

These eigenvalue estimates can also be used when the Euler equations are written in different coordinate systems. The 
uniform flow equations in two-dimensional Cartesian coordinates admit the same analytical eigenvalues, but the convective 
eigenvalue has multiplicity two instead of three. When written in cylindrical coordinates, some of the matrix coefficients de-
pend on the radial coordinate, so strictly speaking, analytical eigenvalues cannot be derived using spatial Fourier transforms. 
In spite of this, we have found that the above eigenvalues still provide a good representation of the discretized eigenvalues 
for both uniform and nonuniform baseflows.

These predictions for the locations and directions of the eigenvalues of M can now be used to choose appropriate 
recursion parameters. As established in Section 2.3, the β j

+ parameters must be placed near the rightgoing eigenvalues so 
that F is small for every rightgoing eigenvalue, while the β j

− parameters must be placed near the leftgoing eigenvalues so 
that F is large for every leftgoing eigenvalue. In other words, the β j

+ and β j
− parameters should be distributed over the 

predicted locations of the rightgoing and leftgoing eigenvalues, respectively.
As an example, we expound this procedure for the commonly encountered case where 0 < M̄x < 1 everywhere in the 

flow. Then αc and αa1 are rightgoing while αa2 is leftgoing. A complete set of recursion parameters is constructed by defin-
ing several subsets related to different parts of the predicted spectrum. Strategies for choosing these subsets are described 
in the following paragraphs, and their precise definitions are given in Table 2.

First, a set βc± with Nc parameter pairs is defined with the goal of making F small for the convective eigenvalues. The 
β

j
+ parameters are evenly distributed over the range of predicted values of αc . The corresponding β j

− parameters should be 
placed far away from the convective eigenvalues so that the magnitude of the F j factors for these parameters are as small 
as possible in the vicinity of the convective eigenvalues. However, it is also desirable for these F j factors to be small at αa1

and large at αa2 . A good compromise between these two competing objectives is obtained by rotating the βc+ parameters 
by −90 degrees around the asymptotic value of M̄x that is used to predict the acoustic parameters. Then, |F j | ≤ 1 for all 
values of αa1 and |F j| ≥ 1 for all values of αa2 .
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Table 2
Recursion parameter sets that target the three predicted groups of eigenvalues for 0 < M̄x < 1.

Type Spacing β
j
+/k β

j
−/k

Convective bh = 1
M̄max

+
(

1
M̄min

− 1
M̄max

)
h

Nc−1 b j −ib j + (1 + i)
−M̄x

1 − M̄2
x

β c± = {β j
± : j = 0, . . . , Nc − 1} h = 0, . . . , Nc − 1

Acoustic, propagating θh = π
2

h
2N p

−M̄x + cos θ2 j

1 − M̄2
x

−M̄x − cos θ2 j+1

1 − M̄2
x

β
p

± = {β j
± : j = 0, . . . , N p − 1} h = 0, . . . ,2N p − 1

Acoustic, evanescent μh = μmax
h

2Ne

−M̄x + μ2 j

1 − M̄2
x

−M̄x − μ2 j+1

1 − M̄2
x

β e± = {β j
± : j = 0, . . . , Ne − 1} h = 0, . . . ,2Ne − 1

In choosing parameters to target the predicted acoustic eigenvalues, we exploit the rotational symmetry between αa1

and αa2 (about k −M̄x

1−M̄2
x

for each asymptotic value of M̄x). This allows parameter pairs to be chosen that simultaneously 

make the corresponding F j factors small for the rightgoing eigenvalues and large for the leftgoing eigenvalues. Specifically, 
the β j

+ parameters are distributed along αa1 and the β j
− parameters are distributed along αa2 . The most straightforward 

approach to distributing the parameters is to choose a set of values of z or μ(z) and define the pairs by evaluating both 
acoustic eigenvalues at each value. This choice guarantees the desired behavior of the F j factors. However, Hagstrom et al. 
[24] showed that the uniform flow reflection coefficient (which is the analytical analogous to equation (32)) can be made 
zero at twice as many locations by offsetting the points at which αa1 and αa2 are evaluated.

Note that αa1 and αa2 are purely real up to a critical value of z, at which point they become purely imaginary. The real 
parts of the branches correspond to propagating acoustic waves, while the imaginary parts represent evanescent acoustic 
waves. We distribute the parameter pairs separately for these two sections of the branches. For the propagating modes, 
the angle of propagation is θ = cos−1 (μ(z)). To choose a set β p

± with Np offset parameter pairs, take 2Np + 1 equally 
spaced angles on the closed interval [0, π/2] and discard the final angle θ = π/2. Then, starting with θ = 0, use every-other 
angle to define a β j

+ and β j
− parameter. To choose a set βe± with Ne parameters for the evanescent section of the acoustic 

branches, define 2Ne + 1 equally spaced points on the closed interval [0, μ (zmax)] and discard the point μ = 0. Then, 
starting with the next value, use every-other point to define a β j

+ and β j
− parameter.

The reason for omitting the values θ = π/2 and μ(z) = 0 (which are the same point in the complex plane) in both 
acoustic parameter sets is that they represent energy transfer that is tangent to the parabolization axis, which can never 
be captured by one-way spatial marching. Furthermore, the rightgoing branch αa1 and the leftgoing branch αa2 intersect at 
this point, and it is clearly impossible to make F both large and small at the same time. This is of no practical concern 
because the equivalent branches that occur in discretized equations do not intersect in this manner due to the incorporation 
of nonreflecting transverse boundary conditions (see for example the eigenvalues in Fig. 2).

Rather than defining the acoustic parameters using equally spaced angles (propagating) and points along μ (evanescent), 
the parameters can instead be chosen by formally minimizing F

(
αa1

)
/F

(
αa2

)
with respect to some norm. Following 

Hagstrom and Warburton [22], we have carried out this calculation using a weighted minimax norm, but found very little 
improvement over equal spacing. The optimized parameters offered moderate improvements at high propagation angles, but 
at the cost of a degradation of evanescent and low angles waves. In practice, we therefore use the simple approach based 
on equal spacing.

The final set of recursion parameters is defined by taking the union of all of the subsets related to the different parts of 
the predicted spectrum. Typically, we use roughly the same number of parameters for each subset.

4. Results

In this section, we use the one-way Euler equations to solve three problems. First, a simple case involving the propa-
gation of monopole acoustic waves in a quiescent fluid is used to demonstrate the convergence of the one-way equations. 
Second, the scattering of acoustic waves by a vortex is calculated using the one-way equations and compared to published 
direct-numerical-simulation results. Third, convectively unstable models of a compressible jet are solved using the one-way 
equations and compared to traditional time domain and PSE solutions of the same equations.

For all simulations, the equations are discretized in the transverse direction using fourth-order central finite differences 
with summation-by-parts boundary closure [25]. Far-field radiation boundary conditions are enforced at free transverse 
boundaries using a super-grid damping layer [26] truncated by Thompson characteristic conditions [27]. For the cylindrical 
coordinates calculations, pole conditions are implemented using the scheme of Mohseni and Colonius [28]. The one-way 
Euler equations are integrated in x using a third-order, L-stable diagonally-implicit Runge–Kutta scheme [29]. Recursion 
parameters are selected using the strategies described in the previous section.
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Fig. 1. Solution error (defined in equation (43)) for the monopole problem for the approximate ( ) and exact ( ) one-way Euler equations.

4.1. Monopole acoustic waves in a quiescent fluid

In this problem, a monopole disturbance is placed just upstream of the computational domain in a quiescent fluid. The 
monopole generates an acoustic field for which an analytical solution exists. Since the system is x-independent and the 
solution is comprised exclusively of downstream propagating waves, this set-up allows the convergence of the one-way 
equation to be verified.

The computational domain extends six wavelengths in both x and y and is discretized using 300 equally spaced points 
in each direction. Along the inlet of the domain, the exact monopole solution is supplied as an incoming fluctuation which 
is then propagated through the domain by integrating the one-way Euler equations. The calculation is performed using 
different orders of the approximation and also using the exact one-way equation. The solution error is defined as

1

A

∫
A

∣∣∣∣ powe − pexact

pmax

∣∣∣∣
2

dA, (43)

where powe is the pressure computed by the one-way Euler equations, pexact is the exact analytical pressure, and pmax is 
the maximum value of the exact pressure in the domain. The integration is over the area A of the physical domain, not 
including the far-field damping layers.

The solution error results are plotted in Fig. 1. The convergence of the one-way solution over 0 < Nβ < 8 is spectral. 
For Nβ > 8, the error plateaus at a level equal to the error of the exact one-way solution. Recall that the one-way Euler 
eigenvalues converge toward the eigenvalues of the discretized equations; the properties of the underlying discretization are 
unaltered by the parabolization method. Therefore, the convergence plateau indicates that the parabolization error has be-
come smaller than other numerical errors, such as those related to boundary conditions and finite difference approximation. 
By the time this occurs for the discretization used here, the error in the one-way solution has dropped by five orders of 
magnitude.

A useful way to visualize the convergence of the method is to compare the eigenvalues of the one-way operator to those 
of the full operator M . As the one-way system converges, its eigenvalues should converge to the rightgoing eigenvalues 
of M . For the problem under consideration, all of the eigenvalues of M correspond to either rightgoing or leftgoing acoustic 
waves; no convective eigenvalues exist because the fluid is quiescent.

Fig. 2 compares the eigenvalues at several orders of the approximation. At Nβ = 0, the upstream acoustic waves have 
been removed (since the equations are well-posed even at zero order), but the downstream eigenvalues are poorly repre-
sented. As Nβ is increased, all the eigenvalues of the one-way system converge toward the rightgoing eigenvalues of the full 
operator. The convergence is quantified in Fig. 3 for four eigenvalues corresponding to acoustic radiation to approximately 
20, 40, 60 and 80 degrees to the parabolization axis (based on a simple plane-wave estimate). As expected, the higher angle 
eigenvalue converges more slowly than the lower angle eigenvalues, but the steady spectral convergence for all four angles 
confirms the quality of the recursion parameters that were derived in the previous section. The specific values of β j

+ and 
β

j
− used are also shown graphically in Fig. 2.

4.2. Scattering of acoustic waves by a vortex

Here, we use the one-way Euler equations to calculate the scattering of a plane acoustic wave by a homentropic vor-
tex. This problem was previously investigated using a one-way wave equation [30] (which the author called a parabolic 
approximation) and direct numerical simulation [31]. We will compare our one-way Euler results to the later.
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Fig. 2. Comparison between the eigenvalues of the full and one-way Euler operators for the monopole problem at several orders of the approximation. The 
full equations support rightgoing ( ) and leftgoing ( ) acoustic modes. The eigenvalues of the one-way equations ( ) converge to the rightgoing modes. 
Also shown are the β j

+ ( ) and β j
− ( ) recursion parameters used for each order of the approximation.

Fig. 3. Distance between the exact and one-way Euler eigenvalue for the monopole problem corresponding to acoustic radiation to several angles relative 
to the axis of parabolization: 20◦ (a); 40◦ (F); 60◦ (2); 80◦ (").

In our formulation, the Euler equations are linearized about a steady, homentropic vortex that exactly satisfies the two-
dimensional nonlinear Euler equations. The tangential velocity about the center of the vortex is

ūθ = 


2πr

(
1 − exp

(
−ar2

))
(44)

where a = 1.256431 is a constant chosen such that the maximum velocity occurs at r = 1. We define this to be the core 
radius, and nondimensionalize by this length scale. The radial velocity is zero and the pressure is given by

p̄ = 1

γ

(
1 − (γ − 1)
2

4π2r2
f
(

ar2
)) γ

γ −1

(45)

where
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Fig. 4. Root-mean-square pressure level of the scattered wave at r = 10 computed by: direct numerical simulation ( ) and the one-way Euler 
equations ( ).

f (w) = 1

2
− exp (−w) + 1

2
exp (−2w) + wEi (−2w) − wEi (−w) (46)

and Ei is the exponential integral function. The specific volume is related to the pressure by the homentropic relation

ν̄ = (γ p̄)
−1
γ . (47)

The maximum mean velocity induced by the vortex is

ū
 = 


2π
. (48)

We set ū
 = 0.0625 to match one of the DNS cases [31].
The computational domain extends ten core radii in x and y from the center of the vortex, and the transverse y direction 

is discretized using 250 equally spaced points. An incoming plane acoustic wave with a wavelength of four core radii is 
specified at the left-hand boundary, and advanced by integrating the one-way equations with a step size of �x = 0.08, 
corresponding to 50 points per wavelength. The solution is well converged using Nβ = 12.

The scattered wave field is defined as the difference between the wave distorted by the vortex and an undistorted plane 
wave. In Fig. 4, the root-mean-square of the scattered pressure at r = 10 is plotted as a function of angle, with θ = 0◦
corresponding to the forward direction of the incident wave. The DNS results of Colonius et al. [31] are also shown. The 
agreement between the two solutions is excellent. The discernible error is confined to high forward angles (80◦ < θ < 90◦) 
and backward angles (θ > 90◦) for which the one-way solution is expected to degrade. The reasonable accuracy even at 
these high angles reveals that the scattered wave field at these angles is dominated by refraction effects due to the slowly 
decaying vortex rather than direct scattering from the vortex core, since by definition the one-way solution does not contain 
leftgoing waves.

Analogous results can be obtained for stronger vortices up to ū
 = 0.2. Above this threshold, spurious eigenvalues appear 
in the spectrum of M that are not properly accounted for using our standard set of recursion parameters, leading to insta-
bility of the march. This highlights a limitation of our one-way methodology: recursion parameters must be specified that 
properly converge all of the eigenvalues of the discretized system, including those associated with both spurious nonphysical 
and unexpected physical dynamics. In this case, the offending eigenvalues are spurious – that is, a nonphysical artifact of the 
discretization. Such eigenvalues are by definition sensitive to details of the discretization, making them difficult to account 
for in the parameter selection process. It is likely that more sophisticated approaches to selecting parameters could alleviate 
this issue, but it’s also worth emphasizing that our simple approach has proven effective for the majority of problems so far 
encountered.

4.3. Linear wavepackets in a Mach 0.9 turbulent jet

Finally, we use the one-way equations to compute linear wavepackets and their associated acoustic radiation in a Mach 
0.9 jet. Wavepacket-based jet noise models have recently received a great deal of attention due to their ability to capture 
many important features of both the near-field jet turbulence and the resulting far-field acoustics (see the recent review by 
Jordan and Colonius [32]). This problem also exemplifies the typical properties of convectively unstable flows. The near-field 
mixing region is dominated by a single convective mode associated with the Kelvin–Helmholtz instability. The spatial growth 
and subsequent decay of this mode forms a wavepacket and causes the emission of acoustic waves that are very weak 
compared to the near-field fluctuations. This amplitude difference makes the acoustic radiation difficult to properly capture 
using approximate solution techniques and makes this a challenging test for our one-way equations.
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Fig. 5. Contours of axisymmetric pressure fluctuations at St = 0.35 in a Mach 0.9 jet, scaled by the maximum amplitude. Top row: fifty equally spaced 
contour levels between ±1. Bottom row: fifty equally spaced contour levels between ±4 × 10−3, chosen to show acoustic radiation. First column: direct so-
lution. Second column: PSE. Third column: one-way Euler equations. The one-way Euler solution captures both the near-field wavepacket and the associated 
acoustic radiation at a fraction of the cost of the direct solution, while PSE completely misses the acoustic radiation.

In the specific problem considered here, the Navier–Stokes equations are linearized about the mean turbulent flow-field 
from a carefully validated large-eddy-simulation of an isothermal Mach 0.9 jet [33,34]. Axial second derivatives are ne-
glected, as they are in other spatial marching methods such as the reduced and parabolized Navier–Stokes equations [17]. 
Radial and azimuthal second derivatives are retained. As discussed in 2.1, this ruins the hyperbolicity of the continuous 
system, but has no bearing on the parabolization process since the semi-discrete system defined in equation (2) remains 
hyperbolic. The computational domain extends fifteen jet diameters in the radial direction, and is discretized with 600 
points that are clustered near the jet lip line (r = 1/2).

Half a diameter downstream of the inlet, the local Kelvin–Helmholtz eigenfunction is specified as an incoming fluctuation. 
The system is solved using the one-way Euler equations with Nβ = 12, and also using the parabolized stability equations, 
which have frequently been employed within the context of wavepacket-based jet noise modeling [35,36]. We also compare 
to a previous solution [37] computed using time-domain integration, which we call the direct solution. Since this solution 
captures radiation is all directions, it can be thought of as the correct solution of the linear system.

Fig. 5 shows the axisymmetric part of the pressure fluctuation at a Strouhal number of St = f D
Ujet

= 0.35, which is near 
the most amplified frequency. The direct, PSE, and one-way Euler solutions appear in the first, second, and third column, 
respectively. In the top row, contour levels are chosen to show the near-field wavepacket, which is approximated well by 
both the PSE and one-way Euler solutions. In the bottom row, the contour levels are reduced to highlight the acoustic 
radiation, which is almost three orders of magnitude smaller than the near-field fluctuations. The direct solution contains 
a beam of acoustic radiation that propagates to the far-field. Unlike the PSE solution, the one-way Euler solution accurately 
captures this acoustic radiation. The advantage of the one-way solution over the direct solution is computational speed: 
the direct solution used 37.5 CPU hours while the one-way solution used only 1.2 CPU hours, a 34 times speed-up. For 
comparison, the PSE solution required 0.063 CPU hours, but this speed is achieved at the expense of accuracy.

5. Conclusions

In this paper, we have formulated and demonstrated a method for constructing well-posed one-way approximations of 
hyperbolic equations. First, an exact one-way equation is derived for systems that do not vary in x. We then construct an 
efficient approximation of the exact equation based on recursions originally developed for generating nonreflecting boundary 
conditions. The approximate equations are shown to be well-posed and are able to approximate the exact equations with 
increasing accuracy as the order of the recursions is increased, provided that the recursion parameters are properly chosen. 
When the method is applied to x-dependent systems, the one-way equation remains well-posed, but physical accuracy is 
guaranteed only when the variation is sufficiently slow such that leftgoing waves do not significantly modify the evolution 
of the rightgoing waves. This is not a shortcoming of our formulation, but rather an inherent limitation on the class of 
problems for which a one-way solution strategy is sensible. Computational cost scaling estimates are derived that explain 
the improved efficiency of the approximate one-way equations over traditional solution methods.

Next, the method is applied to the linearized Euler equations. A process by which appropriate recursion parameters 
can be identified is described in detail, which can be used as a guide in the application of the method to other hyperbolic 
equations. In particular, analytical eigenvalues of the uniform flow Euler equations can be used as a proxy for the eigenvalues 
of the discretized nonuniform equations for the purpose of parameter selection. The utility of the resulting one-way Euler 
equations is then demonstrated using three example problems. First, a simple modal problem involving the propagation 
of monopole acoustic waves is used to verify the convergence of the method. Second, the scattering of acoustic waves by 
a vortex is calculated. The excellent agreement between the one-way solution and a previous direct-numerical-simulation 
shows the accuracy of the method, despite the significant x-variation of the system. Third, linear wavepackets in a Mach 0.9 
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jet are computed. Unlike parabolized stability equations, the one-way Euler equations are able to properly capture both the 
near-field wavepacket and the associated acoustic radiation, which is almost three orders of magnitude less energetic than 
the nearfield fluctuations. The one-way equations require 34 times less CPU time than a traditional time domain method, 
highlighting their efficiency.

A limitation of our approximate one-way formulation is that effective recursion parameters can sometimes be difficult 
to identify. Defining the parameters using the simple strategies discussed in Section 3.2 has proven to be sufficient for a 
variety of problems, but can sometimes fail due to unexpected behavior of the eigenvalues of M . An example related to 
spurious numerical artifacts was discussed in Section 4.2. Developing robust strategies for overcoming these challenges is 
an ongoing aspect of our research.

Since our one-way formulation can be applied to any hyperbolic system, it could be a valuable tool for solving a wide 
range of problems. The most obvious application is to inhomogeneous wave propagation problems that arise in many fields. 
Examples include underwater acoustics, medical imaging, seismology, and non-isotropic elastic wave problems. One-way 
equations based on our methodology for these problems could prove to be faster than traditional time domain methods 
and more accurate than existing one-way equations that are based on factorization and subsequent approximation of quasi-
uniform analytical dispersion relations. Additional applications include noise, stability, and transition analysis of free-shear 
flows such as mixing-layers and jets, as well as wall-bounded flows (for which transverse viscous terms can be incorporated 
without hindering parabolization) ranging from classical flat-plate boundary layers to complicated swept wings. Unlike the 
parabolized stability equations, the one-way equations could capture multi-modal behavior within these problems, such as 
the generation of acoustic waves or interaction between multiple instability modes.
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Appendix A. Generalized one-way equations for systems with singular A

In this appendix, we generalize the one-way equations for systems in which A is singular. The essential difference is that, 
in addition to the usual rightgoing and leftgoing modes, systems with singular A also admit solutions that do not propagate 
in x. These solutions can be thought of either as modes with infinite eigenvalues or as algebraic constraints on the possible 
behavior of the propagating rightgoing and leftgoing solutions. Well-posed one-way equations can be constructed for these 
systems based on an extension of Kreiss’ theory that was developed by Majda and Osher [38]. The step-by-step development 
of the generalized one-way equations becomes quite technical, so for brevity we simply state the results.

The exact generalized one-way equation, analogous to equation (22), is

Ã++
dφ̂+
dx

= L++φ̂+ + L+0φ̂0 + L+−φ̂−, (A.1a)

0 = L0+φ̂+ + L00φ̂0 + L0−φ̂−, (A.1b)

0 = U −+φ̂+ + U −0φ̂0 + U −−φ̂−. (A.1c)

Here, the characteristic variables have been divided into three parts (rather than two) based on the positive, zero, and 
negative eigenvalues of A. The positive eigenvalues of A are contained in the diagonal matrix Ã++ . The matrices L++ , 
etc., are blocks of the matrix L = − 

(
sI + B̃

)
. Similarly, the matrices U −+ , etc., are blocks of a matrix of U = V −1, where 

V contains the right eigenvectors of the generalized eigenvalue problem LV = ÃV D . The blocks of both L and U are 
partitioned in the same way as in Section 2.1, but with additional blocks associated with φ̂0. By eliminating φ̂0 and φ̂− , it 
can be shown that equation (A.1) is well-posed and supports the same rightgoing eigenvalues as the original equations.

Following the form of equation (A.1), the approximate generalized one-way equation is

Ã++
dφ̂+
dx

= L++φ̂+ + L+0φ̂0 + L+−φ̂−, (A.2a)

0 = L0+φ̂+ + L00φ̂0 + L0−φ̂−, (A.2b)(
L − iβ j

+ Ã
)

φ̂
j =

(
L − iβ j

− Ã
)

φ̂
j+1

j = 0, . . . , Nβ − 1, (A.2c)

φ̂
Nβ

− = 0. (A.2d)

Equation (A.2a) has the same convergence properties as equation (25). The recursion parameters should be chosen based 
on the rightgoing and leftgoing eigenvalues of the generalized system – the infinite eigenvalues associated with the non-
propagating solutions can be ignored.
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Appendix B. Special cases associated with pathological properties of M

In this appendix, we address some special cases that were omitted from the main text due to assumptions that were 
made on certain properties of M . First, we previously assumed that M is diagonalizable. In general, there is no reason that 
this must be the case. However, it is always true for some sufficiently large η, since M tends to a diagonal matrix in this 
limit. Therefore, the potential for a defective M at some finite value of η effects neither the identification of rightgoing and 
leftgoing eigenvalues nor the well-posedness of the exact or approximate one-way equations.

One the other hand, the convergence proof of the approximate one-way equation at a fixed real frequency depended on 
the diagonalizability of M at that frequency. Specifically, the eigen-decomposition of M was used in equations (26)–(31)
to derive the reflection coefficient R , which governs the convergence of the approximate one-way equations. When M is 
defective, the reflection coefficient can be derived using the Jordan-decomposition of M , which always exists, rather than 
the eigen-decomposition. The derivation follows the same basic steps, with the essential difference being that expansion 
coefficients associated with the same Jordan block remain coupled. Ultimately, each entry of R takes the form

rmn = F(α+,m)

F(α+,n)
w̃nm. (B.1)

This is exactly the same form as before, except that the modified weights w̃mn are not constants, but instead depend on the 
recursion parameters, the order of the recursion, and the specifics of the Jordan form of M . Most importantly, the modified 
weights can grow like N2(h−1)

β to leading order, where h is the size of the largest Jordan block. This algebraic growth works 
against the goal of forcing every rnm to zero, but does not prevent it since the fractional term in equation (B.1) usually 
exhibits spectral convergence and can always be made arbitrarily small at finite order, as discussed in Section 2.3. Therefore, 
the approximate one-way equations converge to the exact one-way equation even when M is defective at the frequency of 
interest.

Second, we assumed in the main text that U ++ , U −− , V ++ , and V −− are full-rank for all η ≥ 0. These matrices 
are always full-rank when η is taken to be sufficiently large since M tends to a diagonal matrix. Therefore, violation of 
this assumption does not effect the identification of rightgoing and leftgoing solutions or the subsequent statement of a 
well-posed one-way equation in terms of ψ .

However, when one or more of these matrices is singular at a particular frequency, the one-way equation cannot be 
written in terms of the characteristic variables φ̂ at that frequency. In other words, equation (22) does not follow from 
equation (21). This is the case because expressing the differential equation for ψ+ and the algebraic condition for ψ− as 
a differential–algebraic equation with φ̂+ as the differential variable and φ̂− as the algebraic variable requires that φ̂+
depends on all of the components of ψ+ and that φ̂− depends on all of the components of ψ− . This is only the case if the 
matrices under consideration are full-rank.

Although in principle this constitutes a real and unpredictable limitation on our one-way formulation, we wish to em-
phasize that we have never encountered this problem in practice. The singularity of these matrices is easy to detect since it 
necessarily leads to singularity of the matrix system that is solved numerically to satisfy the recursions.
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